
The Icon Analyst / 1

August 1990
Number 1

In-depth coverage of the Icon Programming Language

 In this issue …

Launching the Analyst … 1

Version 8 Overview … 1

Getting Started with Icon … 3

Programming Tips … 6

Memory Monitoring … 7

Benchmarking Expressions … 10

What’s Coming Up … 12

Launching The Icon Analyst

This is the inaugural issue ofThe Icon Analyst.
The Analyst is devoted to technical aspects of the Icon
programming language, and complements The Icon News-
letter, which features topical issues and user contributions.

The Icon Analyst contains articles with in-depth
coverage of specific topics, programming tips, and so forth.

We want to make the Analyst useful to you. Your
comments and suggestions are welcome. Just write, call, or
send electronic mail. See page 6 for addresses and numbers.

Version 8 of Icon — An Overview

Version 8 of Icon has been released, and implementa-
tions for most computers are now available. What’s Version
8 all about? If you’re using an older version, should you
update? To answer these questions, let’s start with a review of
what’s new in Version 8.

Language Features

In the first place, there are no radically new features in
Version 8. Most of the new features add functionality and
provide refinements. For example, Version 8 has a set of
functions for doing mathematical computations. These func-
tions are similar to those you’ll find in other programming
languages — no surprises, but these new functions can be very
handy if you need to compute a logarithm or the sine of an
angle. They go toward making Icon useful for a wider variety
of applications.

Version 8 also provides “keyboard functions” for doing
direct input and output from a computer console. For ex-
ample, getche() gets a character typed from the keyboard and
echoes it on the screen. Keyboard functions are a virtual
necessity for writing interactive screen-management applica-
tions. Their inclusion in Version 8 fills a gap that has frus-
trated many Icon programmers in the past.

It’s worth noting that these functions are not supported
on all systems. Typically, keyboard functions are supported
on personal computers, but not on UNIX or on systems that
evolved from the mainframe mentality.

Version 8 of Icon supports arithmetic on integers of
arbitrarily large magnitude. While ordinary integer arithmetic

Version 8 Highlights

Math functions: sin(), cos(), … exp(), log(), …
Keyboard functions: getch(), getche(), kbhit()
Invocation with lists: p!L
Large-integer arithmetic
Variable access: name(v), variable(s)
Table keys: key(T)
Serial numbers for structures
Calling C functions from Icon and vice versa
Memory monitoring
Dynamic hashing

2 / The Icon Analyst

is performed as before on “machine integers”, once an integer
gets large enough to overflow, a “large integer” comes into
existence. There is no limit to the size of large integers except
the memory they require and the time it takes to perform
computations on them.

Unless you’re interested in number theory (one field of
mathematics that’s still accessible to amateurs), you may not
see how large-integer arithmetic can be useful. But if you want
to see all the digits in the largest known prime, here’s your
chance (as of this writing, it’s 391,581 * 2216,193 – 1 and has
65,087 decimal digits). If you don’t need large integers, the
nice thing is that they won’t bother you. They don’t affect
performance until machine arithmetic would overflow.
There’s one reservation about this new feature: It involves a
lot of code in the implementation — so much so that it is not
included for personal computer systems that must work with
a severely limited amount of memory.

A somewhat more esoteric capability in Version 8 is
provided by functions that return the string names of variables
and vice-versa. It’s a bit difficult to imagine what these
functions might be good for, although debugging comes to
mind.

As mentioned above, Version 8 has many features that
are best described as refinements or even cosmetic improve-
ments. An example is the new keyword &letters whose value
is a cset containing all the letters. It’s no longer necessary to
form the union of csets of upper- and lowercase letters. This
isn’t a big deal, but it will be welcomed by many program-
mers.

Every structure (list, set, table, and record) now has a
unique serial number, which starts at one for each type and
increases as more instances of the type are created. This serial
number appears as part of the string image of a structure.
Consequently, it’s now possible to identify individual struc-
tures; that’s very handy for debugging.

Another nicety of Version 8 is a way to invoke a
function or procedure with an (Icon) list of arguments. For
example, write!L writes the values in L. Formerly, it was
necessary to know how many arguments were needed in every
function call and write them out as part of the program. Now
the number of arguments needn’t be known until the function
is called. This new method of providing arguments comple-
ments the ability to define a procedure with a variable number
of arguments and makes certain kinds of programming tech-
niques possible that could not be used before. Programmers
from Lisp backgrounds will particularly appreciate this fea-
ture

Yet another feature that fills a gap is the function
key(T), which generates the keys (entry values) in the table T.
Until Version 8, the only way to do this was to sort the table
into a list and pick out the keys from the list. Not only does the
function do what’s needed directly, but it also saves the time
and space needed to sort the table. Incidentally, element
generation from tables should have done this from the begin-
ning. Generating the values instead of the keys was just a

design mistake. But once a mistake like that is made, it’s hard
to fix it — programs use such features, even if the features are
poorly designed.

One new feature of Version 8 that will be important to
persons who want to expand Icon’s computational repertoire
is the ability to call “external” functions written in C (or
another language with a C calling interface). The mechanism
for doing this in Version 8 is primitive. Nonetheless it is easy,
for example, to access functions in a graphics library. It is not
necessary to recompile all of Icon to do this, although it is
necessary to relink its run-time system. One potential problem
is passing arguments. While there are existing methods for
handling strings, integers, and floating-point numbers, figur-
ing out how to pass structures (either Icon’s or C’s) is left to
the user.

For the adventuresome, it’s also possible to call an Icon
program from C. It’s even possible to call Icon from C, C from
Icon, and so on, recursively. It’s a bit hard to imagine a real
application for this, however.

While it may sound exciting to have all of Icon’s high-
level computational capabilities available by calling Icon
from C, there’s a kicker. In order to be able to call an Icon
program from C, you have to load the entire Icon run-time
system along with your C program, not to mention the storage
regions Icon allocates when it starts up. This is only practical
on computers with a large amount of memory, and all the
overhead may be unappealing even there.

Implementation Changes

The implementation of Icon contains some improve-
ments that may be of more practical importance to some users
than any of its new language features.

The most important improvement is “dynamic hash-
ing” for sets and tables. This allows sets and tables to reorgan-
ize themselves as they grow in order to maintain good look-
up performance. For programs that deal with really large sets
and tables (such as in-memory word lists), performance is
dramatically improved by dynamic hashing. It may make the
difference between a practical application and an impractical
one.

Structures also are somewhat smaller in Version 8. This
improvement allows personal computer users to deal with
larger amounts of data than they could before.

Memory Monitoring

In an entirely different category is Version 8’s ability to
produce a file detailing storage allocation and garbage collec-
tion as a program executes. While this is not the kind of thing
most Icon programmers need or even would care to try to
understand, it provides input for tools that can do everything
from generating charts summarizing memory management to
providing interactive color displays of Icon’s allocated data
regions. At present there are only a few such tools. The Icon
Project provides one that produces color PostScript snapshots

The Icon Analyst / 3

of Icon’s the data regions (it prints in black and white on
garden-variety PostScript printers). Version 2.0 of ProIcon
will have a tool for producing color PICT displays of Icon’s
data regions on the Macintosh II. More tools are sure to come
— if you ever see a display, you’ll understand why. See the
article on page 7 for an introduction to memory monitoring.

User Impacts

Going to Version 8 of Icon from an earlier version will
have almost no impact on most users. While no language
change is totally transparent, most programs written for
earlier versions of Icon run under Version 8 without modifi-
cation. There’s one reservation: Version 8 of Icon is larger
than previous versions — this is the price of increased
functionality. Users of personal computers with very limited
amounts of memory may have trouble getting Version 8 to run
with large Icon programs.

The New Book

The second edition of The Icon Programming Lan-
guage appeared coincident with the release of Version 8. The
second edition describes all the features of Version 8 of Icon.
This should be welcomed by Icon programmers who, up to
now, have had to deal with the out-of-date first edition and
supplementary reports. The second edition is organized dif-
ferently from the first edition and presents the important and
interesting features of Icon first, before going on to the more
mundane computational repertoire. For example, generators
are described in Chapter 2 and string scanning is covered in
Chapter 3. Teachers should welcome this approach, since it
allows them to present the intellectually interesting part of
Icon from the start. The new approach also simplifies subse-
quent examples and encourages good programming style.
Other features of the second edition are more exercises
(including some more challenging ones), additional reference
material, a detailed discussion of running Icon programs, and
several examples of large Icon programs.

The Icon Program Library

Along with Version 8, there is a new, larger version of
the Icon program library — 63 programs and 48 sets of
procedures. The new program library contains everything
from the mundane to the esoteric; text utilities, games, tools
for working with Icon programs, you name it. Specifics aside,
the program library provides numerous examples of Icon
programming techniques. It’s a good way for an Icon novice
to get started. For those interested in object-oriented program-
ming, the library also includes Idol, an object-oriented version
of Icon written in Icon.

The Bottom Line

If you haven’t upgraded to Version 8, should you? Well,
if you’re using an earlier version, you’re not having any
troubles, and you don’t see any new features you think you

need, the motivation to upgrade probably is mostly a matter
of staying current. (If you have a problem with Icon, the Icon
Project probably will not be able to give much help unless
you’re running the latest version.) On the other hand, upgrad-
ing is inexpensive and relatively painless. You’ll get some
useful new features and improved performance, and you’ll be
in a position to follow new developments.

The Icon Programming Language

Second Edition

Ralph E. Griswold and Madge T. Griswold, Prentice Hall,
1990. 367 pages. $32. ISBN 0-13-447889-4.

Chapters:

1. Getting Started
2. Expressions
3. String Scanning
4. Csets and Strings
5. Arithmetic and Bit Operations
6. Structures
7. Expression Evaluation
8. Procedures and Variables
9. Co-Expressions

10. Data Types
11. Input and Output
12. Running an Icon Program
13. Programming with Generators
14. String Scanning and Pattern Matching
15. Using Structures
16. Mappings and Labelings
17. Programming with Strings and Structures

Appendices:

Syntax
Characters
Reference Manual
Error Messages
Implementations Differences
Sample Programs
Solutions to Selected Exercises

References

Index

Getting Started with Icon

This article is the first in a series designed to help
programmers who are just starting to use Icon — or those who
would like to use Icon but have been hesitant to dive in. These
articles assume you have some programming experience. It’s
possible to start with Icon as a first programming language,
but you’ll need more preparation than is provided here. This
series of articles assumes you are familiar with a program-
ming language such as Pascal or C.

While it’s easier to start out in Icon if you have experi-
ence with a language that has a similar syntax (like Pascal or

4 / The Icon Analyst

C), when you get around to writing real programs in Icon, you
may find you have to “unlearn” some things to use Icon
properly. The more experienced you are with another lan-
guage, the more serious this “culture shock” is likely to be.
These are semantic matters, however. We’ll start with pro-
gram structure and syntax.

Program Structure

An Icon program is composed of procedures that divide
the computations the program performs into (supposedly)
logical units. There is always a main procedure, which is
where a program starts when you run it. The main procedure
may call other procedures, and so on, to perform various tasks.

When starting out in Icon, it’s best to first write a few
programs that have only a single, main procedure before
going on to more complicated programs. A simple example is

procedure main()
 write("Okay, let's get started!")
end

This is a procedure declaration. It gives the name of the
procedure (main) and includes an expression that is evaluated
when the program is executed. The parentheses after the
procedure name are necessary; they’re for parameters (more
on this later). This program just writes Okay, let's get
started!, as you’d expect.

If a procedure contains several expressions, they are
evaluated in order, as in

procedure main()
 write("Okay, let's get started!")
 write("I'll write a bigger program soon.")
 write("But this is all for now.")
end

In case there are several procedures in a program, their
declarations are written one after another. The order isn’t
important, but it’s usually easier to read a program if the main
procedure comes first. If there are many other procedures, it’s
good practice to group them logically or alphabetically so that
it’s easy to find them.

A procedure declaration cannot occur inside another.
Procedure declarations cannot be nested and Icon does not
support sub-procedures or block structure either. An example
of a program is:

procedure main()
 hello()
 work()
 goodbye()
end

procedure hello()
 write("Okay, let's get started!")
end

procedure work()
 write("I'm not ready yet!")
end

procedure goodbye()
 write("But wait for next time!")
end

As suggested by this program, when a procedure is called, the
expressions in it are evaluated and then it returns to the caller
— when evaluation “flows off the end”. More on this in a
subsequent article.

Reserved Words and Identifiers

Every programming language has its own syntax —
rules of grammar that determine what’s correct and how
programs are parsed.

Learning the syntax of a new programming language is
always somewhat painful. Despite similarities of syntax,
there are minor and sometimes major syntactic differences
between different languages. Subtle differences between
similar constructions often are the most troublesome.

Icon uses reserved words to identify important struc-
tural components of its syntax. Examples of reserved words
are procedure and end, which are used to delimit procedure
declarations as shown in the examples above. Icon also uses
reserved words, such as if, then, and else, for control struc-
tures that determine how expressions are evaluated. You’ll
need to learn Icon’s reserved words, since they identify
important aspects of its syntax. This comes naturally as you
learn the language.

Other “words” of your choice can be used for identifiers
that are used to refer to values. For example, the expression

salutation := "Hello world"

assigns the string "Hello world" to the identifier salutation.
Reserved words, however, cannot be used for identifiers.
When you first start programming in Icon, you’re likely to
make a mistake such as

then := "I'm not ready yet!"

Icon’s compiler will tell you that you’ve made a mistake, since
then is a reserved word.

Without describing the syntax of identifiers in detail,
it’s worth noting one general rule in Icon: Upper- and lower-
case letters are distinct and bear no relationship to each other
as far as Icon is concerned. Consequently,

Then := "I'm not ready yet!"

is perfectly legal, since Then is not a reserved word.

If you’re used to a programming language that doesn’t
distinguish between cases, you may make the opposite mis-
take in Icon:

PROCEDURE MAIN()
 WRITE("Hello world")
END

There are several problems here. PROCEDURE and END
are not the same as procedure and end; Icon’s compiler will

The Icon Analyst / 5

complain. Even if it didn’t complain, MAIN is not the same as
main, so this program wouldn’t execute for lack of a main
procedure. And even if it did execute, WRITE is not the same
as write; WRITE is not a function and trying to call it would
be an error too. The general rule is that all reserved words and
function names are lowercase.

Icon’s case distinction gives you freedom. You may
find it handy, for example, to use uppercase or an initial
uppercase letter to make it easy to distinguish identifiers that
have special meaning to you.

Expressions

A procedure contains expressions. As mentioned ear-
lier, these expressions are evaluated one after another in the
order they appear in the procedure. This sequential evaluation
can be interrupted temporarily by calling another procedure.
Sequential evaluation also can be modified by control struc-
tures, as in

if i > j then i := j else j := i

which evaluates one of two expressions, depending on the
relative magnitudes of i and j. Similarly, the loop

while line := read(line) do
 process(line)

evaluates an expression repeatedly.

Unlike most (but not all) programming languages, Icon
has no statements; all computations are performed by expres-
sion. The distinction, roughly speaking, is that statements
control evaluation but do not produce values, while expres-
sions produce values. In languages that have both expressions
and statements, there are rules about where each can appear.
Icon is free of these distinctions.

While it may appear strange at first,

if i > j then i := j else j := i

is an expression in Icon and produces a value (the value
produced by the selected expression). For example, in Icon,
you can write

write(if i > j then i := j else j := i)

which does the same thing as

write(i := j)

or

write(j := i)

depending on the relative magnitudes of i and j. Of course,
unless you know Icon pretty well, you can only guess what
these do.

Since expressions are more general than statements,
you can use expressions just as you would use expressions in
most other programming languages and not have to worry
about it. Furthermore, you don’t have to learn special rules
about where expressions and statements can be used. In Icon,
it’s really simple: any expression is legal anywhere.

On the other hand, Icon’s expression-based syntax
sometimes lets you write things more compactly than you
could in other programming languages. But such techniques
are not part of “getting started”.

Since expressions are evaluated in order (in the absence
of control structures), something is needed to tell where one
expression ends and another begins. Most programming lan-
guages use semicolons for this purpose. Icon does too. For
example,

write("Hello."); write("Good–bye.")

consists of two expressions; the semicolon separates them.
The semicolon is necessary; Icon’s compiler objects to

write("Hello.") write("Good–bye.")

Icon provides semicolons for you automatically if you
write expressions on separate lines, as in

write("Hello.")
write("Good–bye.")

In fact, it’s never necessary to use a semicolon in an Icon
program to separate expressions. You can always use separate
lines. This technique also is good style; it generally makes
programs easier to read.

But suppose you have a very long expression. While
where is no limit on the length of a line in an Icon program,
long lines are hard to read and may be wrapped around or
truncated on terminals and printers.

Icon lets you write an expression on as many lines as
you like — long expressions are automatically continued
from line to line as necessary. For example,

count := cmp(1) –
 cmp(2) –
 cmp(3) –
 cmp(4)

is equivalent to

count := cmp(1) – cmp(2) – cmp(3) – cmp(4)

However, since Icon also allows expressions in se-
quence to be written on several lines without your having to
provide the semicolons, the Icon compiler must be able to tell
if lines in succession consist of separate expressions or a
continued expression. The rule is this: If an expression ends on
a line and the next line begins another expression, the expres-
sions are separate. Otherwise, the second line is a continuation
of the first.

This may sound so obvious that you wonder why it’s
said. The problem is ambiguity. For example,

count := cmp(1)
 – cmp(2)
 – cmp(3)
 – cmp(4)

is four separate expressions, not one long one. The difference
between this example and the previous one is that, for ex-
ample,

6 / The Icon Analyst

 – cmp(2)

is a perfectly legal Icon expression. The operator – in prefix
position produces the negative of cmp(2). Consequently in
this example, each line contains a complete expression, even
if the result is not as intended. However,

count := cmp(1) –

and subsequent lines in the earlier example are not complete
expressions, so the expression is continued until a complete
expression is encountered.

You may think you’ll need an expert knowledge of
Icon’s syntax and constant diligence to cope with this prob-
lem. Actually there’s a simple rule: It you want an expression
to be continued on several lines, all you need to do is be sure
every line except the last one does not end a complete
expression. That’s actually easy to do. Since Icon has no
suffix operators, any line ending with an operator cannot end
an expression.

Next Time

In the next article we’ll discuss more about syntax,
including pitfalls and how to avoid them. We’ll also discuss
the basic aspects of expression evaluation in Icon: success,
failure, and generation.

possible, and Icon has no way of knowing that it will not
happen. Consequently, when the assignment finally is per-
formed, x must be looked up in T again — just in case.

On the other hand,

insert(T,x,expr)

presents no such problem, since expr is evaluated before
insert() is called and there’s no possibility of a side effect such
as the one described above. One look-up will do in this case.
For similar reasons, it’s faster to use member(T,x) than to
check T[x] for (say) the default value.

Of course the implementation of Icon could be smarter
about table subscripting, but it isn’t and if you want to speed
up a program that does a lot of table subscripting, insert() and
member() are the way to do it — not pretty, perhaps, but
certainly faster.

This regular feature of

the Analyst is devoted to as-
pects of programming in Icon
that may not be obvious —
things you can do to improve
your programs or make them
run faster.

For example, to improve
performance in inserting new
elements in a table, use

insert(T,x,y)

instead of

T[x]:= y

Both do the same thing, but the latter is considerably slower.

There are several reasons for this difference in perform-
ance, but the primary one has to do with the way expressions
are evaluated in Icon. Consider the general case of assignment
to a subscripted table:

T[x] := expr

where expr is some expression, perhaps a complicated one.
Evaluation of the left side of the assignment requires that x be
looked up in T. Suppose x is not in T. The evaluation of T[x]
detects this and prepares for the insertion of a new element
into T. The expression on the right side of the assignment is
evaluated next. Suppose it inserts an element into T. It could
even insert x into T. While this may appear unlikely, it is

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a
year. A one-year subscription is $25 in the United
States, Canada, and Mexico and $35 elsewhere.
To subscribe, contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

(602) 621-8448

FAX: (602) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

...{uunet,allegra,noao}!arizona!icon-project

and

© 1990 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

The Bright Forest Company
 Tucson Arizona

Programming
Tips

The Icon Analyst / 7

If there is not enough available free space to satisfy an
allocation request, a garbage collection is performed to re-
claim space occupied by objects that are no longer needed.

The garbage collection process is fairly complicated,
since it is necessary to locate all objects that may be needed for
subsequent program execution. Objects that need to be saved
typically are scattered throughout the string and block re-
gions:

free

allocated space

free space
end

beginning

Once the objects to be saved are identified (“marked”),
they are relocated toward the beginning of their region,
compressing the allocated space and making more free space
available so that allocation can proceed:

beginning

free

end

allocated space

free space

Allocation Histories

Version 8 of Icon provides a tool called memory moni-
toring that provides a way of finding out how memory space
is used. Memory monitoring ordinarily is disabled and you’d
not know it was there. It is enabled by setting the value of the
environment variable MEMMON to the name of a file before
you run your program. If this variable is set, memory manage-
ment information is written to the file as your program runs.
This allocation history file contains a detailed record of all the
storage allocation that your program performs, as well as what
goes on during garbage collection. The box on the next page
shows a typical allocation history file. An encoding of the
details of memory management follows header information.

Memory Monitoring

Icon has many kinds of data. Much of the power of Icon
comes from all the things you can do with different kinds of
data. Furthermore, objects of these types are created as they
are needed during program execution — when you write an
Icon program, you don’t have to know how many data objects
you will need or even how big they will be.

Allocation and Garbage Collection

Space for such objects is allocated, and unused objects
are “garbage collected” when more space is needed. All this
is automatic — you don’t have to account for it when you write
a program. Nevertheless, objects that are created during
program execution and the memory space they occupy can be
significant factors in program performance.

The situation is complicated by the fact that Icon often
provides several different ways of performing an operation
using different kinds of data. You may, for example, have a
choice between using a list, a set, or a table to keep track of a
collection of values. One choice may be easier to program
than another, but you may also wonder about the relative
amount of memory space used by different methods. Nor-
mally, you’d probably prefer not to worry about this, but
sometimes the choice of a data type makes the difference
between a program that works and one that doesn’t — for lack
of space. You might also just be curious about how Icon
allocates and collects objects during program execution.
Memory management in Icon is described in detail in Refer-
ence 1. Here’s a brief overview.

Icon allocates space for objects that are created during
program execution in two main regions: a string region and a
block region. The string region consists of characters, while
the block region contains structures and related objects.
Allocation in the string region is in terms of bytes, while
allocation in the block region is in terms of “words”. A word
is four bytes for most implementations of Icon. Some imple-
mentations of Icon also have a “static” region, which is not
described here.

Allocation proceeds in the same manner in both main
regions. The regions initially are empty and bounded by
pointers. As space is needed, it is provided starting at the
beginning of the region. A “free” pointer is incremented to
mark the boundary between allocated space and free space:

beginning

free

end

allocated space

free space

8 / The Icon Analyst

After execution, such an allocation history file can be
used in a variety of ways. An allocation history file, by its
nature, is too detailed to use directly. But there are several
tools for processing allocation history files, ranging from
simple summaries of storage management to animated color
visualizations of memory management in action.

Allocation Summaries

Let’s start with something simple — a summary of
allocation. Consider the following simple program for count-
ing the number of times each character occurs in a file:

procedure main()

 ccount := table(0) # table of characters

 while ccount[reads()] +:= 1 # count characters

 ccount := sort(ccount,3) # sort them

 rwidth := 0 # count width
 every rwidth <:= ∗!ccount

 while write(left(image(get(ccount)),10),
 right(get(ccount),rwidth)) # output results
end

Here’s a summary of allocation obtained by processing
the allocation history file that results when this program is run
with an input file containing 30,656 characters:

type number bytes average % bytes

string 31911 35628 1.12 75.508

list header 2 40 20.00 0.084
table header 1 64 64.00 0.135
table element 251 7028 28.00 14.894
hash block 4 288 72.00 0.610
list element 2 4136 2068.00 8.765

total: 32171 47184 1.47

The first line shows the allocation in the string region. The
remaining lines show the objects allocated in the block region.
You need to know something about how Icon represents its
data structures to interpret these figures. For example, every
list has a header, which links to blocks containing list ele-
ments. A table also has a header, as well as hash blocks and
table elements.

If you look carefully at the summary above, you may
have a few questions. For example, two list headers were
allocated, which means the program created two lists. One is
obvious — the one produced by sorting the table. The other
list is the one for the argument to main(). Even though main()
in this program has no argument, the list is created anyway —
it’s not easy to find out if main() needs an argument at the time
the command line is processed for arguments. So there’s
always one list allocated in addition to any the program itself
may create.

It’s worth looking at the rest of the summary to see if
there is anything surprising. Most storage is allocated for
strings, which makes sense, since all of the input file has to be
read (Icon allocates string space for any data it reads). The
average of 1.12 for the length of allocated strings is plausible.
There are two sources of strings in the program: the one-
character strings produced by reads() and the strings pro-
duced by image(s). Most of the imaged strings are three
characters long (the character itself plus the surrounding

A Typical Allocation History File

Icon MemMon output
#
program: concord
date: Tue Apr 17 14:19:02 1990

4< 131860:0/0 138240:0/65000 204800:0/65000
0"
>
= 131860:0/0 138240:0/65000 204800:0/65000
5L23l16T10h0"6"0"6"0"6"0"6"0"6"0"6"0"6"0"6"0"6"0"6"0"6"0"6"60"6"60"7eL
9l54+7%rteLl75+%rteLl96+%rteLl117
+%rteLl138+%rteLl159+%rt0"6"0"6"0"6"68"
6"68"eLl180+%rteLl201+%rteLl222+%rteLl243+%rteLl264+%rt23leL9l
Ll329+%rt66"6"66"eLl350+%rteLl371+%rteLl392+%rteLl413+%rteLl
eL9l478+%rt23leL9l522+%rt64"6"64"eLl543+%rteLl564+%rteLl585+%rteLl
eLl627+%rteLl648+%rteLl669+%rt67"6"67"eLl690+%rteLl711+%rteLl
l753+%rteLl774+%rteLl795+%rteLl816+%rteLl837+%rteLl858+%rt69"6"69"
eLl900+%rteLl921+%rteLl942+%rteLl963+%rtheLl994+%rteLl1015+%rteLl
64"6"64"23leL9l1080+%rteLl1101+%rt23lll69"6"69"eL9l1191+%rteLl
eLl1233+%rteLl1254+%rteLl1275+%rteLl1296+%rt68"6"68"eLl1317+%rteLl
eLl1359+%rteLl1380+%rteLl1401+%rteLl1422+%rt0"6"68"6"68"eLl
1464+%rt23leL9l1508+%rteLl1529+%rt23leL9l1573+%rt76"6"76"eLl
l1615+%rteLl1636+%rteLl1657+%rteLl1678+%rteLl1699+%rt68"6"68"eLl
eLl1741+%rteLl1762+%rteLl1783+%rt23leL9l1827+%rt64"6"64"eLl
lleL9l1938+%rteLl1959+%rteLl1980+%rteLl2001+%rt23leL9l2045+%rt69"6"
eLl2066+%rt18h23llleL9l2174+%rteLl2195+%rt68"6"68"eLl2216+%rt23lleL
eLl2304+%rteLl2325+%rteLl2346+%rt65"6"65"eLl2367+%rt23lleL9l
6"16"eLl2455+%rt23l0"6"68"6"68"eL9l2499+%rteLl2520+%rteLl2541+%rteL
"6"68"eLl2583+%rteLl2604+%rteLl2625+%rteLl2646+%rt23lleL9l2713+%rte
eLl2755+%rt63"6"63"eLl2776+%rteLl2797+%rteLl2818+%rteLl2839+%rteLl
66"6"66"eLl2881+%rteLl2902+%rteLl2923+%rteLl2944+%rteLl2965+%rteLl
eLl3007+%rt67"6"67"23leL9l3051+%rteLl3072+%rteLl3093+%rteLl
67"23leL9l3158+%rteLl3179+%rteLl3200+%rt23leL9l3244+%rteLl
34"6"34"eLl3307+%rteLl3328+%rteLl3349+%rt0"6"68"6"68"eLl3370+%rt23l
3414+%rteLl3435+%rt67"6"67"eLl3456+%rt23llllll"6"67"llll52"6"52"llll0"
6"77"6"77"leL9l3822+%rteLl3843+%rteLl3864+%rteLl3885+%rteLl
6"64"eLl3927+%rt23leL9l3971+%rt23leL9l4015+%rt23l17"6"17"ll0"6"68"6"
eL9l4105+%rteLl4126+%rteLl4147+%rt67"6"67"23leL9l4191+%rteLl
l4233+%rteLl4254+%rteLl4275+%rt69"6"69"eLl4296+%rteLl4317+%rteLl
23llleL9l4428+%rt65"6"65"eLl4449+%rteLl4470+%rteLl4491+%rt68"6"68""
eLl4512+%rteLl4533+%rt23leL9l4577+%rteLl4598+%rt0"6"0"6"0"6"0"6"0"6"
6"69"6"69"eLl4619+%rteLl4640+%rt0"6"0"6"0"6"0"6"0"6"0"6"58"6"58"eLl
34heLl4716+%rteLl4737+%rteLl4758+%rt30"6"30"eLl4779+%rt"6"30"eLl
26"6"26"0"6"0"6"66"6"66"eLl4821+%rt23ll"6"66"leL9l4911+%rteLl4932+%rt
eL9l4976+%rt64"6"64"eLl4997+%rteLl5018+%rt23leL9l5062+%rt68"6"68"
9l5106+%rteLl5127+%rteLl5148+%rteLl5169+%rteLl5190+%rt66"6"66"eLl
eLl5232+%rt23leL9l5276+%rt23l65"6"65"eL9l5320+%rteLl5341+%rt23leL9l
68"6"68"eLl5406+%rteLl5427+%rteLl5448+%rt"6"68"eLl5469+%rt23leL9l
eLl5534+%rt23leL9l5578+%rteLl5599+%rt69"6"69"eLl5620+%rteLl
5662+%rteLl5683+%rteLl5704+%rt23ll"6"69"31leL9l5802+%rt23leL9l
68"6"68"eLl5867+%rteLl5888+%rteLl5909+%rt"6"68"eLl5930+%rt23llll65"
67"6"67"eL9l6043+%rteLl6064+%rt23lleL9l6131+%rt65"6"65"eLl6152+%rte
23lleL9l6240+%rt66"6"66"eLl6261+%rt23leL9l6305+%rt23leL9l6349+%rt
64"eLl6370+%rteLl6391+%rteLl6412+%rt23leL9l6456+%rt67"6"67"23lllleL
34"6"34"eLl6590+%rt0"6"67"6"67"eLl6611+%rteLl6632+%rteLl6653+%rteLl
eLl6695+%rt65"6"65"eLl6716+%rteLl6737+%rt69"6"69"eLl6758+%rt23leL9l
23llleL9l6892+%rt23l92"6"92"eL9l6936+%rteLl6957+%rteLl6978+%rteLl
eLl7020+%rt71"6"71"eLl7041+%rteLl7062+%rteLl7083+%rteLl7104+%rt23l
69"lleL9l7194+%rt64"6"64"23lleL9l7261+%rteLl7282+%rt43"6"43"0"6"64"6"
23ll62"6"62"lleL9l7395+%rt22"6"22"eLl7416+%rt0"6"65"6"65"23l66"6"66"
23l63"6"63"eL9l7526+%rt23lll69"6"69"31leL9l7647+%rteLl7668+%rt23l88"

and so on …

The Icon Analyst / 9

quotes). The images are longer for characters that are not
“printable” and hence are represented by escape sequences.

The 64 bytes for the table header tell you something —
any table is going to take at least this much space. There is one
hash block initially, and more are added as elements are added
to the table. The details of this process are described in
Reference 2.

Every table element occupies 28 bytes. There evidently
are 251 different characters (one table element for each) in the
input file for this run (it was a “binary” file). Since there are
only 256 possible characters, the space for the table and its
associated components cannot be much bigger than in this
example.

The maximum amount of space required by this pro-
gram is, in fact, the sum of the size of the input file plus a
constant. You might try figuring out what this constant is —
and check it by testing the program with an input file that
contains just one each of each of the 256 characters. The test
file is easy to produce:

procedure main()
 every writes(!&cset)
end

Space is not an important matter in this program (string
space for data read in is garbage-collected automatically). But
you might wonder if the program could be written to use less
space than in the example. One possibility is to avoid the table
altogether by using the ordinal values of the characters to
index a list of counts:

procedure main()

 ccount := list(256,0) # list of counts

 while ccount[ord(reads()) + 1] +:= 1

 rwidth := 0
 every rwidth <:= ∗!ccount

 every i := 0 to 255 do
 if (c := ccount[i + 1]) > 0 then
 write(left(image(char(i)),10),right(c,rwidth))
end

Of course, this program is not “Iconish” in style. It’s like
the kind of program that C programmers often produce when
first introduced to Icon. But how much storage does it use?
Here’s the summary:

type number bytes average % bytes

string 32162 35879 1.12 94.202

list header 2 40 20.00 0.105
list element 2 2168 1084.00 5.692

total: 32166 38087 1.18

Although the total space is not much less than for the
first version of the program, the amount of non-string (block)
space is much less: 2,208 bytes as opposed to 11,556 bytes.

Comparing this summary to the first one might tell you
something about a detail of the implementation of Icon:
char(i) allocates a one-character string. It doesn’t have to be
implemented this way; it could use a static array of 256
characters.

But why is less space allocated for list elements in the
second version of the program? That’s not a quirk of the
implementation. In the first version of the program, the size of
the list produced by sorting is twice the number of different
characters: one element each for the key and its value. In the
second version of the program, the size of the list is just 256.

All this preoccupation with storage allocation does not
deal with a question that is probably more important for this
program: Which version is faster?

The first version is faster, by about 23%. The reason
presumably is the extra computation (ord() and char()) in the
second version. It’s encouraging that the “Iconish” method is
faster, at least.

Challenge — can you write a version of this program
that is faster than the first one given here? Or one that uses less
space than the second? How about one that doesn’t use a list
at all (while still producing its output in collating order)?

If you have Version 8 of the Icon program library, you
can use the program memsum.icn there to get summaries
similar to the ones above. This program also can produce tab-
separated data for use in spreadsheets and charting programs.

The use of memsum is illustrated by the following
commands for obtaining an allocation history file for the
program tablc.icn on a UNIX BSD system (the details are
different for other systems):

setenv MEMMON tablc.mon
tablc <tablc.dat
unsetenv MEMMON
memsum <tablc.mon >tablc.sum

It’s essential to remove the setting for MEMMON before
running memsum. Otherwise, since memsum is an Icon
program, an allocation history file for it would be produced,
overwriting the one for tablc. (If you ever get a summary
showing all zero entries, this is the probable cause.)

Such summaries give an interesting overview of all the
storage allocation in an Icon program, but they use only a
small portion of the information in an allocation history file.
As mentioned earlier, an allocation history file is too detailed
to be understandable as it stands. There are, however, several
other ways of using the data from an allocation history file.
One possibility is a visualization of memory management.

Several such visualization programs exist. The simplest
of these produces “snapshots” of Icon’s storage regions at
critical times, showing every allocated object according to its
size and position in memory. Objects of different types are
displayed in different colors to make them more readily
identifiable (on black-and-white devices, shades of grays and
patterns are used to achieve some of the same effects). More-

10 / The Icon Analyst

Benchmarking Icon Expressions

With this article, we’re starting a series on writing
efficient programs in Icon. This series will cover many
aspects of programming in Icon. It starts here with a discus-
sion of some basic concerns and then goes on to show how to
measure expression evaluation, so that you can answer some
of the questions you may have about Icon’s performance.

Most lower-level programming languages mirror the
architecture of the computers on which they run. It’s fairly
easy, for example, to relate code written in FORTRAN to the
machine instructions that execute it. A programming lan-
guage like Icon, however, has many features that do not have
obvious images in machine instructions. Even Icon opera-
tions that look simple and “close to the machine” frequently
are more complicated than they appear because of Icon’s
automatic storage management and type conversion.

Experience has shown that Icon programmers often
have misconceptions about the efficiency of Icon expres-
sions, sometimes underestimating their performance and
sometimes overestimating. Programmers tend to expect ex-
pressions that appear to be far from machine instructions to be
slower than they are, while overlooking hidden costs in
operations that appear simple. Most Icon programmers, for
example, expect map(s1,s2,s3) to be slower than it is and
they mistakenly believe the activation of a co-expression is
significantly slower than a procedure call. Even programmers
who are familiar with the implementation of Icon often are
mistaken about efficiency issues.

Efficient programming in Icon is further complicated
by the richness of Icon’s computational repertoire, which
sometimes provides several different ways of performing the
same computational task.

Analytic techniques, based on detailed knowledge of
the implementation of Icon, can give average or worst-case
figures for operations like set and table look-up. Such analytic
descriptions of performance tend not to be very helpful

sophisticated visualization programs produce animated out-
put, showing each object as it is allocated.

These visualizations provide much more insight into
Icon’s memory management than any number of summaries
or charts. We’ll describe visualization in more detail in the
next issue of the Analyst.

References

1. The Implementation of the Icon Programming Language,
Ralph E. Griswold and Madge T. Griswold, Princeton Univer-
sity Press, Princeton, New Jersey, 1986.

2. Supplementary Information for the Implementation of Ver-
sion 8 of Icon, Ralph E. Griswold, Icon Project Document 112,
Department of Computer Science, The University of Arizona,
1990.

because of the wide variation in data encountered in practice
and the interaction of factors such as storage allocation and
garbage collection.

Empirical results, obtained by actually timing different
kinds of operations, often are more helpful than analytic
results in providing guidelines for efficient programming
techniques. Such measurements also sometimes produce un-
expected results that dispel misconceptions (and even show
problems in the implementation itself).

While it’s easy to time a complete program, a finer level
of detail is needed to answer questions about alternative
programming techniques and to identify sources of ineffi-
ciency. It’s not hard to time a single expression in a loop to get
an approximation to the time it will take to evaluate it in the
context of a real program. For example,

procedure main()
 itime := &time
 every 1 to 10000 do {
 abs(–1.0)
 }
 write(real(&time – itime) / 10000)
end

evaluates abs(–1.0) 10,000 times and writes the average time
for an evaluation. The number 10,000 is a bit arbitrary, but the
number of iterations should be large enough to overcome
anomalies resulting from the discrete nature of the computer
clocks. Most computer clocks “tick” 60 times a second,
although some, such as the one for MS-DOS, change only
once a second.

This simple program does not allow for the overhead of
the loop, which may be as much or more than the time it takes
to evaluate abs(–1.0). There are many other issues, such as
the effects of external factors like the load in a multi-tasking
environment. Furthermore, if you want to time a lot of
expressions, modifying the program, keeping track of infor-
mation like the expression that was measured, the version of
Icon, the date of the run, the system on which the timing was
done, and so forth become daunting chores. The obvious
solution is to write a program to take care of these menial tasks
automatically.

A Program to Produce Measurement
Programs

What’s more natural than to use an Icon program that
produces Icon programs to do the measurements, record the
information, and so on?

For naive timings, a program that produces loops such
as the one above is all that’s needed. However, something
needs to be done about compensating for loop overhead. This
turns out to be a bit tricky. It’s not good enough to compute
loop overhead by timing an empty expression, as in

every 1 to 10000 do { }

The Icon Analyst / 11

The problem is that the Icon compiler discards the empty do
clause, and hence some code that is present when timing a non-
empty expression. A better approximation is

every 1 to 10000 do {
 &null
 }

Although &null is about as fast as any expression, the time it
takes to evaluate it is significant compared with other simple
expressions.

If you look at the code generated by the Icon compiler,
you’ll see that conjunction introduces very little overhead, so
it might suffice to use

every 1 to 10000 do {
 &null & abs(–1.0)
 }

and subtract the overhead for &null. This still leaves the (small)
overhead for conjunction. To get rid of that, the difference in
times for

&null & &null

and

&null

does the trick.

Enough of these complexities. Here’s a simple program
to produce expression measurement programs:

procedure main()
 write("procedure main()")
 write(" _Itime := &time")
 write(" every 1 to 10000 do { &null }")
 write(" _Over := real(&time – _Itime) / 10000")
 write(" _Itime := &time")
 write(" every 1 to 10000 do { &null & &null }")
 write(" _Over := real(&time – _Itime) / _
 10000 – _Over")
 while line := read(input) do {
 write(" write(",image(line),")")
 write(" _Itime := &time")
 write(" every 1 to 10000 do {")
 write(" &null & ", line)
 write(" }")
 write(" write((real(_Itime) / 10000) – _
 _Over,\" ms.\")")
 }
 write("end")
end

This program, empg (for “expression measurement
program generators”)‚ reads expressions from standard input.
When the resulting program is run, the timing is performed and
relevant information is written.

For example, if the file abs.exp contains the following
lines,

abs(1.0)
abs(–1.0)

then

iconx empg <abs.exp

produces the program

procedure main()
 _Itime := &time
 every 1 to 10000 do { &null }
 _Over := real(&time – _Itime) / 10000
 _Itime := &time
 every 1 to 10000 do { &null & &null }
 _Over := real(&time – _Itime) / 10000 – _Over
 write("abs(1.0)")
 _Itime := &time
 every 1 to 10000 do {
 &null & abs(1.0)
 }
 write((real(_Itime) / 10000) – _Over " ms.")
 write("abs(–1.0)")
 _Itime := &time
 every 1 to 10000 do {
 &null & abs(–1.0)
 }
 write((real(_Itime) / 10000) – _Over, " ms.")
end

The identifiers in the program begin with underscores and
capital letters to minimize the possibility of name collisions
with expressions that are measured.

When this program is then run, the output looks some-
thing like this:

abs(1.0)
1.0076 ms.
abs(–1.0)
2.4246 ms.

The version of empg given above is primitive and is just
intended to illustrate the idea. Lots more can be done, such as
reporting environmental information and providing a way to
specify the number of loop iterations. It’s also clear that just
timing all the expressions in a file is not enough. To time table
lookup, for example, it’s necessary to create the table outside
of the timing loop. Although the table could be created in a
separate timed expression, this is unnecessarily time consum-
ing. Furthermore, to measure expressions that call procedures
and reference records, it’s necessary to have some way of
getting declarations into the measurement program.

Thus, like many problems that start with a simple idea
and grow into elaborate tools, empg can be made more
sophisticated and a simple language can be designed for its
input. The version of empg that follows, which by no means
exhausts the possibilities, interprets an input line according to
its first character, as follows:

12 / The Icon Analyst

The rest of the line is a comment to be written by the
timing program.

: The rest of the line is an expression that is evaluated
only once.

$ The rest of the line is part of a declaration and is
appended to the end of the timing program.

The changes in empg are:

 decls := [] # list for declarations
.
.
.

 while line := read() do
 case line[1] of {
 ":": { # evaluate, not time
 write(" ",line[2:0])
 write(" write(",image(line[2:0]),")")
 }
 "$": { # line of declaration
 put(decls,line[2:0])
 write(" write(",image(line[2:0]),")")
 }
 "#": # comment
 write(" write(",image(line),")")
 default: { # time in a loop
 write(" write(",image(line),")")
 write(" _Itime := &time")
 write(" every 1 to 10000 do {")
 write(" &null & ", line)
 write(" }")
 write(" write((real(_Itime) / 10000)
 – _Over,\" ms.\")")
 }
 }

.

.

.

 every write(!decls) # write declarations

For example, the output for an expression file containing

 :s := blank := " "
 s ||:= blank

is

 s := blank := " "
 write("s := blank := \" \"")
 write("s ||:= blank")
 _Itime := &time
 every 1 to 10000 do {
 &null & s ||:= blank
 }
 write((real(_Itime) / 1000) – _Over, " ms.")

We’ve swept a lot of things under the rug here. The big
one is storage management. We’ll discuss this in a subsequent
article.

In the meantime, if you have Version 8 of the Icon
program library, you’ll find a full-blown version of empg in

it. If you don’t have the program library, you can write your
own, based on the examples here.

Try measuring some expressions and see if the results
are what you expect. To test your intuition, guess which of the
following expressions is fastest:

every !&digits
every !"0123456789"
every "0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9"

Now measure them and see.

What’s Coming Up

In the next issue of The Icon Analyst, we’ll con-
tinue the articles on memory monitoring and benchmarking
Icon expressions. We’ll also continue the series for beginning
Icon programmers with an article on the basics of expression
evaluation.

As with any programming language, there are some
things you can write that look perfectly plausible but that
don’t do what you expect. We’ll list some of these syntactic
pitfalls in Icon in the next issue.

We’ll have a couple more programming tips and start a
new feature on things Icon “wizards” do.

Looking farther down the line, we plan a series on string
scanning, and articles on program readability and writing
portable Icon programs.

If you have a topic you’d like to see covered in The
Icon Analyst, let us know. We can be reached by various
means; see the box on Page 6.

Downloading Icon Material

Most implementations of Icon are available for
downloading electronically:

BBS: (602) 621-2283

FTP: cs.arizona.edu (cd /icon)
(128.196.128.118 or 192.12.69.1)

