
The Icon Analyst / 1

October 1990
Number 2

In-depth Coverage of the Icon Programming Language

with how many values an expression can produce. In most
programming languages, the evaluation of an expression
always produces exactly one value. You may be so familiar
with this concept that you’ll argue that it’s both natural and
“the only way to do it”. While many expressions in Icon do
produce a single value, others may not produce any value at
all or may produce many values.

Goals

What does it mean for the evaluation of an expression
not to produce a value? It’s not that the expression has some
interesting side effect and no specific value is needed. In fact,
the intent (or “goal”) in the evaluation of an expression is to
produce a value. For example, the goal of the evaluation of
i + j is to produce the sum of two numbers. This goal always
can be achieved, provided i and j are numbers. In Icon
parlance, such an expression succeeds. Similarly, the goal of
evaluating read() is to read a file and to produce the next line
of input. This goal, however, cannot always be achieved. In
particular, if the end of the input file has been reached, there
is no data to read.

Different programming languages have different ways
of handling computations that cannot be performed. Icon’s
way is not to produce a value. The goal is not achieved, and the
expression fails. If that were all Icon did in such a situation, it
would be very hard to write programs. Failure to meet a goal
is, however, sensed by control structures. The net effect is
similar to the use of Boolean values in other programming
languages, but the underlying concept is much different.

An example of sensing failure is

if line := read() then process(line)
else write("∗∗∗ eof ∗∗∗")

This program segment attempts to read a line. If the attempt
is successful, the line is processed. If, however, the attempt
fails, a diagnostic message is written. It’s the success or failure
of read() that this control structure uses to select an expres-
sion to the evaluated subsequently.

Persons who have never heard of Boolean values gen-
erally find the concepts of success and failure and their use in
Icon to be natural. Persons who are accustomed to Boolean
values or something similar often try to interpret failure as
some kind of special value that control structures intercept
and interpret. This is not how Icon works — failure isn’t a
value and control structures can tell if an expression produces
a value or not and act accordingly.

 In this issue …

Expression Evaluation … 1

Syntactic Pitfalls … 3

Memory Monitoring … 5

Programming Tips … 9

Benchmarking Expressions … 10

From the Wizards … 12

What’s Coming Up … 12

The Fundamentals of Expression
Evaluation

This is the second in a series of articles designed to help
persons who are just getting started with Icon. Like the first
article (“Getting Started”), it assumes you have prior experi-
ence in a programming language such as Pascal.

Expression evaluation is the heart and soul of Icon.
While Icon has many useful features that are not found in most
other programming languages, expression evaluation is more
central and pervasive than any other aspect of Icon. And
expression evaluation in Icon really is different from expres-
sion evaluation in most other programming languages. It’s
important to understand the differences and what’s really
going on when an Icon program runs. If you understand this,
you can use the power of expression evaluation in Icon to
write concise, powerful, and even elegant solutions to prob-
lems that are lengthy, tedious, and awkward to program in
most other programming languages. If you don’t really under-
stand expression evaluation in Icon, you’re likely to write
programs that don’t do what you want and that have bugs that
are hard to find. It’s worth making an investment in learning
of few fundamentals of expression evaluation in Icon.

Ironically, the better you know another programming
language, the harder it’s likely to be for you to understand
expression evaluation in Icon. Start with a willingness to give
up familiar concepts and, more importantly, be willing to
learn to think in Icon rather than trying to translate what you
see in Icon into an inappropriate framework of another pro-
gramming language.

The real difference between expression evaluation in
Icon and that in most other programming languages has to do

2 / The Icon Analyst

We’ve glossed over something in the example above
that needs attention. It’s the expression

line := read()

in the control expression that “drives” the if-then-else control
structure. What happens to the assignment if read() fails?
There’s a simple explanation that applies to all situations of
this kind. In order for the assignment to be performed (assign-
ment is an expression with a goal also), it must have a value
to assign. If there’s no value, the assignment cannot be
performed and it fails also. In this case, the value of line is not
changed, since no assignment is performed. No matter how
complex an expression is, if a value is needed to satisfy a goal
somewhere within it and there isn’t a value (because of the
failure of some sub-expression), the whole expression fails.
It’s worth noting that in

if line := read() then process(line)
else write("∗∗∗ eof ∗∗∗")

if read() fails, the control structure selects the expression in
the else clause and evaluation continues. The failure is
isolated in the control expression and once it’s processed,
evaluation continues elsewhere (with another goal).

Failure and Errors

It’s important to understand that the failure of an ex-
pression is not an error — it’s merely a way of handling a
computation that cannot be performed. In fact, many expres-
sions in Icon are designed so that failure can be used in a
natural way to control computations. For example, an out-of-
bounds list subscript causes failure. This allows loops to be
written without the need to know the range of allowable
subscripts.

There are, of course, situations in expression evaluation
that really do indicate errors. An example is the attempt to
perform arithmetic on a value that is not a number. In this case,
program execution terminates with a run-time error and
produces descriptive information about the nature and loca-
tion of the error.

The difference between failure and an error is largely a
matter of language design. In Icon, failure is used for compu-
tations that are well-formed but cannot be performed, while
error termination is used for situations that probably indicate
mistakes or program malfunction. There is no clear dividing
line between these two categories and there are several cases
in which the design choice was essentially a matter of flipping
a coin. Most cases are clear-cut; once you get used to the
underlying differences between failure and error termination,
you shouldn’t have any problem with the difference.

Alternatives

Goals and success and failure are enough for simple
computations. In more complex computations, especially

those that involve trying various possible computations, it’s
helpful to have an easy way to specify alternatives.

Consider a situation in which an action is to be taken if
a counter is either 0 or 1. This can be phrased as

if (counter = 0) | (counter = 1) then action()

This formulation, which looks like the logical or in
other programming langauges, works well enough, but it’s
awkward and verbose — it’s a difficult way to express a
simple concept: “either 0 or 1”. In Icon, this can be written as

if counter = (0 | 1) then action()

You may wonder how this works — what is really going
on? The idea is that if one alternative doesn’t lead to success,
the other alternative is tried. It’s important to understand more
— how this is done.

The expression 0 | 1 has two alternatives. It produces
the one on the left first. Suppose the value of counter is 1. The
comparison with the first alternative (1 = 0) fails. Since the
goal of producing a value is not met, the second alternative is
produced and the comparison (1 = 1) succeeds; the goal is
satisfied.

Alternation is a generator — an expression that can
produce more than one value. The values of a generator are
produced one at a time as they are needed. The comparison
expression

counter = (0 | 1)

needs a value to perform any comparison at all, so alternation
produces 0. The resulting comparison fails, so the comparison
expression still needs a value. Alternation produces another
value. In the case here, the comparison succeeds and no more
values are needed. If the value of counter is 2, the second
alternative does not meet the goal, and since there are no more
alternatives, the entire expression fails.

Note that a generator produces its values one at a time,
as they are needed. Only as many values are produced as are
needed to achieve success of the entire expression.

A more dynamic view may help you to understand this
process. When a generator produces a value, it suspends,
becoming inactive but available if needed. A suspended
generator is resumed if another value is needed from it. This
process continues until no more values are needed or the
generator has no more values (and fails). In either case, the
suspended generator then “goes away”.

More to Come

A closing word: Once you understand what’s going on
with expression evaluation, you won’t have to think through
every case; using it to your advantage will come naturally.

In the next article in this series, we’ll describe other
kinds of generators and show you how to build your own.

The Icon Analyst / 3

Syntactic Pitfalls

Every programming language has syntactic character-
istics that cause problems and lead to programming errors.
Icon is no exception. Knowing the most likely problems are
can help you avoid them or suggest what to look for if a
problem does arise.

Mistakes that are detected as syntactic errors by Icon’s
translator are not the real problem. These errors can be
annoying and sometime hard to pinpoint (as in the case of
unbalanced parentheses and braces or unclosed quotes). The
real problems come from constructions that are not syntacti-
cally wrong but that produce results different from those
intended.

Incorrect Operator Symbols

One of the most common errors is the use of infix =
(numerical comparison) where := (assignment) is intended.
It’s easy to confuse these two operators because they look so
much alike. The main problem is that other programming
languages, such as SNOBOL4 and C, use = for assignment.
(One of the most common errors in C is to use = rather than
== for comparison.)

Since the infix operators = and := are in the same
syntactic class, writing something like

count = 1

where

count := 1

is intended is never syntactically erroneous.

If you make such a mistake and are lucky, you’ll get a
run-time error when the expression is evaluated (perhaps
because no previous value has been assigned to count, so that
its value is null and hence erroneous in numerical compari-
son). If you’re unlucky and the value of count happens to be
numeric, there’s no error, but count probably doesn’t have its
intended value afterwards.

It’s so easy to overlook this kind of a mistake that
programmers often don’t see it even when they are looking
right at it. This is all the more reason to mark this potential
problem high on your list of things to look for when a program
fails to run properly.

A slightly more subtle problem is the following key-
boarding mistake

count ;= 1

where

count := 1

is intended. This can happen just because : and ; are upper-
and lowercase on the same key on most keyboards.

You might think this mistake is a syntactic error that the
translator should catch. Actually, it’s perfectly legal. Worse,

it executes without an error either. The semicolon separates
two expressions, count and = 1 (blanks are allowed between
a prefix operator and its operand). The latter expression is a
string scanning operation to match 1 (actually, "1"). Since
there’s always a scanning subject and position, there’s noth-
ing illegal about trying to match "1"; it probably just fails
silently.

Fortunately this error is easy to spot — it’s not some-
thing you expect to see used intentionally.

Lines and Semicolons

There’s a related problem with semicolons, discussed

in the last issue of the Analyst, that is worth mentioning
again.

Icon automatically inserts a semicolon at the end of a
line, provided the line ends an expression and the next line
begins another expression. This is a very handy feature; it
allows you to write programs without having to worry about
semicolons to separate expressions. (The incorrect use of
semicolons is a common cause of syntactic errors in program-
ming languages like C.) In fact, you never need to use
semicolons to separate expressions in Icon. Just placing the
expressions on separate lines does the trick — and improves
program readability at the same time.

However, there’s a catch. Because some symbols are
used for both infix and prefix operators in Icon, an expression
may end on one line and another expression may begin on the
next line in a way that you may not anticipate. In such cases,
Icon’s translator cheerfully inserts a semicolon, but the result
may not be what you expect.

An example of this problem is

s := s1
 || s2

The difficulty is that | is a valid unary operator (re-
peated alternation), so an expression ends on the first line and
another expression begins on the next line. The Icon translator
interprets this situation as

s := s1;
 || s2

This amounts to an assignment followed by double repeated
alternation. It is syntactically correct, but semantically silly.
Repeated alternation applied to an identifier just produces the
corresponding variable and nothing more (since there is
nothing to cause the repeated alternation to be resumed for
another result). Doubling it does no more. Of course, the
overall effect can be mysterious.

Applying one simple rule prevents such problems:
When continuing an infix expression from one line to the next,
put the infix operator at the end of the first line, as in

s := s1 ||
 s2

Now the expression does not end on the first line and no

4 / The Icon Analyst

semicolon is inserted by the translator.

Grouping Expressions

Icon has more operators than most programming lan-
guages. It uses rules of precedence and associativity to group
the components of compound expressions unless the group-
ing is given explicitly by parentheses. For example,

i + j ∗ k ^ m

groups as

i + (j ∗ (k ^ m))

Icon’s grouping rules for arithmetic operators are the
usual ones, and you shouldn’t have to worry about how
arithmetic expressions group — what seems natural should
work as expected (although you might be careful of exponen-
tiation, which isn’t used as often as other arithmetic opera-
tions).

The problems arise with operations like conjunction,
alternation, and string scanning.

Conjunction is easy in principle. It has the lowest
precedence of all the infix operations. Remembering that can
save you a lot of trouble. For example,

i = j & j > k & m ~= n

groups as

(i = j) & (j > k) & (m ~= n)

Using the parentheses is a good idea here, even though
they are not necessary. They make the intent of the expression
clearer and easier to read.

If you’re combining operations of fundamentally dif-
ferent kinds, you’ll probably use parentheses automatically.
For example, not many Icon programmers know how the
following expression groups

i + j || "x"

Sometimes a grouping seems obvious but doesn’t work
out as expected. And example is

if i = 1 | 2 then expr

The control expression doesn’t make much sense unless it
groups as

i = (1 | 2)

but that’s not what happens. Instead, the grouping is

(i = 1) | 2

which always succeeds!

You might fault Icon’s precedence rules on this, but if
you study the matter carefully, you’ll find that changing the
precedence of alternation so that this example groups as you’d
like only raises problems in other expressions. Even if it
didn’t, the rules are what they are and you can’t change them.

Another common grouping problem is illustrated by the
following string scanning expression:

text ? tab(upto('.')) & pos(–1)

What’s intended is obvious — a test to see if text ends
in a period. Remember, however, that conjunction has the
lowest precedence of all infix operators. The expression
therefore groups as

(text ? tab(upto('.'))) & pos(–1)

Consequently, pos(–1) is not evaluated as part of the scan-
ning expression on text but rather in the enclosing scanning
expression, whatever it happens to be. Most likely pos(–1)
will fail, but in any event it has no bearing on the last character
of text.

The moral in all this should be clear — use parentheses
to group the components of compound expressions, espe-
cially in the cases mentioned here. Parentheses may be a little
extra work, but they can save you a lot of grief — and also
make your program easier to read.

The Case of the Missing do

One of the most common and most annoying syntactic
pitfalls comes from a “missing do”. It’s fairly common to see
something like this:

while line := read()
 write(line)

where

while line := read() do
 write(line)

is intended.

Since the do clause for while (as well as for until and
every) is optional, the first program segment above is syntac-
tically correct. What happens is that the entire input file is read
by the loop on the first line and the second line writes only the
last line that was read (or perhaps something else, if there are
no lines to read).

This problem seems so difficult to find that novice
programmers sometimes are certain there’s something wrong
with Icon itself. If you suspect that Icon is buggy when your
program doesn’t run correctly, you probably should think
again. It’s not that Icon is totally free of bugs; it certainly has
some. Icon has been around a long time, however, and it is
used by thousands of programmers. Any fundamental prob-
lems in its implementation were found and fixed a long time
ago.

There’s a form of the “missing do” problem that’s
particularly amusing (unless it happens to you, in which case
it may be no fun at all). Consider

every i := 1 to 1000 {
 write(factorial(i))
 }

The Icon Analyst / 5

Forget the implication that you’re trying to compute
the factorial of positive numbers up to 1,000. You can do it
with Version 8 of Icon (provided your system supports large-
integer arithmetic) if you’re willing to wait long enough.
That’s not the point, though.

The mistake here is the missing do, of course. What
happens is not so obvious. This program segment does not,
for example, assign 1 through 1,000 to i and then write the
factorial of 1,000, as you might expect from the previous
example. It doesn’t write anything and just goes on to the rest
of the program.

The subtlety is that second operand of to is not 1000,
but 1000 applied to an argument list of a programmer-defined
control operation:

1000 { write(factorial(i)) }

which is equivalent to

1000 ([create write(factorial(i))])

This silly-looking expression causes an attempt to select the
1,000th argument from a list of one. This fails, of course, so
the to expression fails and the every loop does nothing.
Maybe it’s not so hard to understand why someone who
experiences this problem might think Icon has gone “out to
lunch”.

If the braces had been omitted in the example above
(they are superfluous), then just the factorial of 1,000 would
have been written. On the other hand, if there had been more
than one expression within the braces, as in

every i := 1 to 1000 {
 write(i)
 write(factorial(i))
 }

the translator would have detected a syntactic error.

Just so that we end on a correct note, the example above
should be written as

every i := 1 to 1000 do {
 write(i)
 write(factorial(i))
 }

In some sense, dwelling on these subtleties amounts to
fear mongering. If you’re just beginning with Icon, don’t get
the impression that everything you write may lead to unfath-
omable bugs. Icon is really no worse than most programming
languages with regard to syntactic pitfalls, and it’s better than
many. (Probably the worst programming language ever
designed in this regard was the first version of SNOBOL, in
which nothing was syntactically erroneous.) It’s just that
knowing the pitfalls in Icon can help you avoid them and help
you know where to start looking if you encounter one.

Summary

The syntactic pitfalls listed above are by no means all

of the ones you might encounter. The second edition of the
Icon language book has a section at the end of each chapter on
language features that lists possible syntactic problems. The
problems mentioned here are just those that occur most
frequently and cause the most trouble.

In summary,

• Watch for = where you mean := .

• If you’re continuing an infix expression from one
line to another, put the infix operator on the end of the
first line.

• Use parentheses to group components of a com-
pound expression the way you want them grouped.

• Watch for missing dos.

Memory Monitoring

In the last issue of the Analyst, we discussed the basic
concepts of memory monitoring, described the production of
allocation history files, and showed some summaries of
allocation.

As mentioned there, the program memsum.icn in
Version 8 of the Icon program library can produce output in
standard tab-separated form for use in spreadsheets and chart-
ing programs. Here’s a typical “pie chart”:

Since an allocation history file contains all the details of
storage allocation and garbage collection that occur during the
course of program execution, there are many more possibili-
ties beyond just producing summary reports and charts. An
allocation history file can be “played back”. There are numer-
ous possibilities. What kinds of “instruments” could be used
to play back allocation histories?

One possibility is a pictorial representation of the allo-
cation process. There’s a question of how to represent the
memory in which allocation takes place. Memory can be
thought of as a sequence of cells associated with increasing
integer addresses. Since the memory region in which Icon
allocates data is large, it’s not practical to show it as one long
ribbon. The usual way to handle this representation problem
is to present memory as a rectangular area. The sketches used
in the last Analyst to give a general idea of the allocation and

6 / The Icon Analyst

grams come in several flavors, depending primarily on the
capability of the devices that produce the pictures.

Some of these visualization programs produce “snap-
shots” of memory at significant points in program execution.
In these snapshots, each allocated object is shown to scale
according to its size and in its relative position in memory.
Snapshot formats range from PostScript to bit-mapped im-
ages. Color is used, for devices that support it, to distinguish
Icon objects of different types.

For devices that have the capability, the allocation
process is animated, with each object appearing on the display
as it is allocated. The garbage collection process is shown in
a similar fashion. The effect is a “motion picture” of storage
management.

Memory Displays

We can’t provide animation in a printed publication like
this, and we have no videos (yet).

A typical memory display is shown below. At the top is
a two-line legend. The first line shows the program state at the
left, the name of the allocation history file in the center, and
storage information at the right. The storage information
shows the region sizes first with separating plus signs. The
four values in parentheses are the number of garbage collec-

Figure 1. Memory Prior to a Garbage Collection

garbage collection processes in Icon are typical of this ap-
proach:

free

allocated space

free space
end

beginning

Of course the dimensions of the rectangle have no particular
significance — the aspect ratio chosen is mainly a matter of
typographical layout, provided it is within reasonable bounds
for visual comprehension.

Visualization Programs

This same approach, but with much more detail, is used
by a family of programs that produce pictures of memory
based on allocation history files. Thesevisualization pro-

need block space sortnews.mon 68160 + 46080 + 92160 (0+0+0+0)
free coexpr alien string subs file refresh real record set selem list lelem table telem tvtbl cset ext

S
tring R

egion
B

lock R
egion

The Icon Analyst / 7

Figure 2. Memory after Marking

tions triggered by allocation in each of these regions, fol-
lowed by the number of garbage collections caused by
explicit calls of the function collect().

The second line of the legend lists the names of all the
allocated types. Some are abbreviated because of the limited
space available. Each type has a different color.

Icon’s allocated storage regions follow the legend. The
static region, which usually isn’t very interesting, is not
shown. The string region is followed by the block region.
These regions are shown as being contiguous. They are
contiguous in some implementations but not in others. Con-
sequently, you shouldn’t interpret the contiguity of these two
regions in displays as being significant.

The allocated part of the string region shows strings in
white with dark bars marking their ends. The unallocated
portion of the string region is darker.

The string region in Figure 1 is fully allocated and a
garbage collection is about to take place. While the types of
the blocks cannot be determined easily in a black-and-white
display, they are easy to identify in a color display. Look at

the color picture included with this issue of the Analyst (it’s
from a different program than the one shown here).

The time when a garbage collection is about to take
place is one of the significant times in storage management

at which snapshots are taken. As described in the previous

issue of the Analyst, the first phase of garbage collection
“marks” all space that needs to be saved. The completion of
marking is another significant point in storage management
and is shown in Figure 2. The strings and blocks that need to
be saved are shown in black. Notice that most of the strings that
need to be saved are near the beginning of the string region. The
unmarked strings represent transient allocation and storage
throughput in the string region.

Figure 3 shows the same storage configuration with the
coloring reversed — the space to be collected is now shown in
black.

Finally, Figure 4 shows memory after the saved space
has been compacted to the beginnings of the regions. The space
in the string region is shown as a single string. Since overlap-
ping substrings may be created after strings are allocated, the
identification of the ends of strings after garbage collection is
somewhat problematical and is not shown.

Notice that in the legend, a garbage collection is now
attributed to the need for space in the string region. The block
region was collected too, but not “charged” for it. Observe that
garbage collection has freed a considerable amount of string
space for subsequent allocation.

marking done, garbage remains sortnews.mon 68160 + 46080 + 92160 (0+0+0+0)
free coexpr alien string subs file refresh real record set selem list lelem table telem tvtbl cset ext

8 / The Icon Analyst

Uses of Visualization

There are many uses for the visualization of storage
management in Icon. One use is simply to aid in understand-
ing storage management. Another use is to get a feeling for the
amount and kind of storage a program allocates as well as how
much storage is transient and how much is retained.

It’s sometimes possible to spot unnecessary storage
allocation, especially when viewing color displays. A large
number of allocated csets often indicates a program is per-
forming unnecessary type conversion. For example, a func-
tion that expects a cset argument but gets a string converts the
string to a cset. This requires allocation. Another cause of
unnecessary cset allocation is the construction of the same
cset over and over in a loop, when it could be constructed once
outside the loop.

Memory displays also can tell the implementors of Icon
a lot about how storage management performs. On more than
one occasion, observation of memory displays has led to
changes in the implementation.

One problem that causes poor performance in some
Icon programs is “thrashing”, in which a garbage collection

frees very little space, so that another garbage collection is
needed soon thereafter. This problem is particularly severe in
programs that retain a large number of objects, all of which
have to be marked on every garbage collection, but none of
which is ever collected. Ways to alleviate this problem are
currently under study.

Don’t overlook the visual appeal of memory displays,
independent of what they represent in terms of program
activity. Some programs are truly beautiful in this sense.
Memory displays have even inspired artists.

Version 8 of Icon includes a program for producing
color PostScript snapshots of storage management. Unfortu-
nately, this program requires too much memory for most
personal computers and, of course, not everyone has a color
PostScript printer or even a black-and-white one.

The source code for Icon includes most of the compo-
nents needed for building visualization programs. If you have
a color display, you may want to craft your own visualization
program.

Figure 3. Memory Showing Space to be Saved

active data before compaction sortnews.mon 68160 + 46080 + 92160 (0+0+0+0)
free coexpr alien string subs file refresh real record set selem list lelem table telem tvtbl cset ext

The Icon Analyst / 9

Most of Icon’s string
analysis facilities, such as
upto(c), are designed to
work from left to right. If
you want the last (right-
most) occurrence of a
character or substring in a
string, the best way to do
this may not be clear.

One approach is to
reverse the string and
find the first occurrence
(which may require
looking for the reverse
of something). Depend-
ing on what you want to

do with the result, reversal
may be unnecessarily awk-
ward and expensive.

A different approach is to force a string-analysis func-
tion to produce all its results and use only the last one.
Consider, for example, decomposing a UNIX-style path
specification into its directory and file name components. An
example of such a specification is:

path := "/usr/icon/lib/options.icn"

Here "/usr/icon/lib" is the directory and "options.icn" is the
file name.

Here’s a way to get these two pieces:

i := 0
path ? {
 every i := upto('/')
 if i > 0 then {
 directory := tab(i) # up to last slash
 move(1) # skip the slash
 }
 else directory := "" # no directory
 file := tab(0)
 }

Setting i to 0 initially allows handling of the case in which
there is no directory component.

Note that it won’t do to try something like

path ? {
 every directory := tab(upto('/'))
 .
 .
 .
 }

since every causes tab() to be resumed, resetting the position
in the subject to 1 after the last value produced by upto().

Figure 4. Memory after Compaction

Programming
Tips

end garbage collection sortnews.mon 68160 + 46080 + 92160 (0+0+1+0)
free coexpr alien string subs file refresh real record set selem list lelem table telem tvtbl cset ext

10 / The Icon Analyst

Benchmarking Icon Expressions

In the last issue of the Analyst, we discussed timing
expression evaluation. We suggested timing three expres-
sions that produce the same results to see which was the
fastest. Here are the times from a VAX 8650:

every !&digits 0.480 ms
every !"0123456789" 0.380 ms
every "0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9" 0.296 ms

If you think about these timing figures, you may see the reason
for the comparative slowness of the first expression: &digits
is a cset, but the results of !&digits are strings. Somewhere
along the line, there must be type conversion. The reason why
the second expression is slower than the third is less obvious,
but it suggests that there is little overhead for alternation. On
the other hand, the difference in efficiency may not be enough
to offset the extra work in keyboarding the third expression.

In our previous discussion of timing, we looked the
other way about an important issue in benchmarking expres-
sions: storage allocation. Storage allocation is fast in Icon and,
of course, the time it takes is included in the benchmark
figures. The problem comes when (if) a garbage collection
occurs. Garbage collection is a fairly time-consuming proc-
ess. How can this be taken into account when benchmarking
expressions?

There’s no good answer to this. One thing to do is to try
to avoid garbage collection when benchmarking, since gar-
bage collection may distort timings significantly. If a garbage
collection happens to occur when benchmarking one expres-
sion but not another, the conclusions drawn may be very
misleading.

It might seem reasonable to associate a certain garbage-
collection penalty in proportion to the amount of space
allocated by an expression. There are several problems with
this view. One problem is that many programs run to comple-
tion without ever having to do a garbage collection. In this
case, the piper does not have to be paid, as it were. More
perplexing is that the time it takes to perform a garbage
collection depends on many factors, most of which have little

to do with the amount of space allocated by a particular
expression. For example, garbage collection is fastest when
most of the space that has been allocated is “garbage” and does
not need to be saved. Conversely, garbage collection is the
slowest when there’s a lot of allocated space that has to be
saved (for example, for large sets and tables). In any event,
there’s little correlation between the space an expression
allocates and how much time it takes to perform a garbage
collection that may result from this allocation.

Despite these “perplexities”, it’s worth knowing how
much space an expression allocates — how space-intensive it
is. It’s relatively easy to add this information to the results
produced by empg.icn, the expression benchmarking pro-

gram generator described in the last Analyst. The keyword
&storage generates the space in use in each allocated region.
It’s just a matter of taking differences before and after a
benchmarking loop and dividing by the number of iterations
to get the average amount of space allocated.

When benchmarking several expressions in the same
run, an expression that allocates space may affect a subse-
quent expression. Even the initialization code to set up a
benchmarking run has some effect. Forcing a garbage collec-
tion before each benchmarking loop reduces (but may not
eliminate) the effects of previous expressions.

If a garbage collection occurs during a benchmarking
loop, the time for the loop is likely to be badly distorted and
any calculation of the amount of storage the expression
allocates is problematical at best. For these reasons, the value
of &collections is recorded before the loop and if its value has
increased by the end of the loop, a warning is given and the
allocation figures are not produced.

All this is reasonably simple, but empg.icn is getting
pretty complicated by now; after all, it has to write a program
to do all this. We won’t try to show this part of empg.icn here,
but here’s the timing loop it puts out for the first expression
given at the beginning of this article:

 _Prolog()
 _Itime := &time
 every 1 to _Count do {
 &null & every !&digits
 }
 _Epilogue(&time – _Itime)

What has to be done before and after the loop now is suffi-
ciently complicated that procedures are used. The procedure
to prepare for the loop is:

procedure _Prologue()
 _Store := []
 _Coll := []
 collect()
 every put(_Store,&storage)
 every put(_Coll,&collections)
end

The Icon Analyst / 11

The lists _Store and _Coll are created to hold the sizes of the
storage regions and the number of collections in each region,
respectively. Once they are allocated, a garbage collection is
forced to free as much storage as possible. Then the current
region sizes and garbage collection figures are put into the
lists. Since an empty list has space for eight values, adding this
information does not cause any allocation.

The processing after the loop is a bit more complicated:

procedure _Epilogue(_Time)
 every put(_Store,&storage)
 every put(_Coll,&collections)
 write(fix(real(_Time) / _Count – _Overhead,1,8),
 " ms.")
 if _Coll[1] = _Coll[5] then {
 write("average allocation:",)
 every _I := 1 to 3 do
 write(" ",_Names[_I],
 fix(real(_Store[_I + 3] –
 _Store[_I]),_Count,12))
 }
 else {
 write("garbage collections:")
 write(" total ",right(_Coll[5] – _Coll[1],4))
 every _I := 6 to 8 do write(" ",_Names[_I – 5],
 right(_Coll[_I] – _Coll[_I – 4],4))
 }
 write()
end

The procedure fix(), which is from the Icon program library,
formats real numbers for printing.

Before anything else is done, the new sizes of the
storage regions and numbers of garbage collections are ap-
pended to their respective lists. &collections generates four
values, the first of which is the total number of garbage
collections. Consequently, the first and fifth values of _Coll
are the same provided no collection occurred during the loop.
In this case, the average amount of space allocated in each
region is printed. On the other hand, if a garbage collection
occurred in the loop, invalidating the figures for space used,
this information is skipped and garbage collection informa-
tion is supplied instead.

This code is admittedly somewhat unsightly. Most of
the problem is due to the need to access the storage region
sizes and counts of garbage collections in a different order
from their generation. This is a case in which it would be more
convenient if &storage and &collections returned lists in-
stead of being generators — except for the fact they would
have to allocate space to do so, and hence complicate the
storage allocation situation. The code would be cleaner if
“before/after” pairs of lists were used instead of putting all the
values in two lists. But that would have increased the pertur-
bation of storage, something empg tries to minimize. Ugly or
not, the procedures above get the job done.

The output produced by the benchmarking program for

the expression

every !&digits

is

 0.480 ms.

average allocation:

 static 0.000
 string 10.000
 block 0.000

The allocation information should be no surprise. The ele-
ment-generator operator works on several types directly, but
not on csets. Consequently, the cset is converted to a string.
That is, a 10-character string is constructed and one-character
substrings are generated from it. Note that this conversion is
done every time the expression above is evaluated.

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a
year. A one-year subscription is $25 in the United
States, Canada, and Mexico and $35 elsewhere.
To subscribe, contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

(602) 621-2018

FAX: (602) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

...{uunet,allegra,noao}!arizona!icon-project

and

© 1990 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

The Bright Forest Company
 Tucson Arizona

12 / The Icon Analyst

From the Wizards

A person who knows
the innermost secrets of a
programming system
is called a guru. Simi-
larly, a programming
wizard is one who can do
amazing if not magical
things, things most of us
would never think of do-
ing. We’ll expose some
tricks of the Icon wizards

in this occasional feature of the Analyst.
The somewhat arcane, but nonetheless useful program-

ming technique that follows is due to Bill Mitchell, our Wizard
of the Issue, as it were.

Have you ever wanted to trace an Icon function (as
opposed to a procedure)? ProIcon has a feature for doing this,
but the public-domain implementations of Icon do not. Here’s
a way to “front-end” an Icon function, so that when you call it,
you get an equivalent procedure that can be traced.

Let’s use abs(n) as an example. There are two things to
do: provide a procedure and connect it with the function.
Suppose the procedure name is Abs (Icon’s differentiation of
cases is handy in situations like this). At the beginning of the
main procedure, swap the values of abs and Abs:

procedure main()
 Abs :=: abs

...
As a result, the value of Abs is the function for computing the
absolute value of a number and the value of abs is the
procedure that formerly was the value of Abs. Here’s the
procedure:

procedure Abs(n)
 return 2(Abs :=: abs, .abs, Abs :=: abs)(n)
end

When the procedure is called, the values of Abs and abs are
exchanged again (restoring to their original values at the
beginning of program execution), abs is dereferenced to
produce the function for computing absolute values, the values
of Abs and abs are exchanged again (restoring them to the
values they had when the procedure was called), the second
value in the mutual evaluation is applied to the argument of the
procedure, n, and the result is returned.

Note that it’s necessary to dereference abs to prevent the
assignment in the third expression in the mutual evaluation

from changing it back before it is used.

Neat, if a bit complicated. It took another wizard, Ken
Walker, to see a much simpler formulation:

procedure Abs(n)
 return Abs(n)
end

That’s insight! Since the values of abs and Abs have been
exchanged, abs(n) calls the procedure, and Abs(n) in the
procedure calls the built-in function for computing absolute
values.

This formulation handles functions that may fail. It’s
simple to change it to handle suspension also.

Back Issues

Back issues of The Icon Analyst are
available for $5 each. This price includes shipping
in the United States, Canada, and Mexico. Add $2
per copy for airmail postage to other countries.

Downloading Icon Material
Most implementations of Icon are available for
downloading electronically:

BBS: (602) 621-2283

FTP: cs.arizona.edu (cd /icon)
(128.196.128.118 or 192.12.69.1)

What’s Coming Up

Icon programs often can be run on a wide variety of

different platforms. In the next issue of the Analyst, we’ll
discuss some of the considerations is making Icon programs
truly portable.

We’ll also give some tips on writing your Icon programs
so that they are easy to read.

String scanning is a major and important feature of Icon.
Yet many Icon programs aren’t really sure how to use string
scanning. In the next issue, we’ll start a series of articles related
to string scanning — a review of the basic concepts, guidelines
for writing scanning expressions, how to extend string scan-
ning to pattern matching, and so forth.

As described in the article on expression evaluation,
generators provide the alternatives for expressions that seek to
achieve a goal. We’ll have more to say about generators and
their uses in the next issue.

We’ll also have a couple more programming tips that
may make your programming easier and more efficient.

Please let us know what you think about the Analyst
and what you’d like to have us cover in future issues. See the
box on page 11 for information about how to contact us.

