
The Icon Analyst / 1

June 1991
Number 6

In-Depth Coverage of the Icon Programming Language

expression, expr2. During scanning, the keyword &subject is
the value being scanned and &pos is the position in &subject
where matching expressions apply.

At first glance, you might think all you need to do is
write a procedure, and model string scanning as

expr1 ? expr2 → Scan(expr1,expr2)

But in a procedure call, all arguments are evaluated before the
procedure is called. Consequently, expr2 is evaluated before
there is a chance to change the two “state variables” &subject
and &pos so that scanning applies to the result of evaluating
expr1.

String scanning is a control structure that does not
follow the order of evaluation of procedure calls. The value of
expr1 provides the value of &subject, and &pos is set to one,
so that scanning begins at the beginning of &subject. After
these variables are set, expr2 is evaluated. It typically exam-
ines the value of &subject and changes the value of &pos in
the process. &subject and &pos are global variables; their
values constitute an environment for scanning. The outcome
of the scanning control structure is the outcome of expr2.

Even though expr1 ? expr2 is a control structure, it can
be modeled using procedures. A naive model is

expr1 ? expr2 → Bscan(expr1) & expr2

The procedure Bscan() intervenes in the evaluation process
and sets the values of &subject and &pos before expr2 is
evaluated. Bscan() can be written as follows:

procedure Bscan(e1)
   &subject := e1
   &pos := 1
   return
end

The assignment to &pos is redundant and is included only for
clarity.

This model illustrates how simple the string-scanning
control structure is — any actual pattern matching takes place
during the evaluation of expr2 and the only function of the
string-scanning expression itself is to set the values of the
keywords in the scanning environment.

This naive model, which is equivalent to the mutual
evaluation

(Bscan(expr1),expr2)

does not account for the fact that string-scanning control

Modeling String Scanning

Like most other features of Icon, you can use string
scanning without a “deep” understanding of what’s going on.
For example, you don’t have to know how string scanning is
actually implemented. Generally, that’s just as well. But, like
many other aspects of a programming language, you can use
string scanning more effectively if you understand more about
it.

The sure way to a deep understanding of a programming
language feature is to implement it yourself. That’s why the
implementors of a programming language often have an
advantage in using the language, and in using it in ways
different from others — they know how features work; they
don’t have to puzzle them out or guess.

Of course, few Icon programmers would care to make
the investment in re-implementing a language feature just to
understand it better. There’s an easier alternative in some
cases: model the implementation of the feature at a high level,
in the language itself. That’s what this article is about;
modeling string scanning in terms of Icon procedures. This
model cannot handle all aspects of string scanning, but it does
show how string scanning works at an operational level for
which no number of words can substitute.

This model also allows experimental extensions to
string scanning. From an implementor’s view, such a model
is an easy and flexible way to try out new and untested
language features without the much larger investment of
doing a real implementation.

String-scanning has the form

expr1 ? expr2

where expr1 is the subject expression that provides a subject
that is the focus of attention for the evaluation of the analysis

   In this issue …

Modeling String Scanning … 1
Pointer Semantics … 2
Evaluation Sandwiches … 8
Program Termination … 10
Programming Tips … 12
What’s Coming Up … 12



2 / The Icon Analyst

Escan() saves the scanning environment as it was left
by the evaluation of expr2 in InnerEnvir, restores the outer
environment, and suspends with the result produced by the
evaluation of expr2.

If the scanning control structure occurs in a context in
which it is resumed, the evaluation of Escan() picks up after
the suspend expression, and &subject and &pos are re-
stored to the values they had when expr2 produced its previ-
ous result. If expr2 produces another result, as in

expr1 ? move(1 | 2)

Escan() is called again; the situation is the same as it was
when expr2 produced its previous result.

If expr2 does not produce another result, Bscan() is
resumed and picks up evaluation after its suspend expres-
sion. It restores the outer scanning environment and fails. At
this point, expr1 is resumed. If it produces another result, as
in

(s1 | s2) ? expr2

Bscan() is called again and the process described above is
repeated.

The reason the values in OuterEnvir are updated after
Escan() is resumed is that they may have been changed while
it was suspended. An example of this is

expr1 & (expr2 ? expr3) & (&pos +:= 1) & find(s)

assuming &pos can be incremented but that find(s) fails. If
this happens and expr1 is eventually resumed, the change in
&pos should be preserved.

It is important to note that OuterEnvir is shared by
Escan() and Bscan() — that is, it is a pointer to a record. If
this were not the case, changing the fields of OuterEnvir in
Escan() would not affect the values that Bscan() restores
before failing.

structures can be nested or that several of them can occur in
mutual evaluation, so that several scanning environments can
exist simultaneously at any point in program execution (see

“String Scanning” in Issue 3 of the Analyst). In order for
string scanning to behave in a useful and coherent way, the
values of &subject and &pos are saved prior to assigning new
values to them in a string-scanning control structure, and they
are restored when the evaluation of the string-scanning con-
trol structure is complete. Furthermore, if the scanning ex-
pression suspends, the string-scanning control structure sus-
pends. It may be resumed later to produce another result, so it
is necessary to reset &subject and &pos if a scanning control
structure is resumed. To accomplish this, a more general
model is needed:

expr1 ? expr2 → Escan(Bscan(expr1),expr2)

The operation of this model is illustrated by the following
procedures in which records of type ScanEnvir hold the
values of &subject and &pos for scanning environments:

record ScanEnvir(subject,pos)

procedure Bscan(e1)
   local OuterEnvir
   OuterEnvir := ScanEnvir(&subject,&pos)
   &subject := e1
   &pos := 1
   suspend OuterEnvir
   &subject := OuterEnvir.subject
   &pos := OuterEnvir.pos
   fail
end

procedure Escan(OuterEnvir,e2)
   local InnerEnvir
   InnerEnvir := ScanEnvir(&subject,&pos)
   &subject := OuterEnvir.subject
   &pos := OuterEnvir.pos
   suspend e2
   OuterEnvir.subject := &subject
   OuterEnvir.pos := &pos
   &subject := InnerEnvir.subject
   &pos := InnerEnvir.pos
   fail
end

In this formulation, expr1 is evaluated first and provides
the argument to Bscan() that is used for the new value of
&subject. In Bscan(), the current values of &subject and
&pos are saved in OuterEnvir before the new ones are set.
Bscan() then suspends with OuterEnvir, which is passed on
to Escan(). However, expr2 is evaluated first and may change
the values of the state variables before Escan() is called. If
evaluation of expr2 succeeds, Escan() is called with two
arguments: the outer scanning environment that was in effect
before Bscan() was called, and the result produced by the
evaluation of expr2.

Pointer Semantics

Most programming languages provide a few different
kinds of structures. Arrays and records are typical. Icon has a
much richer repertoire of structures than most programming
languages, but there’s more to structures in Icon than just
variety.

In most programming languages, structures are static
objects. In Pascal, for example, an array is declared and its size
and shape are fixed. While the values in an array can be
changed during program execution, the array itself cannot be
changed. Furthermore, an array isn’t a value like an integer is.
In fact, the idea of an array being a “value” may seem a bit
bizarre.

But what is a value? In what sense is an integer a value
but an array not one?



The Icon Analyst / 3

What is usually meant by a value in a programming
language is an object that can be assigned to a variable, passed
as an argument to a procedure, and returned as the result of a
procedure. Clearly an integer is a value in this sense, while in
most programming languages, an array is not. There’s a
similar situation with procedures. In most programming lan-
guages, a procedure is not a value, but in Icon it is. The term
“first-class value”, which originated in the Lisp community,
is sometimes used to distinguish program objects than can be
used as values in all generality as opposed to objects whose
use is restricted.

What difference does it make whether or not a Pascal
array or an Icon list is a value? For the most part, you can use
lists in Icon like you use arrays in Pascal, without taking
advantage of the “first-class” status of lists. Of course, you
might suspect, if you don’t already know, that there are useful
things you can do with first-class values that you can’t do
otherwise.

Pointers

You may wonder how a list can be a first-class value.
Lists can be large — there’s no limit to the size of a list except
the amount of memory available. How can an arbitrarily large
value be assigned to a variable or passed to a function? And
how does Icon know what to do, since the size of a list cannot,
in general, be determined when a program is compiled? The
answers to these questions are simple, but in them lurk both
powerful and dangerous features of structures.

A structure is a collection of values. For example, a list
is a collection of all the elements in it. These elements are
logically (and physically) bound together by being in the list.
This allows them to be treated collectively and separately
from all other values. We’ve glossed over a subtle point,
however. Consider a list produced by evaluating list(100).
The value returned by list(100) is not the collection of 100
elements. Instead, it is a pointer to the collection.

The concept of a pointer is important in many program-
ming languages. Sometimes it is explicit, as it is in C.
Sometimes it is implicit, as in Icon. The word “pointer” carries
a connotation that is suggestive and generally accurate, but
unless you’ve been involved in low-level programming, the
idea may seem a bit slippery. In fact, it is almost impossible
to explain what a pointer is without resorting to implementa-
tion details. Indeed, the concept of a pointer is derived from
the way most computers access their memories. While most
programming language concepts are derived from familiar
aspects of mathematics or business transactions, the “real-
world” analogies for pointers are a bit strained. Of course, if
you know what a pointer is, all this is boring. If so, skip
forward a bit.

If we can’t do any better by way of explaining pointers
than to allude to computer architecture, we’ll at least own up
to our limitations. A pointer is a computer memory address; a
location where data is stored. From here on, we’ll resort to
pictures.

Consider the expression

L := list(100)

The result of evaluating this expression is to first create a list
of 100 elements and then assign it to L. Suppose that the list
is stored in memory starting at address 10,688. Then the list
can be depicted as

           
.
.
.

10688

Here, 10,688 is the address of the beginning of the list. The
value returned by list(100) and assigned to L is this address,
which can be depicted as

        10688L

The relationship between this value and the list is, of
course, the address. To emphasize this relationship, it helps to
replace the address by an arrow (pointer):

.

.

.

L

As you probably know, this diagram isn’t accurate. It’s
an oversimplification; Icon’s values and lists are more com-
plicated than shown here. The diagram above, however,
captures the idea and is correct as far as it goes. It’s good
enough for our concerns here.

Fine, you may say, but so what? The important point is
that a list value (the value of L here) is quite simple. It doesn’t



4 / The Icon Analyst

matter how big the list is, the value is just an address (pointer).
This simplicity has many ramifications.

What happens, for example, when a list value is as-
signed to another variable, as in

L1 := L

There are two plausible outcomes. One possibility is that the
collection of elements pointed to by L could be copied and the
address of the copy assigned to L1. Some programming
languages do this. Icon takes a simpler approach: The value of
L, the address of its collection of elements, is assigned to L1.
Thus, for the example above, both L and L1 have the same
value (10,688) after the assignment. Using pointers, this can
be depicted as

.

.

.

L

L1

That is, both L and L1 point to the same collection of elements
— the same list.

This method of treating assignment, which also applies
to passing arguments to procedures and returning values from
them, has a major affect on how lists can be used in Icon.

Several aspects of “non-copying” assignment are im-
mediately obvious:

• Assignment of a list value is fast.

• Assignment of a list does not create a new list.

• Several variables may point to the same list and
hence share their elements.

There are other consequences, which we’ll discuss later.

Allowing different list values to share elements is a
mixed blessing. If it happens accidentally, it can lead to
puzzling results and bugs. Referencing one list value can
change the list pointed to by another. For example,

L1[10] := 0

changes the tenth element of the list pointed to by L as well.

The key phrase is pointed to. It’s not that assigning a
value to an element of L1 changes L. It doesn’t. But it does
change a value in the list that is pointed to by both L and L1.

Clearly, this is a problem if this is not the intended
result. On the other hand, this aspect of lists can be very useful.
For example, suppose you are dealing with lists of integers
and you find you want to change all the negative values in such
lists to zero. This is clearly a situation in which you’d like to
be able to use a procedure. And you can:

procedure clip(L)
   every !L <:= 0
   return L
end

For example,

clip(range)

passes a pointer to the list range to clip(), which goes through
the elements of this list and sets the negative values to zero. As
a result, the list pointed to by L, which is the same list as the
one pointed to by range, is modified.

Notice that clip() returns (a pointer to) the list on which
it operates. Thus,

newrange := clip(range)

assigns the modified list to newrange; range and newrange
now have the same value.

If you don’t want the clip() to modify the list pointed to
by its argument, you can use copy(), which creates a copy of
the structure pointed to by its argument — a new structure and
at a different address. For example,

procedure clip(L)
   L := copy(L)
   every !L <:= 0
   return L
end

makes a copy of the structure pointed to by its argument,
which it then modifies and returns. In this case, the result of

newrange := clip(range)

is to assign to newrange a list that is different from the value
of range; they point to different lists and the elements of
range are not changed.

There’s an important point about language design here.
If assignment in Icon copied structures (instead of just point-
ers to them), there would be no way for two values to share the
same structure (unless a special operation were provided for
this purpose). We argue that copying pointers rather than
entire structures is not only efficient but it also allows power-
ful programming techniques. Clearly we think this is the way
to handle assignment of structures or we wouldn’t have done
it that way in the design of Icon. The point is that while
efficiency is important, there is much more to this decision.

We’ll start by looking at something simple that may be
perplexing if you’ve not used structures in Icon:



The Icon Analyst / 5

There is no loop, and there are two lists.

You might well ask what good all of this is. Who needs
a loop in a structure anyway — it looks like big trouble. A full
understanding of the potential here opens the door to several
powerful programming techniques. The basic idea is simple:
Because of the way that Icon handles structures and assign-
ment (so-called “pointer semantics”, as used for the title of
this article), it is possible to build directed graphs that are
common in many problems.

There is only a single step to make this more obvious:
breaking away from a style of diagramming that emphasizes
Icon’s structures and using instead a more abstract represen-
tation. For the example above, a different (but equivalent)
view is:

loop

Before going on, it is important to understand that the
examples given above for lists apply to all kinds of Icon
structures as well: records, sets, and tables. For example, the
value produced by table() is a pointer to a table structure
(which is a bit more complicated and less intuitive than a list
structure).

This diagram is a conventional representation of a
graph with one node and an arc directed from the node to itself.
The important point is that the arc is represented by the list
value (a pointer), while the node is represented by the struc-
ture to which the list value points. It should be easy to see how
to handle nodes that have more than one arc directed out. All
that’s needed is a list element for each arc. For example, the
graph

can be constructed as follows:

node1 := list(2)
node2 := list(1)
node1[1] := node1
node1[2] := node2
node2[1] := node2

Directed graphs often have a value associated with each
node. A place for the value is easily provided by reserving a
list element for it. Since the number of arcs out may vary, it’s
convenient to use the first element of a list for the value and
the remaining elements for the arcs. In this way, the value of
a node is always at the same place.

loop := list(1)
loop[1] := loop

What happens when we assign a list to an element of itself?
The result is clearer if we’re more careful of our language:
What happens when we assign a pointer to a list to an element
of itself?

Let’s look at diagrams for the two steps. First

loop := list(1)

Suppose the one-element list is at address 20,684:

20684loop 20684

The box at address 20,684 represents the one-element list.
Now consider

loop[1] := loop

Recall what assignment does:

20684loop 20684 20684

In terms of pointers, this can be depicted as

loop

That is, both loop and loop[1] point to the same place, the
place where the list is. This should be what you expect as the
result of evaluating

loop[1] := loop

That is, the values of loop and loop[1] are the same after the
assignment.

Note that if assignment copied the structure pointed to
by loop, the result would be entirely different. Icon’s version
of this is

loop := list(1)
loop[1] := copy(loop)

which produces the following result:

loop



6 / The Icon Analyst

More generality is provided by a procedure that con-
structs rings. For example, create_ring("a","b","c") con-
structs a ring such as the one above. Since the number of
arguments varies from call to call, the arguments can be
passed in a list:

procedure create_ring(value[])
   local first, current

   first := node(value[1]) | fail
   current := first
   every i := 2 to ∗value do
      current := node(value[i],current)
   first.arc := current
   return first
end

A pointer to the first node is kept in first so that the ring can
be closed after the last node is created. The expression

current := node(value[i],current)

creates a new node with the ith value and directs its arc to the
current node before setting the current node to the newly
created one.

This procedure is adequate for creating a ring, but
something more may be needed, depending on how rings are
used. For example, if the designated “first” node in a ring may
be changed, another pointer is needed to identify the first node
— that is, a level of indirection in referring to the ring.

This “header” node can be provided by another record.
By using a different record type, it is possible to distinguish
between the header and the nodes in the ring itself:

record ring(arc)

Not that both node and ring have an arc field. Icon allows this
and it provides a handy mnemonic when different records
have fields that are conceptually equivalent.

All that’s needed is a minor modification to create_arc()
so that it returns a ring:

return ring(first)

The graph that results from create_ring("a","b","c")
can be depicted as:

"a"

"b"

"c"

For example, the graph

17 23

can be represented by

node1 := list(3)
node2 := list(2)
node1[1] := 17
node2[1] := 23
node1[2] := node1
node1[3] := node2
node2[2] := node2

An Example — Rings

Lists are convenient for representing graphs in which
the number of arcs out varies from node to node. Records are
useful when the number of arcs out of every node is the same.
Records offer the additional advantage of providing field
names that can be used as mnemonics to refer to node values
and arcs.

Consider a ring, which consists of n nodes connected in
a circle. For example, a ring with three nodes has the structure:

Since each node has only one arc directed from it, such
a ring can be built with records. As above, if a value is
associated with each node, another field is needed. A declara-
tion for such a node is

record node(value,arc)

For example, a ring of three nodes with values "a", "b",
and "c" can be constructed as follows:

node1 := node("a")
node2 := node("b")
node3 := node("c")

node1.arc := node3
node2.arc := node1
node3.arc := node2



The Icon Analyst / 7

The oval at the left is drawn with a different shape to distin-
guish it from the nodes in the ring itself. You may find it handy
when drawing graphs to use different shapes for nodes of
different types. See Reference 1 for examples.

Finally, here’s a procedure to generate the values from
a ring, continuing around the ring indefinitely:

procedure ring_value(R)
   local n

   n := R.arc
   repeat {
      suspend n.value
      n := n.arc
      }
end

The Null “Pointer”

Sometimes it’s useful to think of arcs as being “typed”.
For example, in a binary tree, a node has two arcs, one pointing
to its left subtree and one pointing to its right subtree:

+

i ∗

j k

For such a structure, the nodes with arcs can be repre-
sented by a record in which the field names distinguish the two
types of arcs:

record bnode(value,larc,rarc)

Since “leaf” nodes at the bottom of the tree have no arcs,
they could be represented with a different kind of record:

record leaf(value)

In some kinds of binary trees, the situation is not so
simple:

"b"

"a" "d"

"c"

Here, one node does not have a right subtree. The idea
above could be extended to provide two more kinds of nodes,
one that has only a left subtree and one that has only a right
subtree. Having four kinds of nodes in binary trees makes
constructing and processing them very complicated, espe-
cially when such trees are built incrementally by adding
subtrees.

A simpler approach is to use only one kind of node
throughout the tree but to allow some arcs to be missing. For
example, leaf nodes have both arcs missing. The question,
then, is how to designate a missing arc.

The usual method of handling a missing arc is to use the
null value in place of a pointer. The motivation for using the
null value is simple: it’s the default value, so if you create a
record or other structure and don’t specify a pointer value, the
null value is already there. It’s also easy and fast to check for
the null value.

Using this idea, the binary tree shown above can be built
as follows:

root := bnode("b")
root.larc := bnode("a")
root.rarc := bnode("d")
root.rarc.larc := bnode("c")

The nodes with values "a" and "c" have two null “pointers”,
while the node with value "d" has one. These values are
provided by default, since no values for arcs are provided
when the nodes are created and only the needed ones are filled
in later.

Although we’ve written out the construction of this
binary tree as four separate assignments, we could have done
it with one big nested expression — simply because a tree has
no loops and at most one arc pointing to any node.

It’s easy to process such trees, recognizing when arcs
are missing by testing for the null value. For example, here’s
a procedure that traverses a binary tree, writing the value of
every node:

procedure write_values(T)
   write(T.value)
   write_values(\T.larc)
   write_values(\T.rarc)
end

The procedure calls itself recursively only when subtrees are
present, as determined by the non-null test; a field that is non-
null, must, by construction, contain a pointer to a node. The
recursive calls trace the pointer structure of the tree.

Conclusions

Directed graphs are so useful and ubiquitous that you’d
think most programming languages would provide easy ways
of representing such graphs. It’s hard to imagine anything
more natural and general than pointers in this regard. But
pointers are “considered dangerous” by some computer scien-



8 / The Icon Analyst

tists, especially members of the “police-state school of pro-
gramming”. Pointers are, indeed, dangerous, as any C pro-
grammer knows — it’s all too easy to wind up with a pointer
to an inappropriate place. That’s true in Icon too; think about
what happens if a binary tree is constructed so that a nonnull
field is not a pointer to a node. But living in a totally safe world
is stupefyingly boring and it’s very hard to do anything with
tools that can’t do damage.

How “dangerous” pointers are depends to a large de-
gree on how a programming language handles them. You’re
less likely to get into trouble with pointers in Icon than in C.
In Icon, you can at least determine the type of a value during
program execution and tell whether it’s a pointer (structure) or
something else.

Admittedly, it’s difficult to debug programs that use
pointers extensively. Diagnostic tools are lacking; there’s no
way to convert a pointer to something concrete and printable.
You might think Icon would at least provide you with a way
to find out the memory address to which a pointer corre-
sponds. While such a feature would not be hard to implement,
it would have dubious merit. Recall from the article on
memory monitoring in the first issue of the Analyst that Icon
objects may move as the result of garbage collection. That is,
the memory address corresponding to a pointer may change.
A pointer whose initial address is 10,688 may be something
different later on in program execution.

The best prescription for avoiding problems with point-
ers is to take extra care; a little self-discipline goes a long way
in this area.

Further Reading

We’ve only touched on what you can do with pointers.
Reference 2 has numerous examples of the use of Icon
structures to build different kinds of directed graphs. There
often are different ways of representing the same graph. The
one you chose may make a lot of difference in ease of
processing and getting correct results. Sets and tables, in
particular, offer possibilities that you might not think of at first
glance.

Reference 1 also provides numerous examples of the
use of pointers to build directed graphs. The programming
language used in that reference is SNOBOL4, but SNOBOL4
and Icon use the same semantics for pointers, so it’s easy to
transcribe programs that deal with structures from one lan-
guage to the other.

References

1. String and List Processing in SNOBOL4, Ralph E. Gris-
wold, Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1975.

2. The Icon Programming Language, second edition, Ralph
E. Griswold and Madge T. Griswold, Prentice Hall, Engle-
wood Cliffs, New Jersey, 1990.

Evaluation Sandwiches

There may be times when you’d like to do something
when a particular expression is evaluated but not interfere
with its evaluation. For example, if you suspect an expression
contains a bug, you might want to associate some diagnostic
output with it so that you can tell it’s been evaluated, what
value it produced, and so on.

Suppose, for example, the following expression is not
producing the expected results:

text ? {
   every write(verb())
   }

Suppose you try adding a diagnostic statement such as

text ? {
   every {
      write(verb())
      write(&errout,"&pos = ",&pos)
     }
   }

This doesn’t work, since the diagnostic expression interferes
with the resumption of verb(). What you probably want is

text ? {
   every write(verb()) do
      write(&errout,"&pos = ",&pos)
   }

A less obvious alternative is conjunction:

text ? {
   every write(verb()) &
      write(&errout,"&pos = ",&pos)
   }

The difference between the two previous expressions is worth
thinking about — it goes to the heart of expression evaluation
in Icon. In the first case, write(verb()) is the first expression
in a compound expression, and hence is bounded. Once it
produces a result, its evaluation is complete and it never can
be resumed. In the third case, write(verb()) is in conjunction
with the diagnostic expression; although the diagnostic ex-
pression doesn’t suspend, goal-directed evaluation resumes
the suspension of verb().

While putting the diagnostic expression in the do clause
solves the problem, you might wonder about the last alterna-
tive. Is it always really safe to put a diagnostic expression in
conjunction with another expression?

Downloading Icon Material

Most implementations of Icon are available for
downloading electronically:

BBS:  (602) 621-2283

FTP: cs.arizona.edu (cd /icon)



The Icon Analyst / 9

procedure after()
   write(…)
   return
end

Here’s a case where it’s easy to make a mistake and forget to
put in the return expressions. If you do, before() will fail and
you’ll never get to expr.

If you’re interested in whether expr fails or generates a
lot of results, the return expressions in before() and after()
can be replaced by suspend expressions. An example is:

procedure before()
   write("about to evaluate")
   suspend
   write("no result produced")
   fail
end

procedure after()
   write("result produced")
   suspend
   write("resumed")
   fail
end

If you don’t completely understand what’s going on,
take the time now to look at it closely — it’s a good example
of what’s involved in the evaluation of an expression, the
production of its results, suspension, and resumption.

Note that the message "no result produced" illustrates
the problem with the concept of failure. As it stands, there is
no way for before() to tell if it is being resumed because expr
didn’t produce any result at all, or if expr produced many
results and eventually produced no more.

Suppose that you want after() to have access to the
result that expr produces. You can manage that in several
ways, including assignment to an auxiliary variable, but
there’s another form that also gives more insight into expres-
sion evaluation in Icon:

(before(),after(expr))

The order of evaluation still is correct: before() first, then
expr (arguments are evaluated before functions are called),
and then after(). Since after() gets the value produced by
expr, it needs to produce that value also, which becomes the
value of the entire expression. (In the absence of a selector, a
mutual evaluation expression returns the result of its last
argument.) Thus, after() should look something like this:

procedure after(x)
   write("value produced is ",image(x))
   suspend x
   write("resumed")
   fail
end

To avoid having to worry about all kinds of possibili-
ties, it’s worth thinking about a general way to include
diagnostic expressions, either before or after the evaluation of
an expression of interest, in such a way that the evaluation of
the expression itself is not perturbed.

To get slightly more abstract, suppose expr denotes the
expression of interest and before and after denote, respec-
tively, expressions that are to be evaluated before and after
expr is evaluated. Then a general method of approach is

before & expr & after

However, such an expression does not produce the result of
expr, since the outcome of the entire conjunction is the
outcome of after. Here’s where mutual evaluation is useful;
you can sandwich expr between before and after, but select
expr:

2(before,expr,after)

Since the selection operation produces the outcome of the
selected expression, which may be a variable, this “sandwich”
can be used even in assignment expressions. For example,

L[i] := s

can be rewritten as

2(before,L[i],after) := s

and the assignment still is made to L[i].

When you use such a sandwich, you can’t just have any
kind of expressions for before and after. Obviously, before
can’t fail — you’d never get to expr. Similarly, in the general
case, after can’t fail either. In fact, both before and after must
be monogenic (that is, produce exactly one result). Of course,
if before and after are just expressions that write something
out, there’s no problem. You’d probably never think to have
them be generators anyway. But what if expr is a generator?
The sandwich still is correct — it generates the results of expr.
But, while you’re thinking about generators, suppose you
want to know more about what expr does, such as whether it
succeeds or fails, whether it produces a lot of results, how
many times it is resumed, and so on. This can be done with the
sandwich also, by providing expressions for before and after
that do more than just write diagnostic messages.

While this more general form of monitoring expr can be
done with suitable expressions for before and after directly in
the sandwich, it’s easier to understand if procedures are used
instead:

2(before(),expr,after())

This leaves you free to write the procedures in various ways
without changing the sandwich itself. In the simplest case, the
procedures might just write some information of interest:

procedure before()
   write(…)
   return
end



10 / The Icon Analyst

Be sure to convince yourself that this formulation still does
what it’s supposed to do. If after() is resumed, it fails. When
a procedure call fails, its argument is resumed. Thus, expr is
resumed. If it produces another result, after() is called again,
writes the value produced, and suspends in turn.

If you’ve been following closely, you’ll notice some-
thing slightly wrong with this last formulation. In the “sand-
wich” formulation, the sandwich produced the results pro-
duced by expr. The term result is used in Icon in the technical
sense to mean either a value or a variable. In the last formu-
lation, after() produces the value produced by expr. If expr
produces a variable, only its value is produced. This happens
because all arguments to procedures in Icon are passed by
value; there is no way to get a variable into a procedure and
hence no way for it to produce an argument variable as a result.
Hence this formulation cannot be used in situations where
expr produces a variable to which an assignment is made.

All this is fine, but if you want to use a lot of evaluation
sandwiches (such as for every expression in a program),
writing them is tedious and error-prone, if not a practical
impossibility. There’s a tool that makes the production of
evaluation sandwiches (and many other Icon program trans-
formations) easy. It’s called a variant translator.

We’ll have an article on variant translators in an upcom-

ing issue of the Analyst.

thought of as what a program itself returns when it is done.

Unfortunately, there is not a complete agreement among
operating systems as to what exit code values mean. Most
systems use 0 to stand for normal termination (everything
went well, as far as can be told) and 1 (or any nonzero value)
to indicate that some kind of an error occurred during the
execution of the program. There is a notable exception; VMS
uses odd values for normal termination and even values for
error termination. Since the codes themselves vary, we’ll
just use the terms “normal” and “error” and assume only two
are significant.

The user of a program may or may not notice its exit
code. A sophisticated user may arrange to be told the code by
the operating system, but that is the exception. (You can use

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

(602) 621-8448

FAX:  (602) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

...{uunet,allegra,noao}!arizona!icon-project

and

© 1991 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

The Bright Forest Company
 Tucson Arizona

Program Termination

If you’re writing a program for someone else to use (an
“application program”), the way your program terminates is
important, both in terms of its user interface and in terms with
its interaction with its environment. Generally speaking, there
are two principal types of termination: normal and error.

Normal termination may occur because the application
program has come to natural completion or because the user
is finished with it and tells the program so.

There is a tendency for persons who write application
programs to try to cast them in anthropomorphic terms and
make them behave like human beings. When it comes to
termination, such a program may engage in parting amenities.
While such “good-bye” messages are a matter of style (which
may depend on the user community and what it expects),
remember that an application program may run from a script
and write output to a file. Above all, remember that cute and
verbose messages quickly become stale and annoying. And
not everyone may think your jokes are funny.

The effect of program termination on its environment is
of greater practical concern than whether or not a user likes
your prose. In most operating systems, a program produces an
exit code. The value of the exit code tells the operating system
whether everything has gone well or there has been an error.
Exit codes usually are small integers like 0 and 1 and can be



The Icon Analyst / 11

this in writing Icon programs, since the value of system(s) is
the exit code produced when the program specified by s
terminates). However, other programs may take note of an
error exit code and do something about it. For example, a
command script may stop abruptly if a program produces an
error exit code. That’s fine if that’s what you intended, but it’s
easy to return an error exit code unintentionally, so it’s
important to pay attention, when writing an application, to
how it terminates.

There are four ways that an Icon program can terminate
of its own accord:

• By returning from the initial call of the main
   procedure that started its execution.

• By evaluating stop(s).

• By evaluating exit(i).

• As the result of a run-time error.

Termination as a result of returning from the main
procedure can occur as a result of an explicit return, fail, or
suspend (although that is a bit bizarre) or implicitly by
flowing off the end of the main procedure, which is equivalent
to failure. In all of these cases, a normal exit is signaled. In
particular, failure of the initial main procedure call does not
produce an error exit code. That’s fortunate, since most
programs terminate normally by flowing off the end of the
main procedure.

The usual reason for terminating program execution by
stop(s) is because an error has been detected. stop(s) some-
times is used when there’s no easy way to get back to the initial
call of the main procedure from the point where the program
should terminate. That’s not to say it’s impossible to write a
program so that it can always get back to the main procedure,
but it certainly can be difficult and awkward to do so.

If a program terminates as a result of stop(s), error
termination is signaled. stop(s) should be used only if you
want to indicate error termination, not just as a convenient
way to get out. Furthermore, stop(s) always writes something
— an empty line if s is omitted. This can be disconcerting to

the user (the cursor on a terminal may jump unexpectedly),
and if the output of the program is written to a file, it may add
unexpected data.

The function exit(i) is more versatile, since it can be
used to terminate execution from any point in a program and
i can be used to provide the appropriate exit code. The default,
if i is omitted, is the code for normal termination: 0 for most
systems but 1 for VMS. exit(i) itself produces no output, but
output can be provided separately if you want it. For writing
application programs, a more flexible abstraction is provided
by Exit(s,i), which writes s if it is nonnull and terminates with
exit code i. This is easily provided by an Icon procedure:

procedure Exit(s,i)
   write(\s)
   exit(i)
end

For sophisticated applications, various values of i can
be used to signal different flavors of termination, ranging
from normal termination to the indication of various kinds of
errors. Remember, however, that different systems interpret
exit codes in different ways.

A run-time error, quite reasonably, indicates error ter-
mination and returns the same code as stop(). Generally
speaking, error termination, either intentional or uninten-
tional, should be carefully avoided in application programs.
For one thing, the user of an application program should not
need to know that the program is written in Icon, much less
what Icon’s various error messages mean and how they might
relate to how the program works and what went wrong. Even
if the error is the user’s fault (the notorious “user error”), an
application program should provide the user with useful
information couched in terms of the application (not Icon).
Mysterious messages tend to produce user hostility and some-
times guilt (“I broke it”). Besides, if you really want your
program to behave in a hostile manner, you can do better than
producing an Icon run-time error message.

We’ll have more to say about this in a subsequent article
on writing robust programs.

Renew Now!

If you subscribed to the Analyst for a year,
starting with the first issue, your subscription
ends with this issue and there’s a renewal form
enclosed with this mailing.

Don’t miss an issue of the Analyst! Renew
now!



12 / The Icon Analyst

Programming
Tips

Back Issues

Back issues of The Icon Analyst are available
for $5 each. This price includes shipping in the
United States, Canada, and Mexico. Add $2 per
copy for airmail postage to other countries.

One of the most
common difficulties for
persons learning Icon
is the use of default val-
ues for tables. If the
default value is an in-
teger or the null value,

as in table(0) and
table(), it usually
doesn’t cause problems.
But if the default value
is a structure, most in-
experienced Icon pro-
grammers run into puz-
zling problems.

A structure may
be a useful default value

in problems where the values associated with table keys are
complex. For example, in writing a program to produce
concordances, the value associated with a word may be the set
of line numbers in which the word occurs. This sounds simple
enough:

lines := table(set())

Then to add a new line number for a word, all that’s needed is

insert(lines[word],number)

Except things come out all wrong. All the words come
out with the same line numbers — in fact, all the line numbers.
What’s going on? It’s not a bug in Icon (a common first
reaction). The method used is wrong; the result of a concep-
tual misunderstanding.

The problem is that there’s only one set that is used as
the default value for all keys, not a different set for each
different key. To see why this is the case, consider two
formulations:

S := set()
lines := table(S)

and

lines := table(set())

These two formulations produce the same result. In
fact, in table(set()), set() is evaluated first to produce a
(single) set, which then becomes the argument for table().
This single set is then the default value for all new keys used
to reference the table. No wonder the results  are not as
expected!

When Icon programmers discover what actually hap-
pens, their natural reaction is “But that’s not what I want!”.
Unfortunately, there’s no way to have a structure created
automatically every time a table is referenced with a new key.
It’s necessary to check for a new key and explicitly create the

What’s Coming Up

You’re probably used to thinking of string scanning as
a primarily analytic tool. Have you ever wondered what a
similar mechanism for string synthesis might look like? One
approach is to combine analysis and synthesis in a string
transformation facility, using ideas similar to the ones in
Icon’s string scanning mechanism. In the next issue, we’ll
suggest what a string transformation facility might be like,
using the idea of modeling as in the article in this issue.

We’ll also have an article on something a bit different
— variant translators. These are programs analogous to Icon’s
own translator, which converts Icon programs into virtual
machine instructions that are then interpreted. But a variant
translator changes the form of a source program instead of
producing virtual machine code. The article on “Evaluation
Sandwiches’” in the issue suggests an application for such a
capability. In the next issue, we’ll show how to go about this.

You’re surely familiar with the fact that an Icon expres-
sion can produce a sequence of results. In programming, you
probably think of the situations that cause an expression to
produce more than one result and how the results are pro-
duced. Another approach is to consider a result sequence in a
more abstract way as the capability that an expression has to
produce results, even if it doesn’t happen to produce all of
them in a given situation. This view can provide new ways of
thinking about programming. We’ll have an article on this
subject next time.

structure.

One way to do this is to use a null value for the table
default (and do not put the null values in the table):

lines := table()

Then when subscripting lines, do something like this:

/lines[word] := set()
insert(lines[word],number)


