
The Icon Analyst / 1

August 1991
Number 7

In-Depth Coverage of the Icon Programming Language

Here’s the challenge: Model string synthesis with the
mapping

expr1 ? expr2 → Eform(Bform(expr1),expr2)

and provide appropriate procedures for Bform() and Eform().
Use the global variables subject, s_pos, object, and o_pos
for the state variables. (Do not use &subject and &pos.)

In addition, provide the following analysis and synthesis
procedures:

• smove(i) and stab(i), which are the same as
move(i) and tab(i) in string scanning.

• omove(i) and otab(i), which are the same as
smove(i) and stab(i), except they apply to the
object, not the subject.

• oplace(s), which inserts s in the object following the
current position in it, changes the position to the end
of the inserted string, and returns the new value of
the position.

• xswap(), which swaps the values of the subject and
the object, and sets both positions to 1.

• odelete(i), which deletes the i characters of the
object following the current position. It does not
change the position, but returns it as value.

• spos(i), which is the same as pos(i) for string scan-
ning.

• opos(i), which is the same as spos(i), but for the
object, instead of the subject.

Here’s an example of the use of these procedures:

write(
 "abcde" ? {
 while smove(1) do
 oplace(smove(1))
 oplace("]")
 otab(1)
 oplace("[")
 }
)

The value written is [bd].

Take this as an exercise and see what you can do with it.
Don’t hesitate to try to improve on the procedures suggested
here.

We’ll give our solution to this exercise in the next issue

of the Analyst.

 In this issue …

String Synthesis … 1
Variant Translators … 2
Result Sequences … 5
Procedure Libraries … 8
Programming Tips … 12
What’s Coming Up … 12

String Synthesis

One criticism of string scanning in Icon is that it is
heavily oriented toward analysis and provides little help in
synthesis. In fact, all of Icon’s string synthesis facilities are
relatively low-level. Imagine a somewhat different feature that
might replace string scanning: string synthesis that produces
an object string while analyzing a subject string.

The framework used for string scanning can be extended
to string synthesis by adding two variables to the environment
to replace the scanning environment by a synthesis environ-
ment containing a subject, an object, a subject position, and an
object position: {subject, object, sposition, oposition}.

The idea is that the analytic portion of string scanning
works in string synthesis as before, but an object string is
synthesized and the object position specifies the current posi-
tion of interest in the object string.

As with any proposed new language feature, the details
are important, even crucial. It seems reasonable to formulate
synthesis facilities that are analogous to the analysis facilities,
but it’s not so clear just how synthesis should be cast concep-
tually.

Here’s a proposal for a set of synthesis functions. The
idea is to modify the model of string scanning given in the last

issue of the Analyst to model a string-synthesis facility.
For a string synthesis expression

expr1 ? expr2

the expression expr1 provides the subject as in string scanning,
and the object is initially the empty string. The positions in both
initially are 1. As in string scanning, expr2 is then evaluated.
While it can do anything, it generally analyzes the subject and
synthesizes the object. The result of the string synthesis ex-
pression (if it succeeds) is the value of the object (not the result
of expr2).

2 / The Icon Analyst

Variant Translators

You may have come across situations in which you’d
like to transform an Icon program into something slightly
different. There were two examples of this in Issue 6 of the
Analyst: “Modeling String Scanning” and “Evaluation Sand-
wiches”. In modeling string scanning, scanning expressions
need to be transformed into nested procedure calls:

expr1 ? expr2 → Escan(Bscan(expr1),expr2)

In evaluation sandwiches, all expressions need to be trans-
formed:

expr → 2(before(),expr,after())

Another example similar to modeling string scanning occurs
in “String Synthesis” in the preceding article in this issue of
the Analyst.

The usual way to handle transformations like these is to
write a preprocessor that performs the desired transforma-
tions. Writing a preprocessor is a pattern-matching and re-
placement problem. Since Icon is particularly good for these
kinds of operations, writing such a preprocessor sounds easy.
But it really isn’t.

In order to preprocess a program, it’s necessary to parse
most of the language in which the program is written. Icon has
a rather complex syntax.

Even in the case of something as simple as transforming
string scanning operations, the parsing is not that easy. It isn’t
just a matter of finding question marks. The subject and
analysis expressions must be identified. Both can be arbi-
trarily complicated and may extend over many lines. String
scanning can be nested, which leads to recursive processing.
Quoted literals and comments may contain text that looks like
string scanning. A program being preprocessed may contain
syntactic errors, and so on. As you get into it, the task of
writing a preprocessor becomes more and more complicated.

You may be willing to make compromises, like ignor-
ing the possibility that text in quoted literals and comments
may resemble scanning operations. You may not care if your
preprocessor malfunctions if the input is syntactically errone-
ous. Such compromises, however, lead to ad hoc preproces-
sors that are not robust, complete, or correct. It’s also likely to
be a lot more work than you thought when you started, even
with compromises.

If you have the necessary knowledge and skills, you
could go inside Icon’s translator and change it to generate the
kind of code you want. While this approach, done carefully,
can produce a robust and demonstrably correct variant of
Icon’s translator, it also requires a lot of work — so much so
that you’re not likely to actually do it. You’re certainly not
going to use this approach frequently or just in order to try out
something like modeling string scanning.

We had concerns like this when we were developing
Icon. We had many ideas for experimental facilities that we
wanted to try. Most of these facilities could be cast as

transformations of “standard” Icon to some “extended” Icon,
perhaps with procedures to model new features, much as in
modeling string scanning. In other words, we needed prepro-
cessors, but not at the expense of a great deal of time and
effort.

This problem led us to develop a system for producing
correct, complete, and robust preprocessors with only a small
percentage of the effort required for conventional approaches.
Such preprocessors are called variant translators, since they
involve variations on Icon’s standard translator.

Translation

 Icon’s translator, known behind the scenes as itran,
converts Icon programs into ucode, which is an assembly
language for an imaginary computer. Ucode files are eventu-
ally converted to binary icode, which is an “executable”
image of the Icon program. Thus, itran translates from one
language, Icon, to another, ucode. An example of this trans-
lation is shown in the box below. It’s not necessary to
understand ucode for the purposes of this article; it’s enough
to know that it’s a representation of Icon operations in another
language.

line 1
mark L1
var 0
line 2
bscan

lab L2
mark0
var 1
var 2
int 0
line 3
invoke 1
invoke 1
unmark
goto L2
line 2
escan
unmark

lab L1

line ? { # write each one
 while write(move(1)) →
 }

Icon to Ucode Translation

In order for itran to translate Icon programs into ucode,
it must, of course, understand Icon’s syntax. itran contains the
usual lexical analyzer for identifying tokens like literals and
operators, and it has a parser for processing the higher levels
of Icon’s syntax. The parser produces “actions” that build
trees that subsequently are traversed in order to generate
ucode.

The key to a variant translator, which we’ll call vitran,
is to change the code generator to produce Icon code instead

The Icon Analyst / 3

Specifications

The specification of a variant translator consists of
definitions for Icon’s syntactic types followed by the desired
translations. A syntactic type is given in a functional (macro)
form followed by the translation as a concatenation of tokens.
For example, the standard (identity) translation for

return expr

is specified as

Return(x,y) "return " y

The first argument, x, corresponds to the reserved word
return, while the second argument, y, corresponds to the
argument of the return expression. Thus, the identity specifi-
cation shown here simply causes return expressions to be
translated as-is. A variant specification, such as

Return(x,y) "{suspend " y "; fail}"

would cause all return expressions to be transformed into
suspend and fail expressions (a transformation of dubious
merit, but you might imagine putting something useful be-
tween them).

The variant translator system comes equipped with a
complete set of built-in identity specifications. Only varia-
tions from these need to be specified — variants override the
corresponding identity specifications. For example, to pro-
duce a variant translator that transforms string scanning
expressions into nested procedures requires only one variant
specification:

Bques(x,y,z) "Escan(Bscan(" x ")," z ")"

The name Bques identifies the binary question-mark opera-
tor. (Another variant specification really should be included
to account for augmented string scanning; it’s correspond-
ingly simple.)

The specification system also provides shorthand nota-
tions for syntactic classes, such as binary (infix) operators.
Consequently, only one variant specification is needed to
handle all binary operators in the same way.

Other Considerations

Some potentially interesting transformations require
making minor modifications to Icon’s syntax. For example,

expr1 ?? expr2

was used for modeling the list-scanning facility mentioned
earlier, using procedures analogous to those for modeling
string scanning. Since ?? is not an Icon operator, it has to be
added for the variant translator. Adding an operator requires
minor modifications to Icon’s lexical analyzer and parser.

Fortunately, most of Icon’s lexical analyzer is built
from high-level specifications and Icon’s parser is produced
by Yacc [5]. Consequently, simple changes like adding an
operator do not require a lot of low-level coding.

of ucode. With this change, the simplest variant translator
essentially does nothing. It reads in a program and writes it
out. The only differences between the input and output are in
the arrangement of the text, the insertion of semicolons
implied by line breaks in the input, and the removal of
comments in the input. See the box below.

Escan(Bscan(line),{
while write(move(1))
});

Identity Translation

line ? {
while write(move(1))
};

line ? { # write each one
 while write(move(1)) →
 }

That is, the output is an Icon program that is semantically
equivalent to the input program. Such a translator is called an
identity translator.

Specifying Variants

There isn’t much use for an identity translator; it just
illustrates the idea. The important next step is to modify the
code generator to produce a desired transformation. Nothing
else needs to be changed to do this — the lexical analyzer and
parser work as before. As you might guess, modifying the
code generator to transform string scanning expressions into
nested procedure calls doesn’t require much effort — espe-
cially since the output language is Icon, not ucode. See the box
below.

line ? { # write each one
 while write(move(1)) →
 }

Variant Translation

Since vitran is an Icon-to-Icon translator (preproces-
sor), its output can now be compiled like any other program.
In the case of something like modeling string scanning, the
necessary procedures can be linked together with the main
program.

The basic idea here is a very powerful one; with a few
extensions, it can handle changes in the input syntax as well
as changes in the generated code. Variant translators have
been used for many research projects ranging from list scan-
ning [1] to the experimental programming languages Rebus
[2] and Seque [3]. The interesting thing about Rebus is that its
syntax looks a lot like Icon’s, but the generated code is
SNOBOL4 [4]!

To build variant translators of any complexity, software
support is needed. Even transforming all expressions into
evaluation sandwiches requires extensive modifications of
the code generator, albeit routine ones. Icon’s variant transla-
tor system does just that. Variants can be given in a high-level
specification language and most of the steps in actually
building a variant translator are automated. It is not, for
example, necessary to get into Icon’s code generator at all.

4 / The Icon Analyst

Building a Variant Translator

Building a variant translator requires considerable com-
putational resources. It can’t be done on all personal comput-
ers, but it’s routine on UNIX systems and it can be handled on
several other systems.

To begin with, the variant translator system requires a
production-quality C compiler, Icon, and Yacc. It also re-
quires a lot of memory, since Icon’s Yacc grammar is large
and uses macros extensively.

The schematic diagram at the bottom of this page shows
the main components of Icon’s variant translator system. Files
listed on the left are processed as shown to produce the files
on the right. The files on the right, together with other files for
Icon’s translator, are then compiled and linked to produce the

final result. Only the most important files are shown in the
diagram. Files flagged with an asterisk contain variant speci-
fications. The file variant.defs contains any variant transla-
tion specifications. It’s almost always needed. The specifica-
tions in variant.defs override the standard ones in ident.defs.
The result of processing these files is a set of macro definitions
in gdefs.h that are included by expanded.g (hence the
dashed line). The file icon_g.c contains a stylized form of the
Yacc grammar for Icon. After macro preprocessing, it pro-
vides the input to Yacc. After some postprocessing, the C files
needed are ready for inclusion in the building of vitran. One
other file, variant.c, is needed. Ordinarily it is empty, but if
additional C functions or declarations are needed for the
translation, this is where they go. The Icon programs fixgram,
trash, and pscript are used for various minor changes that are
needed in file formats.

gdefs.h
define
(Icon)

fixgram
(Icon)

variant.defs∗

icon_g.c∗ expanded.g

yacc

trash
(Icon)

pscript
(Icon)

y.tab.c

y.tab.h token.h

parse.c

cc –E

variant.c∗

ident.defs

Building a Variant Translator

The Icon Analyst / 5

Result Sequences

An important aspect of “thinking in Icon” is under-
standing generators and their role in programming so thor-
oughly that you can use them as problem-solving tools.

Most descriptions of generators treat them in a dynamic
fashion, emphasizing where and when they produce their
results. An alternative view of generators is more abstract and
deals with the sequence of results they are capable of produc-
ing in an abstract way, as mathematical objects. While this
abstract view of result sequences is somewhat removed from
the actual process of programming, it can provide insights to
the use of generators and how to think about them.

In the dynamic view of generators, the focus is on what
happens as a generator is evaluated, suspends with a result,
and is resumed — the events during expression evaluation and
how a generator behaves with respect to these events. In the
abstract view of result sequences, the focus is on the results a
generator is capable of producing. A result sequence can be
viewed as the results a generator would produce if resumed
repeatedly. For example,

every expr

forces expr to produce all its results. Taken together, these
results comprise the result sequence for expr.

Notation

To describe and manipulate result sequences as abstract
objects, some notation is needed. A result sequence is en-
closed in braces (which have nothing to do with braces in Icon
programs) to emphasize its status as an abstract object. For
example, the result sequence for1 to 5 is {1, 2, 3, 4, 5} and
the result sequence for seq() is {1, 2, 3, …}, where the ellipses
indicate an unending (infinite) sequence. Note that there is no
problem with the abstract concept of an infinite result se-
quence.

Other useful notation is:

S(expr) the result sequence for expr

L(expr) the length of the result sequence for expr
Φ the empty result sequence, { }
S1 ⊕ S2 the concatenation of result sequences S1

and S2

Si The result sequence S concatenated with
itself i times

Some examples using this notation are:

L(1 to 5) = 5

S(1 to 5) ⊕ S(1 to 5) = {1, 2, 3, 4, 5, 1, 2, 3, 4, 5}
S(&fail) = Φ

Control Structures

 The usefulness of dealing with result sequences is
illustrated by the alternation control structure

If you have access to Icon on a UNIX system, it’s easy
to build variant translators — almost as easy as pushing a
button. For other systems, it depends on what resources you
have and in particular on whether you have a robust version of
Yacc.

It’s worth noting, however, that a variant translator can
be built on one system for use on another. Thus, variant.c,
token.h, and parse.c can be built on a UNIX system and
compiled on an MS-DOS system. See Reference 6 for general
information about building variant translators.

Further Thoughts

There are advantages and disadvantages to variant
translators. They are fast, faithful to the syntax of Icon, robust,
and (assuming they are specified properly) correct. Variant
translators are not, however, particularly portable or easy to
build except under UNIX.

The idea behind variant translators is not limited to the
present C- and Yacc-based system. If anyone ever wrote a
complete, correct, robust, and well-structured identity trans-
lator for Icon in Icon, it should be a fairly easy matter to build
a specification system on top of it and have most of the
advantages of the present variant translator system without
the need for C and Yacc. A variant translator produced by
such an Icon-based system would not run as fast as one
produced by the present system, but it would be much more
portable, as would an Icon-based variant translator system
itself.

Don’t feel obligated to go out and write an identity
translator for Icon in Icon — but if you feel so inclined, give
some thought to what would be needed to adapt it to variants.

References

1. Unifying List and String Scanning in Icon, Allan J. Ander-
son and Ralph E. Griswold, Technical Report TR 83-4,
Department of Computer Science, The University of Arizona,
1983.

2. Rebus — A SNOBOL4/Icon Hybrid, Ralph E. Griswold,
Technical Report TR 84-9, Department of Computer Science,
The University of Arizona, 1984.

3. “Seque: A Programming Language for Manipulating Se-
quences”, Ralph E. Griswold and Janalee O’Bagy, Computer
Languages, Vol. 13, No. 1 (1988), pp. 13-22.

4. The SNOBOL4 Programming Language, second edition,
Ralph E. Griswold, James F. Poage, and Ivan P. Polonsky,
Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1971.

5. Yacc — Yet Another Compiler-Compiler, S. C. Johnson,
Bell Telephone Laboratories, Inc., Murray Hill, New Jersey,
1978.

6. Variant Translators for Version 8 of Icon, Ralph E.
Griswold and Kenneth Walker, Technical Report TR 90-4,
Department of Computer Science, The University of Arizona,
1990.

6 / The Icon Analyst

expr1 | expr2

A description of alternation in dynamic terms, “if expr1
is resumed but produces no result, then expr2 is evaluated …”
is convoluted and obscures the fundamental simplicity of
alternation. In terms of result sequences,

S(expr1 | expr2) = S(expr1) ⊕ S(expr2)

That is, the result sequence for the alternation of two expres-
sions is the concatenation of their result sequences. Put
another way, the results produced by the alternation of two
expressions consist of the results of the first expression
followed by the results of the second expression.

Another illustration of the conciseness of result se-
quence notation in describing expression evaluation is the
result sequence for a compound expression:

S({expr1; expr2; … exprn }) = S(exprn)

This identity points out two things: (1) the results produced by
a compound expression depend only on the last expression
and (2) a compound expression can fail or be a generator —
something that you may not have thought about.

Failure drives Icon control structures. The special role
of failure can be described in terms of the empty result
sequence, Φ, or in terms of the lengths of result sequences:

S(if expr1 then expr2 else expr3) =

S(expr2) if S(expr1) ≠ Φ
S(expr3) if S(expr1) = Φ

or

S(if expr1 then expr2 else expr3) =

S(expr2) if L(expr1) > 0

S(expr3) if L(expr1) = 0

Similarly, the special termination condition for re-
peated alternation can be expressed as:

S(|expr) = S(expr)∞ if L(expr) > 0

Φ if L(expr) = 0

Result sequences also provide a compact way of de-
scribing the general properties of classes of expressions. For
example, the looping control structures while, until, and
every all have empty result sequences, as in

S(while expr1 do expr2) = Φ

In dynamic terms, these control structures fail when they
terminate. This actually only is true if a loop terminates
normally (for example, when expr1 fails in the example
above). If a loop terminates because of break, its result
sequence is quite different, since

S(… break expr …) = S(expr)

where this means the result sequence of the control structure
in which the break is evaluated. Thus, in the case of termina-

tion of a loop as a result of break, the result sequence for the
loop can even be a generator!

Operations and Goal-Directed Evaluation

Another useful pedagogical aspect of result sequences
occurs in expressions in combination with goal-directed
evaluation. For this topic, it is helpful to classify functions and
operations (we’ll use operations here, since the distinction is
only syntactic) in terms of the characteristics of their result
sequences. For example, given a binary operation ⊗ and
specific values v1 and v2, what is the nature of the result
sequence for v2 ⊗ v2?

Most operations in Icon are monogenic. That is, they
produce exactly one result for specific arguments. For ex-
ample,

S(1 + 2) = {3}

and, in general

S(v1 + v2) = {v1 + v2}

Thus, for a monogenic operation,

L(v1 ⊗ v2) = 1

Other operations are conditional and produce one result
or none, depending on the specific arguments. For example,

S(2 > 1) = {1}
S(1 > 2) = {} = Φ

Thus, for a conditional operation,

L(v1 ⊗ v2) ≤ 1

For generative operations, there is no simple relation; in
most cases the minimum number of results is 0 and the
maximum depends on the specific values.

The examples of operations given above are for specific
arguments. If the arguments are produced by expressions, the
result sequences are more complicated, reflecting the fact that
the expressions may generate many values, so that the opera-
tion is performed on many combinations of arguments. For
monogenic operations, there is a simple relationship between
the lengths of the result sequences. For example,

L(expr1 + expr2) = L(expr1) × L(expr2)

This relationship reflects the “cross-product” form of evalu-
ation, in which generators are resumed in a last-in, first-out

Back Issues

Back issues of The Icon Analyst are available
for $5 each. This price includes shipping in the
United States, Canada, and Mexico. Add $2 per
copy for airmail postage to other countries.

The Icon Analyst / 7

fashion. See [1] and [2] for a more detailed treatment of this
matter.

For conditionals, the product is an upper bound, as in:

L(expr1 > expr2) ≤ L(expr1) × L(expr2)

There is no upper bound that applies to all generators.

One interesting monogenic operation is conjunction,
expr1 & expr2. Consider first specific argument values v1
and v2:

S(v1 & v2) = {v2}

For a general expression as the second argument,

S(v1 & expr) = S(expr)

This is, the value of the first argument has no affect on the
result sequence. Now suppose the first argument is some
expression. In this general case,

S(expr1 & expr2) = S(expr2)L(expr1)

That is, the result sequence is the result sequence for expr2
concatenated with itself for each value in the result sequence
for expr1. This may seem a bit strange, but consider a simple
example:

S((1 to 3) & 5)) = {5, 5, 5}

If you prefer something more concrete, try this in a program:

every write((1 to 3) & 5)

The Distributivity of Alternation

The power of result sequences for describing the char-
acteristics of expression evaluation in Icon is shown by the
following two identities relating to the distributivity of alter-
nation:

S(v(expr1) | v(expr2) | … | v(exprn)) =

S(v(expr1 | expr2 | … | exprn))

S(v1(expr) | v2(expr) | … | vn(expr)) =

S((v1 | v2 | … | vn)(expr))

Concrete examples of these identities are:

S(find(s1) | find(s2)) = S(find(s1 | s2))

and

S(integer(x) | string(x)) = S((integer | string)(x))

If you are interested in how such identities can be
proved, see References 1 and 2, which describe an elementary
calculus of result sequences.

Using Result Sequences

By now, this may seem very abstract and esoteric,
especially in light of the introductory remarks about “thinking

in Icon”. There are several ways, however, in which result
sequences can be used to formulate expressions.

Result sequences can provide a method of formulating
expressions that produce desired results. For example, to
generate the lowercase letters five times, you might be in-
clined to write

!&lcase | !&lcase | !&lcase | !&lcase | !&lcase

But recalling the result sequence for conjunction, you can
write a more concise (and more easily generalized) expres-
sion:

(1 to 5) & !&lcase

Similarly, the first identity in the preceding section
concerning the distributivity of alternation allows you to write

tab(10) | tab(5) | tab(2) | tab(1)

as

tab(10 | 5 | 2 | 1)

The second identity in the previous section suggests a
way of formulating expressions that is less obvious— the
expression that is applied to a list of arguments can be a
generator (specifically, an alternation expression). There are
some situations in which this kind of formulation may provide
a useful method of phrasing a computation. Consider, for
example, a procedure parse() that parses a string. If the string
cannot be parsed, the natural thing to do in Icon is for the
procedure to fail. You might write something like this:

while s := read() do
 if not parse(s) then diagnose(s)

where diagnose() is a procedure that produces appropriate
diagnostic information. You might decide it’s more “Icon-
ish” to rephrase this as:

while s := read() do
 parse(s) | diagnose(s)

(You might try using result sequences to see if these two
formulations really are equivalent.) Better yet, phrase this
computation as:

while s := read() do
 (parse | diagnose)(s)

If you think this kind of formulation is a bit odd,
consider Alan Perlis’ comment: “An idiom is a trick you use
twice”. Also, look at rsg.icn in the Icon program library. The
syntax of the input language to this random sentence genera-
tor is designed around (and suggested by) applying a sequence
of procedures to an argument until one succeeds.

Further Thoughts

We’ve only scratched the surface of what can be done
with result sequences. We didn’t even include limitation and
bounded expressions. You might try adding these to the
framework we’ve provided.

8 / The Icon Analyst

things up so that the library is easy to use. And, perhaps more
important, it takes a little digging to find out what procedures
are in the library and how to use them.

In this article we’ll try to “demystify” the Icon program
library and show what’s actually going on when you use it. Of
course, you don’t have to have the Icon program library to use
the information that follows; you can write your own proce-
dures to fit your own needs.

Incidentally, the Icon program library can be used with
either the Icon interpreter or the Icon compiler. What actually
happens in the two cases is somewhat different. Most of what
follows applies to the interpreter, which most Icon program-
mers use. Later on in this article, we’ll have something to say
about how the library applies to the compiler.

Before going on, we need to explain a matter of termi-
nology. We’ll refer to a collection of procedures in a single
source-code file as a library. To avoid confusion with the Icon
program library, we’ll abbreviate it to Ipl. (For you old timers,
Ipl does not mean “initial program load”!)

Ucode and Icode

As described in the article on variant translators, ucode
is created by the Icon interpreter as an intermediate step
between a source-code and the icode that the interpreter
actually executes. The origin of the words ucode and icode is
obscure and not important. It’s enough to think of ucode as the
result of translating an Icon source file into virtual machine
language for an imaginary Icon computer — much like
assembly language for a real computer.

The reason for producing virtual machine code rather
than real machine code is described in the reference at the end
of this article and will be explained in more detail in an article
in the next issue of the Analyst.

An icode file is essentially a compact “binary” form of
virtual machine code that is suitable for execution by the
imaginary Icon computer. The Icon interpreter emulates this
imaginary computer.

Ucode files are text files; you can read or print one if you
wish. Icode files, on the other hand, are not easily readable.

Translating an Icon source file (with suffix .icn) creates
a pair of ucode files with suffixes .u1 and .u2. The .u1 file
contains virtual-machine code for the procedures in the source
file, while the .u2 file contains global information about the
program. There is a pair of files, rather than one, since the
translator does not produce information in the order needed to
compose a single file and it would be complicated to combine
the files later.

When an Icon program is translated, the ucode files
normally are deleted and only the icode file is preserved.
However, if you use the –c option to icont, the ucode files are
preserved (and no icode file is created). The process of
producing a pair of ucode files can be visualized as follows:

If result sequences appeal to you, think about how many
phenomena in the world can be cast naturally in terms of
sequences. You may be able to program in terms of sequences.

There’s even an experimental programming language,
called Seque, that is based on these ideas [3]. In Seque, result
sequences are data objects that can be constructed and ma-
nipulated as first-class values.

Seque never made it beyond design and a prototype
implementation (written in Icon). Maybe someday … .

References

1. Control Mechanisms for Generators in Icon, Stephen B.
Wampler, Doctoral Dissertation, Department of Computer
Science, The University of Arizona, 1981.

2. “Result Sequences”, Stephen B. Wampler and Ralph E.
Griswold, Computer Languages, Vol. 8, No. 1 (1983), pp. 1-
13.

3. “Seque: A Programming Language for Manipulating Se-
quences”, Ralph E. Griswold and Janalee O’Bagy, Computer
Languages, Vol. 13, No. 1 (1988), pp. 13-22.

Procedure Libraries

Procedures provide one of the most powerful and con-
venient ways of adding functionality to Icon programs. Over
the years, a large number of Icon procedures have been written
for performing all kinds of tasks. Some of the most useful of
these procedures are included as part of the Icon program
library. (The remainder of the library consists of complete
programs and data; we’re only interested in the procedures
here.)

The Icon program library is readily available at a
nominal cost. Yet it seems that many Icon programmers don’t
have it or don’t use it. We’re reminded of this when we get a
request to add a new function to Icon and find there’s already
a procedure in the Icon program library that does what’s
needed.

You might argue that a function, being built into Icon,
is sure to be faster than a procedure that is written in Icon.
That’s true, but in most cases we’ve seen, the actual difference
in efficiency is minor — and it’s unquestionably much easier
to use an existing procedure than it is to modify Icon itself.

Persons who use the Icon program library tell us how
much easier it has made their Icon programming — and they
often make their own contributions to the library. Why, then
don’t more Icon programmers use the library?

We think part of the reason is that it’s not so obvious at
first glance how to use the library. It takes a little effort to set

The Icon Analyst / 9

procs.icn icont –c
procs.u1

procs.u2

Although an icode file must contain a complete pro-
gram, ucode files need not. This is the way the Icon interpreter
supports separate compilation of program components. More
precisely, sets of procedures can be organized into source-
code files (“libraries” as defined above) and the correspond-
ing ucode files can be combined with other ucode files to form
a complete program in an icode file. In this way, procedures
in a library can be incorporated into any Icon program that
needs them.

Linking Ucode Files

Ucode files are linked to form an icode file. Linking can
be done in two ways — by including the name of a ucode file
pair on the command line when an Icon source file is trans-
lated or by means of a link declaration in the source program
itself.

The command-line method has the form

icont prog.icn procs.u

where prog.icn is a source-language file that is linked with the
ucode file pair for procs. The .u suffix distinguishes a ucode
file pair (the corresponding .u1 and .u2 files) from a source-
language file.

The link declaration, which is included in the source
program that needs a ucode file, has the form

link name

where name is the name of a ucode file pair (without the .u).
For example, prog.icn might start as

link procs

procedure main()
.
.
.

When this file is translated by

icont prog

the ucode file pair for procs is included automatically.

Several libraries can be included in a program by using
several link declarations or by listing the ucode names sepa-
rated by commas in a single link declaration, as in

link procs1
link procs2
link procs3

or

link procs1, procs2, procs3

While it may be handy during program development to
specify ucode files on the command line, it’s generally better

style to use link declarations in the program itself. That way,
the information about which libraries a program needs is
contained in the program itself.

Locating Ucode Files

The Icon interpreter needs to be able to find the ucode
files given in link declarations. It always looks first in the
current directory, so you don’t need to do anything special if
you put your ucode files in the same directory as the programs
that use them. However, in order to organize ucode files and
to be able to access them wherever your programs are, you
probably will want to place them in a special place.

The link declaration allows path specifications in place
of simple file names. Such path specifications, which must
conform to the path syntax of the computer system you’re
using, need to be enclosed in double quotes (as if they were
string literals). An example for a UNIX system is

link "/usr/icon/ilib/procs"

Either complete path specifications, as in this example, or
partial path specifications can be used.

Path specifications are tedious to write, and if you move
your ucode files, all the source files that refer to them may
need to be changed. To avoid such problems, the Icon inter-
preter uses the environment variable IPATH when looking for
ucode files given in link declarations.

The value of IPATH is a blank-separated list of paths
(partial or complete) of directories containing ucode files. For
example, in BSD UNIX

setenv IPATH "/usr/icon/ilib /usr/icon/explib"

sets IPATH so that /usr/icon/ilib and /usr/icon/explib are
searched (in the order given) for ucode files given in link
declarations. With IPATH set, all that’s needed in a link
declaration is

link procs

where the ucode file pair for procs is in one of the directories

10 / The Icon Analyst

given by IPATH. It’s worth knowing that the current directory
is searched first, regardless of IPATH.

Name Collisions

If you’re writing your own procedure libraries, there are
some things you should consider. One is the possibility of
name collisions.

When you write a self-contained Icon program, any
conflicting uses of the same name by different procedures are
resolved in the debugging process. When you link library
procedures, however, you don’t necessarily know the names
of all the names used in the library procedures; in fact, if you
only have ucode files but not the corresponding source files,
you can’t easily find the names used.

If the same name is used for a global identifier (such as
a procedure name) in both your program and a linked library,
the Icon linker notes the conflict and terminates with a fatal
error, just as if you’d declared the same global identifier more
than once in your program. It’s undeclared local identifiers
that cause the real problem.

An undeclared identifier is taken to be local, provided
there is no global declaration for it. If there’s a global decla-
ration, however, the undeclared identifier is global. An unde-
clared identifier in a program that otherwise would be local
becomes global if a linked library has a global declaration for
it. This unexpected change in scope can be disastrous and
mysterious. Consider, for example, a program that has code
such as this:

procedure strfrm(i1,i2)
 complex := i1 || "+" || i2 || "i"

.

.

.

Now suppose this program links a library that contains the
record declaration

record complex(r,i)

The identifier complex is global by virtue of the record
declaration. The use of complex in strfrm(), which presum-
ably was intended to be local, is now global. Assignment to it
in strfrm() wipes out the record constructor for complex,
which presumably is needed in the linked library. Imagine the
consequences.

The moral is clear — always declare all local identifiers.

For similar reasons, if you are writing procedure librar-
ies, and need global identifiers that are not used outside of the
library, it’s a good idea to give them names that are not likely
to conflict with names in programs that include the libraries.
Mixed upper- and lowercase letters with interspersed under-
scores, as in Init_Table, is one convention used to minimize
the likelihood of name collisions. Note, however, there is no
way to guarantee there won’t be a collision. At least with
global identifiers, the linker detects the problem.

Incidentally, the procedures in the Icon program library
do not follow any consistent rules to avoid name collisions,
but all local identifiers in them are declared as such.

Organizing Libraries

Building a useful collection of ucode files is somewhat
of an art. It requires experience and good taste.

The contending factors are functionality and the num-
ber of procedures per file (and hence ucode file pairs). When
a ucode file pair is linked into a program, all the procedures in
the ucode file pair are incorporated into the program. If there
are 100 procedures and only one is needed, the other 99 are
extra baggage, increasing linking time and the size of the

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

(602) 621-8448

FAX: (602) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

...{uunet,allegra,noao}!arizona!icon-project

and

© 1991 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

The Bright Forest Company
 Tucson Arizona

The Icon Analyst / 11

resultant icode file. On the other hand, if a program needs 100
procedures and each is in a separate ucode file pair, all 100
ucode file names must be specified in link declarations.

The usual compromise is to group procedures by func-
tionality, tolerating the linking of a few unneeded procedures
in some cases.

It’s worth noting that libraries are not limited to proce-
dures. They can include record and global declarations as
suggested above, and they also can contain link declarations.
Link declarations in libraries can be used to combine several
other libraries “transparently”. For example, a library may
consist only of link declarations for other libraries. Suppose
math.icn contains

link integer, real, rational, complex

then

link math

could be used to link the four other libraries.

There’s no end to what you can do with this technique
if you have the energy and discipline to keep track of every-
thing.

Using Libraries with the Icon Compiler

Libraries are used somewhat differently in the Icon
compiler, although it’s transparent in source programs that
use libraries.

Ucode files don’t mean anything to the compiler, which
produces code for a real computer (via C) instead of code for
an imaginary computer. Instead, the compiler supports link
declarations by including source code instead of ucode. The
link declarations are the same; the compiler just looks for
source code.

To allow the interpreter and the compiler to be used for
the same source program, the compiler uses a different envi-
ronment variable, LPATH, to find the source code for library
programs given in link declarations. Other than looking for
source code rather than ucode, LPATH works the same way
in the compiler as IPATH does in the interpreter.

If you’re using both the interpreter and compiler for the
same program, (the interpreter for program development and
the compiler for the final executable program, for example),
it may help to keep things straight if ucode and source code
files are kept in parallel directories, as in

library

source ucode

LPATH IPATH

What’s in the Icon Program Library

As mentioned earlier, if you’re using procedure librar-
ies with your Icon program, the Ipl is a good place to start; a
lot of effort has been put into the procedures there and you
might as well take advantage of them.

The Ipl consists of a basic part and updates. Updates,
which contain corrections, improvements, and new material,
are issued about three times a year. You can get the basic
library in a variety of ways. The updates are provided on a
subscription basis. See any recent Icon Newsletter for de-
tails.

To date, there are 70 procedure libraries in the Ipl,
comprising a total of 300 procedures. See the box at the
bottom of this column for a list of what some of these libraries
do.

Reference

The Implementation of the Icon Programming Language,
Ralph E. Griswold and Madge T. Griswold, Princeton Uni-
versity Press, Princeton, New Jersey, 1986.

Typical Procedures in the Ipl

Arrange data in columns
Collate and decollate strings

Control ANSI terminal
Convert between ASCII and EBCDIC

Convert hexadecimal numbers
Convert number formats

Copy files
Encode/Decode structures as strings

Expand wild-card characters in file names
Find regular expressions

Generate n-grams
Match patterns

Perform complex arithmetic
Perform radix conversion

Perform rational arithmetic
Permute characters

Process command-line options
Produce string images of structures
Quote strings for shell commands

Scan lists
Segment strings
Shuffle elements
Simulate n-tuples

Snapshot string scanning
Wrap text lines

Write in C-style printf form

12 / The Icon Analyst

Corrections

Here are a couple of corrections to Issue 4 of the
Analyst, as provided by readers.

At the bottom of page 3 and the top of page 4, Paul
Abrahams notes that the first instances of tab(many(&letters))
should be tab(upto(&letters)) as in the preceding examples.

Mark Emmer notes that the amount of space needed for
large integers as given on page 6 is misleading. He provides
this correction:

Large integers have 18 bytes of overhead on a 16-bit
integer system and 20 bytes of overhead on a 32-bit system.
The “digits” for large integers are 2 bytes each. Here’s the
amount of spaced used on 16-bit systems for some large
integers of the form 10n:

n digits bytes ratio
10 3 24 0.42
20 5 28 0.71
50 11 40 1.25

100 21 60 1.67
500 104 226 2.21

1000 208 434 2.30
10000 2077 4172 2.40

This is as expected, tending toward 2.40824 decimal
digits per byte (2.40824 = 8 × log102).

The Analyst had it backwards, saying “you can count
on less than two bytes per decimal digit for really large
integers.” It should be “less than 1/2 byte per decimal digit”.

What’s Coming Up

In the next issue of the Analyst we’ll have procedures
for the string synthesis facility described in this issue. You
have two months to write your own before seeing ours.

We’ll also start exploring the imaginary computer that
provides the conceptual framework for the implementation of
the Icon interpreter and have the first of a series of articles on
the optimizing compiler for Icon.

• For gettext(): DLOG 418, DITL 418

Once these resources are copied to the Icon program
file, they can be modified by ResEdit. Do not delete or
renumber any of the standard elements present in the dialog
(text boxes and buttons). It is permissible to reshape them and
move them around. You can also add additional elements such
as screen icons, additional static text, and PICTs.

During execution, dialog resources in the Icon program
supersede those in the ProIcon application. Resources may be
provided in linked files as well as in the Icon main program.
Note that linked files may contain resources and no program
text at all!

If you want to use several different versions of each
dialog in a program, it is necessary to dynamically switch
between the resource forks of the files containing the different
versions. Use

id := callout("CODE", "CurResFile")

 to obtain and remember the current resource file ID.

resFile := callout("CODE", "OpenResFile", filename)

can be used to open each of the files containing the desired
dialogs.

callout("CODE", "UseResFile", resFile)

can then be used to switch between files prior to calling
message() or gettext(). CurResFile and UseResFile are
described the README file in the External Functions
folder in the ProIcon 2.0 distribution.

Programming
Tips

If you have ProIcon 2.0 for the
Macintosh, there are some nifty

things you can do with resources.
Mark Emmer provides these
tips:

Dialog boxes used with
the message() and gettext()
functions can be customized
to include additional static
text, screen icons, or pictures.

You can do so by copy-
ing these dialog boxes from
the ProIcon application to the
resource fork of an Icon pro-

gram file with Apple’s ResEdit
program. The necessary re-

sources to copy are:

• For a modal message() (with OK button): DLOG 415,
 DITL 415

• For a non-modal message() (that is, a non-modal display
 of text without an OK button): DLOG 416, DITL 416

