
The Icon Analyst / 1

December 1991
Number 9

In-Depth Coverage of the Icon Programming Language

Bogus Expressions

When programmers are first learning a new program-
ming language, they are likely to get both syntax and concepts
wrong at times. This leads to what we sometimes call “bogus”
expressions. The term bogus has taken on a rather broader
meaning in hacker patois than you’ll find in the average
dictionary, but it has a nice ring. So do the derived terms
“bogosities” and “bogons”.

Since Icon has a richer expression-evaluation mecha-
nism than most programming languages, it offers more oppor-
tunities for bogosities, which may strike more experienced
programmers, if not their novice authors, as amusing. Here are
some examples we’ve seen.

1. Inside-Out Expressions

This kind of thing turns up quite frequently:

write(every 1 to 10)

It’s syntactically correct, but it doesn’t “do” anything.

The argument of write() is an every expression. The
every expression forces its argument to generate 1 through
10. But there’s nothing to use these values and after the last
one is produced, every fails, as all loops do when they
terminate (unless by break). Since the argument of write()
fails, nothing is written.

What the author of this inside-out expression presum-
ably intended was

every write(1 to 10)

The argument that the first version “has both an every and a
write()” doesn’t quite get to root of the problem.

 In this issue …

Bogus Expressions … 1

A String Evaluator … 2

String Allocation … 4

Type Inference in the Icon Compiler … 7

Programming Tips … 11

What’s Coming Up … 12

2. Confused Returns

We’ve probably seen more confusing usages in returns
from procedure calls than in any other category of expressions.
Here’s one:

return fail

This one does what its author probably intended — it causes the
procedure call in which it occurs to fail. But it’s bogus on the
face of it.

A return expression evaluates its argument. If the argu-
ment produces a value, that value is returned. If the argument
fails, the procedure call fails — in other words, return pro-
duces the outcome of its argument. In the case above, the
evaluation of fail causes the function call to fail before the
evaluation of return completes.

Another example of confusion in returning is

return suspend

which presumably doesn’t do what its author intended.

An omitted argument to suspend is like an omitted
argument in a function call — it’s equivalent to &null. In the
expression above, the procedure suspends with the null value
(in the middle of evaluating return). If it’s resumed, the
suspend expression (like every) fails. Since it’s the argument
of return, the procedure call then fails.

Here’s another one:

suspend &fail

This expression does not suspend nor does it cause the proce-
dure call to fail — it does nothing. A suspend expression
suspends with the results generated by its argument. If its
argument doesn’t produce a result (as in the case here), it
doesn’t suspend at all, and program execution continues with
the next expression after the suspend — a confusing “no-op”.

3. Redundancies

Here’s another kind of expression we see fairly often:

every suspend 1 to 10

The author of this expression apparently didn’t know that
suspend suspends with every result produced by its argument.

In fact, suspend is just like every except for the fact that
it suspends with every result produced by its argument. And
suspend, like every, fails when there are no more results from
its argument. So, in the case above, the argument to every fails.

2 / The Icon Analyst

We’ve heard novice programmers say “But I just wanted
to make sure.” Sure.

Here’s another misguided use of every:

every if s == !x then …

What was intended here presumably was to be sure !x pro-
duced all its values. It produces as many as needed as the result
of goal-directed evaluation. every has nothing to do with that.

Since the expression above evaluates the if-then ex-
pression the same way, whether or not the every is hanging
out front (waiting for the if-then expression to do something),
the author may say, “Well, it worked”, which is more than can
be said for this monstrosity:

if every (s == !x) then …

We’ll end with an fairly common usage that isn’t
wrong; it’s just unnecessarily complex:

every s := !x do
 suspend s

All that’s needed is

suspend !x

If you’ve encountered bogus or silly expressions in
Icon, let us know. If we get enough more, we’ll list them in a
future issue of the Analyst. And, it you’re the perpetrator,
we’ll protect your identity.

A String Evaluator

We’ve been asked many times for a version of Icon that
would allow the user to type in Icon expressions and have
them evaluated on the spot. For example, with such a facility,
you could type in

write(repl("hello ", 3))

and the output would be

hello hello hello

Such a facility would be particularly handy for persons
learning Icon. They could just try out various expressions and
see what they do without having to edit, compile, and run a
complete Icon program. And there are plenty of times when
we could have used such a facility when testing new features
for Icon or in trying to run down bugs.

While Icon itself doesn’t have such a facility (and it
wouldn’t be easy to add one), it can be done with an Icon
program. In fact, there are very capable programs in the Icon
program library for evaluating Icon expressions represented
by strings.

The key to evaluating an Icon expression represented as
a string is string invocation, the feature of Icon that converts

a string for a function name or operator into the actual function
or operator.

The general problem of evaluating a string representing
an Icon expression is fairly complicated. We’ll consider a
simpler problem here to illustrate what string invocation can
do: a procedure to evaluate function calls with simple literal
arguments.

Starting with a Special Case

Our approach to such a problem is to start with a simple
special case and then see how it can be generalized.

Suppose for example, we start with a string that repre-
sents a function call with a single numeric argument, such as
"sin(2.5)". We’ll also assume such strings are syntactically
correct, and worry about error checking later (or maybe not at
all). Then it’s just a matter of string scanning to get the name
of the function and its argument, followed by string invoca-
tion to apply the function to its argument:

procedure feval(exp)
 local fnc, arg

 exp ? {
 fnc := tab(upto('('))
 move(1)
 arg := tab(upto(')'))
 }

 suspend fnc(arg)

end

The values of fnc and arg are, of course, strings. For
example, if exp is "sin(2.5)" then the last expression in
feval() is equivalent to

 suspend "sin"("2.5")

String invocation takes care of getting from the string "sin" to
the function sin and automatic type conversion takes care of
converting the string "2.5" to the real number 2.5.

You might ask why we used suspend instead of return.
We’re planning ahead. It’s always safe to use suspend in
place of return when its argument expression produces one
value. If the argument expressions fails, control flows off the
end of the procedure, causing its invocation to fail, as it
should. By using suspend, feval() can be used to generate
results if exp represents the call of a function that is a
generator.

It’s worth noting that feval() works for unary (prefix)
operators if parentheses are placed around the argument. For
example,

feval("?(10)")

produces a randomly selected integer in the range of 1 to 10,
inclusive, and

every write(feval("!(487)"))

The Icon Analyst / 3

argument after consuming the punctuation character follow-
ing the argument. The arguments then can be accumulated in
a list, so that feval() might start like this:

procedure feval(exp)
 local fnc, arglist

 arglist := []
 exp ? {
 fnc := getfnc()
 while put(arglist, getarg()) do

...

Good enough, but there’s now the question of how to
apply fnc to its arguments. One possibility is

 suspend case ∗arglist of {
 1: fnc(arglist[1])
 2: fnc(arglist[1], arglist[2])

...

That’s plain ugly. And even if you’re willing to do the
work to provide for as many arguments are you’re likely to
ever see, you can’t make it completely general. There’s no
limit to the number of formal parameters that can be declared
for a procedure.

There’s a much easier and more elegant method, which
is completely general: list invocation. All that’s needed is

 suspend fnc ! arglist

The whole procedure comes down to this:

procedure feval(exp)
 local fnc, arglist

 arglist := []

 exp ? {
 fnc := getfnc()
 while put(arglist, getarg())
 }

 suspend fnc ! arglist

end

What feval() now can handle by way of function calls
is only limited by the capabilities of getfnc() and getarg().
For example, if getarg() encounters a function call in an
argument, it could call feval() recursively, and similarly for
getfnc() — it’s possible for a function call to produce a
function. We’ll leave these possible extensions as exercises.

Alternatives

There are other ways of approaching the problem of
evaluating a string that represents an Icon expression; ones
that are more general and very different from the technique
used here. There’s material of this kind scheduled for future
updates to the Icon program library and we’ll have more to say
on this subject in future articles in the Analyst.

writes 4, 8, and 7.

feval() also works for (programmer-defined) proce-
dures in the same manner as for (built-in) functions. String
invocation handles both.

A simple use of feval() might be something like this:

procedure main()

 while exp := read() do
 every write(feval(exp))

end

Actually, some error checking is needed; we’ll leave
that as an exercise. Hint: Look at the function proc() if you’re
not already familiar with it.

Generalizing

Of course, feval() as given above is quite limited. If the
argument to the function in exp is a quoted literal, the quotes
are included as part of the argument — not exactly what you’d
want. And if the argument string contains a right parenthesis,
the naive string scanning used above thinks it’s the closing
parenthesis for the call and discards the rest of the string. You
probably will see other potential problems.

There also are cases where relying on automatic type
conversion for the value of arg won’t produce the intended
result, as in

feval("type(3)")

All of these problems can be passed off to a procedure
getarg(), which gets the argument and converts it to the
correct type, as well as handling omitted arguments. We’ll
leave that as an exercise — doing it may give you some insight
into string scanning and the details of Icon’s literal constants.
If you don’t want to bother, look in the Icon program library.
We’ll also postulate a procedure getfnc() to get the function
name. It’s not needed here, but it might be handy if feval() is
further generalized.

With the “vanilla” versions of these procedures, the
package becomes

procedure feval(exp)
 local fnc, arg

 exp ? {
 fnc := getfnc()
 move(1)
 arg := getarg()
 }

 suspend fnc(arg)

end

Another limitation of feval() is that it only handles
function calls with one argument. It’s not difficult to parse the
argument list, given a procedure getarg() that returns the next

4 / The Icon Analyst

s[i:j]

does not allocate any space in the string region.

Several Icon operations do allocate space in the string
region, the most notable being reading and concatenation.

Concatenation

Concatenation works by copying its two argument
strings to the end of the allocated portion of the string region.
The result of

s1 || s2

can be depicted as follows:

free space

new free

…

end

s1 s2

old free

In general, such a concatenation allocates space for

∗s1 + ∗s2

characters and copies that many characters.

One of the problems with concatenating in this fashion
is illustrated by the following program segment that builds up
a string piece by piece:

result := ""

while s := read() do
 result := result || s

In the loop, space is allocated for the string that is read,
which then is assigned to s. The concatenation then allocates
space for result and s, and the resulting string is assigned back
to result. Note that all new string data comes from reading. If
the successive strings read are indicated by subscripts, the
pattern of allocation is

s1 s1 s2 s1 s2 s3 s1 s2 s3 s4 s1 s2 s3 s4 …

Every previously read string is copied to perform the
next concatenation. Although the previous values of result
are discarded when a garbage collection occurs, the amount of
space allocated is clearly much larger than is needed for the
final result. In addition, garbage collection can be expensive,
and the cost of garbage collection may depend on other things
that have gone on during program execution, not just on the
concatenation loop.

If you look at the final result of the concatenation loop,
you’ll see it’s just

 s
1
 s

2
 s

3
s

4
 …

The rest is “garbage”. Is all the intermediate allocation
necessary? That’s the kind of question that the implementa-
tion of Icon attempts to address.

String Allocation

Background

Strings that are created during the execution of an Icon
program are stored at a place in memory called the string
region. Strings in the string region are allocated contiguously,
starting at the beginning. Thus, the string region is divided
into two portions: an allocated portion and a free portion.
Whenever a new string is created, it is added to the end of the
allocated portion of the string region, decreasing the size of
the free portion. The string region can be depicted as a long
sequence of characters:

free space

new free

…

end

s1 s2

old free

where free identifies the boundary between the allocated
space and the free space. Of course, there are many more
characters in the string region than suggested by this diagram
— typically 65K of them.

If the free portion is not large enough to hold a newly
created string, a garbage collection is performed, discarding
strings that are no longer needed and compressing the allo-
cated part, making more room in the free part. See Reference
1 for more information about the details of allocation and
garbage collection.

Strings created during program execution, called allo-
cated strings, are not null-terminated as they are in C and some
other programming languages. Null-termination, which adds
a character with code zero to the end of a string, is used as a
means of finding the end of a string. Icon accomplishes this by
keeping both a pointer to the first character of a string and its
length in an Icon string value.

This method makes computation of the length of a
string fast, and it also allows null characters to appear in Icon
strings. Perhaps more important, a substring of an existing
string can be formed by changing only the pointer to the first
character and the length, whereas with null termination, it’s
generally necessary to copy a portion of the existing string,
since a terminating null character would overwrite a character
in the string of which it’s a part. A substring operation in Icon
such as

Acknowledgment

Mark Emmer called our attention to the method for
handling an arbitrary number of arguments in function calls.
He came up with it in a very practical context: testing the
external function mechanism of ProIcon 2.0.

The Icon Analyst / 5

Optimizations

Short of changing the way concatenation, and hence
string allocation, is done, the question becomes a more
general one: “Are there situations in which it’s not necessary
to allocate all of the space needed in the most general case?”

One situation is when one or both of the arguments of
concatenation is the empty string, in which case no concatena-
tion or allocation is necessary. We’ll come back to this case
later.

There are two other situations that lend themselves to
optimizations.

Optimization 1: The code segment discussed above
illustrates a situation in which an optimization is possible. As
the loop is evaluated repeatedly, result is the last string
allocated when another string is read in and assigned to s by
the next iteration of the loop. After reading, but before
concatenating, the last two allocated strings are result and s.
But that’s exactly what’s needed for the concatenation!

In other words, because of the order in which strings are
allocated, result and s are already concatenated. And it
doesn’t take much to check for this situation, since an Icon
string value contains a pointer to its first character and the
length. For the concatenation

s1 || s2

pseudo-code for the check looks like this:

if loc(s1) + len(s1) = loc(s2) then … # done

If this test succeeds, no allocation is done, the new value
points to s1, and its length is the sum of the lengths of s1 and
s2.

With this optimization, the pattern of allocation for the
loop given earlier is

s
1
 s

2
 s

3
s

4
…

which is exactly what’s needed for the final result, with no
extra allocation.

Note that the test above is more general, and applies
anywhere in the allocated portion of the string region, al-
though the chance of its succeeding anywhere but for the last
two allocated strings is small.

Optimization 2: There’s another situation in which part
of the allocation for concatenation can be avoided — when the
first argument of the concatenation is the last allocated string
and hence at the end of the allocated portion of the string
region:

if loc(s1) + len(s1) = free then … # don’t copy

In this case, it’s only necessary to append the second argument
of the concatenation to the end of the string region.

A situation in which Optimization 2 applies is shown by

result := ""

while s := read() do
 result := s || result

In the absence of Optimization 2, the pattern of allocation for
the loop is

s
1
 s

1
 s

2
 s

2
 s

1
 s

3
 s

3
 s

2
s

1
 s

4
s

4
s

3
 s

2
 s

1
…

With Optimization 2, the allocation pattern is

s
1
 s

2
 s

1
 s

3
 s

2
s

1
 s

4
s

3
 s

2
 s

1
…

The savings aren’t as great as for Optimization 1; you
can’t expect to reverse the order of strings, which is what is
happening here, without some copying.

Other Optimizations

Earlier we skipped over the situation in which one or
both of the arguments of concatenation is the empty string.
This sounds like a situation worth checking, since when it
occurs, no allocation is necessary.

There’s a kicker, however: The test has to be applied for
every concatenation. It turns out that the cumulative cost of
checking for this situation takes more time on the average than
it saves (which is not true for Optimizations 1 and 2).

There’s a moral here: An optimization may sound good,
but the cost of testing for a special case may outweigh the
savings when it does apply.

Some interesting examples of this occur in an imple-
mentation of SNOBOL4 that included some clever “heuris-
tics” that turned out to be unfortunate in practice [2].

The trouble is that optimizations usually can’t be evalu-
ated analytically. And it may be very time-consuming and
expensive to evaluate them in practice. The natural tendency
is to rely on an intuitive feeling of the usefulness of an
optimization. Such intuition often is faulty.

Other Allocation Strategies

If you think about how Icon allocates string space,
you’ll notice that the same string may occur in many different
places in Icon’s allocated string region.

Occasionally someone suggests that before allocating a
new string, there should be a search to see if it already exists.
This certainly is a bad idea — it’s very expensive to perform
character comparisons just on the chance of finding a copy of
a string that can be “re-used”.

A different idea would be to put all strings in a hash table
[3], so that each different string would be allocated only once.
Although there are some fast and clever hashing techniques,
they eventually come down to character comparison, which is
quite expensive compared to an occasional garbage collection
to remove unused strings. Furthermore, in a hashing scheme,
the sharing of characters among substrings is not possible.

But again, the only way to be sure about this is to
actually try it (or possibly simulate it, although a simulation in
a case like this is difficult and error-prone). This would be a
major effort, and one hardly worth undertaking, especially
when the expectation clearly is negative.

6 / The Icon Analyst

marker := marker || "+"

does.

One situation in which Optimization 1 may apply at a
place other than at the end of the string region occurs in string
scanning. For example, in

text ? {
 if t := tab(many(&letters)) then
 t := t || tab(upto(' ') | 0)
 }

tab(many(&letters)) and tab(upto(' ') | 0) are adjacent in
text, which need not be at the end of the allocated portion of
the string region.

Output as a Weak Form of Concatenation

Jim Gimpel likes to call output a “weak form of concat-
enation”. His point is that when a string is written to a file
sequentially, it is automatically appended to (concatenated
onto) the last string written.

As shown above, the concatenation of strings in a
program requires the allocation of space (which may eventu-
ally result in a garbage collection) and also the copying of
characters. This is costly compared to, say, arithmetic.

In many programs, most strings that are built up by
concatenation are eventually written to a file. If you can
arrange to write the strings as they are computed and in the
order they need to be output, you can save the costs involved
in concatenation.

As a very simple example, it’s considerably more
efficient to use

write(s1, s2)

than to use

write(s1 || s2)

It’s often possible to avoid actual concatenation alto-
gether in programs that transform input data. Sometimes all it
takes to use output instead of concatenation is looking at the
problem in the right way. In fact, it can be fun to see how far
you can carry this. We’ll have an example of such a program
in the next issue of the Analyst.

References

1. “Memory Monitoring”, The Icon Analyst 2, October
1990, pp. 5-9.

2. “Performance of Storage Management in an Implementa-
tion of SNOBOL4”, David G. Ripley, Ralph E. Griswold, and
David R. Hanson, IEEE Transactions on Software Engineer-
ing, Vol. SE-4, No. 2 (1978), pp. 130-137.

3. The Macro Implementation of SNOBOL4; A Case Study of
Machine-Independent Software Development, Ralph E.
Griswold, W. H. Freeman, San Francisco, California, 1972.

The Whole Truth

Optimization 2 has a long standing. It was first used, to
our knowledge, in the SPITBOL implementation of SNOBOL4
[4] and was incorporated in the first implementation of Icon.

Although we’ve given Optimization 1 priority in this
article because it is so effective, this optimization didn’t occur
to us until we started to write this article and, in the process of
showing that Optimization 2 did not apply to appending to an
evolving string, discovered there was a better optimization
that did apply.

Optimization 1 was not included in Icon until Version
8.4, so if you’re running an earlier version, your programs
won’t benefit from this optimization.

Taking Advantage of the Optimizations

In most cases, the optimizations for string concatena-
tion, like other aspects of the implementation of Icon, are “just
there” and you needn’t think about them when you program.

On the other hand, if you like to hone your programs for
maximum performance, you may want to give a little thought
to taking advantage of the concatenation optimizations.

One thing to watch out for is intermediate allocation
that defeats the optimizations. For example, in

result := ""

while s := read() do {
 write(repl("=", ∗s))
 result := result || s
 }

the allocation for

repl("=", ∗s)

follows the allocation for

read()

and defeats Optimization 1 that otherwise would apply.

On the other hand, other strings can be appended to the
concatenation without additional allocation, as in

result := ""

while s := read() do
 result := result || s || ","

Here, Optimization 1 applies to the first (left) concatenation,
while Optimzation 2 applies to the second (right) concatena-
tion.

It’s worth knowing that literal strings are contained in
the code produced by compiling a program, and space for
using them is not allocated in the string region unless they
have to be copied in concatenation or some other operation
that allocates space in the string region [5]. For example,

marker := "+"

does not allocate space, but

The Icon Analyst / 7

Type Usage

Although Icon does not dictate what types of values can
be assigned to variables, most Icon programmers use most
variables in a type-consistent way. For example, if a variable
is used as a counter, it likely to be assigned only integer values.
This type consistency is a by-product of good programming
style. It makes sense to associate a particular use with a
particular variable and hence for it to be assigned values of
only one type throughout program execution. Similarly, the
operand of an operation usually always has the same type.

Of course, there are exceptions to this. These excep-
tions may be for very good reasons, as in heterogenous
structures, they may be accidental, or they may be the result
of “sloppy” programming — we’ve been known to write
things like

x := sort(x)

to convert a set into a sorted list.

Earlier we said variables usually have values of differ-
ent types during program execution. This seems to contradict
our claim that most variables are used in a type-consistent
way. The reason most variables have different types during
program execution is that all variables have the null value
initially. But this really is a special case that does not affect
subsequent type usage.

Determining Type Usage

The observable fact that most operands of operations
are type-consistent suggests that an analysis of the program
can detect where type checking is not needed and generate
code without the type checking. This is, in fact, one of the most
important kinds of optimizations the Icon compiler makes.

Both the theory and the implementation of type infer-
ence for Icon are complicated. We again refer you to Refer-
ence 1 for the details. A few simple examples indicate what’s
possible.

Consider the following program segment:

text := ""

while line := read() do
 text := text || "," || line

It’s obvious that the arguments of the two concatena-
tions are strings. text is a string prior to the loop by virtue of
the assignment to it. In the loop, text is always assigned the
result of concatenation, which again is a string. The literal is
of course a string, and line is a string because it is assigned a
string as the result of read() in the control expression of the
while loop; if read() fails, the expression in the do clause is
not evaluated. It’s clear, therefore, that the concatenations do
not need to check the types of their arguments.

Note also that at the termination of the loop, text is a
string, although line may not be (if it wasn’t a string before the

4. “MACRO SPITBOL — A SNOBOL4 Compiler”, Robert
B. K. Dewar and Anthony P. McCann, Software — Practice
& Experience, Vol. 7 (1977), pp. 95-113.

5. “An Imaginary Icon Computer”, The Icon Analyst 8,
October 1991, pp. 2-6.

Type Inference in the Icon Compiler

The Icon compiler performs several kinds of optimiza-
tions in order to produce faster and smaller code. The subject
of optimization is, in general, a complex one. If you’re
interested in the details of what goes on inside the Icon
compiler in this regard, you may wish to get a copy of Ken
Walker’s doctoral dissertation [1].

One of the most important optimizations involves type
inference. Type inference refers to the process of determining,
by analysis of a program, what set of types the operands of
operations may have at different places in the program.

Types in Icon

As you know, unlike most programming languages,
Icon has no type declarations. In fact, a variable in Icon can
and usually does take on values of different types during
program execution. Another way of looking at this is to say
that Icon’s variables are not typed, but its values are. An Icon
value contains within it information that identifies its type.

There are several reasons why Icon does not have type
declarations and hence a compile-time type system:

• It saves programmers from having to write a lot of
tedious type declarations.

• It allows useful programming techniques, such as the
ability to write a procedure that takes arguments of different
types and returns values of different types.

• It allows heterogeneous structures, such as lists that
contain both integers and real numbers.

Even if Icon had a compile-time type system, it couldn’t
be complete because of Icon’s pointer semantics — it’s
possible to have a list of lists, a list of lists of lists, and so on.

Despite the lack of type declarations, Icon has a strong
run-time type system in the sense that all operations check the
types of their arguments to be sure that they are correct. Along
with this run-time type checking, inappropriate types are
automatically converted (“coerced”) to the appropriate ones if
possible.

The problem with this is that type checking takes time.
And in the Icon interpreter, it’s done for all operations
repeatedly, whether or not the types are correct. This adds
significantly to execution time.

8 / The Icon Analyst

loop and read() failed the first time through the loop). If line
had some other type before the loop, it may be either that type
or a string after the loop.

This suggests how type inference can be performed.
Some operations are known to produce values of specific
types. The types of values an expression may have depend on
the path of execution. For example, if there are alternative
paths, a variable may have values of different types at differ-
ent times at a particular point in the program.

Now consider what happens in the example above if an
inappropriate type is used:

text := ""

while line := read() do
 text := text || ',' || line

One of the arguments of concatenation now is a cset,
which must be converted to a string. Since concatenation, like
most infix operations, is left-associative, the arguments group
as

(text || ',') || line

which means that the first concatenation must convert its right
argument to a string, but the second concatenation does not
have to convert either of its arguments.

Of course, a smart compiler could replace the cset literal
in this situation by the equivalent string literal and avoid type
checking code for the first concatenation. It’s not clear,
however, that this kind of thing happens in real programs often
enough to make it worthwhile for the compiler to check.

There are several reasons why the possible types an
expression may have can be uncertain. One of these is because
some Icon expressions can fail, as illustrated above. This is
true even in simple assignment expressions. For example,
after evaluating

loc := find(header)

The value of loc can either be an integer (if find() succeeds)
or whatever it was before (if find() fails). Note that all vari-
ables always have some value; null if nothing else. Thus,
assignments that can fail tend to add to the possible types a
variable can have. On the other hand, an assignment such as

line := repl("=", 10)

always results in line having a value of type string at the place
in the program after this expression. However, it’s not true
that an assignment that can’t fail always leaves the variable to
which the value is assigned with only one possible type. In

x2 := copy(x1)

the type of x2 after the assignment depends entirely on the
type of x1.

Similarly, in

n3 := n1 + n2

the type assigned to n3 depends on the types of n1 and n2, but
it can be only an integer or a real number.

So you can see the situation is complicated and that the
types an operation may produce depend not only on program
flow but also on the properties of the operation.

The Inferencing Process

In order to perform type inference, the compiler must be
able to model program execution to the extent necessary to
determine the set of possible types that expressions may
produce.

To do this, the compiler builds a representation of the
program and performs what’s called abstract interpretation.
In order for this process to be practical and so that termination
can be assured, only certain aspects of program execution are
handled. For example, only types, not actual values, are
considered. This may, of course, result in less perfect type
inference than is theoretically possible; this is a compromise
with reality. In practice, fairly crude type inferencing methods
yield reasonable results and the fairly sophisticated one used
by the Icon compiler usually comes close to what is theoreti-
cally possible.

In an addition to the simple kinds of situations discussed
above, to be effective, type inference must be able to deal with
two other aspects of Icon: structures and functions.

As mentioned above, a structure can be heterogeneous
and have elements of different types. Each element of a
structure is a variable, of course, but it’s not practical to treat
each one separately. It may not even be possible to determine
the size of a list. Therefore, if a list contains both integers and
real numbers, each list element is treated as if it could be an
integer or a real.

Furthermore, most structures in Icon can grow and
shrink. Thus, if a string is pushed on a list that formerly
contained only integers and real numbers, every element of
the list is now treated as if it could be a string, integer, or real
number.

While there are situations where this treatment of struc-
tures leads to poor type inferencing, in most cases it does quite
well, primarily because of the way most Icon programs are
written.

It’s also not possible to keep track of individual struc-
tures — in fact, there is no way to know how many there will
be, since that can, for example, depend on the data on which
the program operates. The type inferencing system handles
this by assigning a distinct structure type to each location in
the program where a structure can be created. For example, in

tags := ["first", "second", "third"]
counts := [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

two different list types are associated with the two list-
creation operations. Lists created at the first site are initially
lists of strings, while those at the second site are initially lists

The Icon Analyst / 9

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

voice: (602) 621-8448

fax: (602) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

...{uunet,allegra,noao}!arizona!icon-project

and

© 1991 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

The Bright Forest Company
 Tucson Arizona

of integers. It’s important to understand that the type
inferencing system treats the lists created at the two sites as
two different types, although in Icon they are the same type.
Thus, the type inferencing system adds types of its own to
assist in the inferencing process.

Functions also require separate handling. In order for
the compiler to do a good job of type inference, it needs to
use information about functions: what types of arguments
they require, what types of values they produce, and whether
or not they can fail.

In most Icon programs, functions are what they appear
to be: reverse(x) is a function that expects a string argument
and produces a string value. However, reverse is a variable,
and it’s possible to make an assignment to it, as in

reverse := pop

so that reverse(x) may mean something entirely different
from what it appears to mean.

Changing the value of an identifier that initially is a
function is rarely done intentionally, but the compiler must
take the possibility into account in order to do correct type
inferencing. The compiler does this by first checking for
function-valued identifiers that may have values assigned to
them and by treating each of these as a separate type in
subsequent type inference.

Procedures are handled the same way as functions:
There’s no difference to the type inferencing system be-
tween the two.

Using Type Information

The compiler uses information derived from type
inference to eliminate unnecessary type conversions.

In the worst case, in which nothing can be inferred
about the arguments of an operation, a general form of the
operation, with complete type checking and coercion, is
used, and it usually is handled by a call to a routine in the run-
time library. This most general form of the operation is
essentially the same as the one used in all situations by the
interpreter.

If type inference provides more specific information
about the possible types for one or more arguments, the most
general routine is tailored by pruning out type checking and
coercion code. The result may be sufficiently small that it
can be placed in-line in the generated code.

The Benefits of Type Inference

As we mentioned earlier, Icon programmers tend to
use types in a consistent way, despite the freedom Icon
allows to do otherwise. This is an empirical observation —
if it weren’t true, there would be little point in type inference.

Type consistency varies considerably from program
to program. In the Icon program library, the range is from

about 60% to 100%, with the average being about 80%. In
some cases a low percentage is inherent in what the program
does. In other cases, it is the result of how the program was
written. These figures are, incidentally, from the type infer-
ence system in the compiler. The actual percentages may be
somewhat higher, since the type inference system isn’t perfect
— it can’t be, actually. However, it does a better job than a
human being can do by hand. Our experience has been that
when we’ve suspected a defect in the type inference system,
we’ve found out instead that we were wrong and it was right.
We think the present inferencing system is good enough that
work to improve it is not justified. In any event, the figures
given for type consistency above are what’s determined by the
compiler, which is what counts.

10 / The Icon Analyst

There are two ways to measure the effectiveness of type
inference in reducing execution time: (1) the effect it has on
the time it takes to evaluate expressions in isolation and (2)
how much time it saves in the execution of typical programs.

The problem here is that some programs spend much of
their execution time in operations like table lookup and
storage management, which have nothing directly to do with
expression evaluation and which are unaffected by optimiza-
tions resulting from type inference. The bottom line, of
course, is how much type inference increases the speed of
program execution. It does no good to optimize something
that consumes an insignificant amount of time.

Just considering individual expressions, it is possible to
get dramatic improvements in execution speed. For example,

1 + 2 + 3 + 4

executes about 5.8 times faster with optimizations resulting
from type inference than without them. If you have the Icon
compiler and the latest version of the Icon program library,
you can try other expressions yourself — empg.icn can be
used to time expressions in either the compiler or the inter-
preter.

Of course, what really counts is not individual expres-
sions, but complete programs, which brings in the issue of
execution time spent where the compiler can’t reach.

Overall, the improvement in execution speed of com-
piled code over interpreted code ranges from nearly zero to a
factor of seven or eight, with something between three and
four being typical. But that includes all optimizations. What
does type inference contribute? That can be determined by
turning off type inference and leaving other optimizations.
For most programs, type inference contributes about one-half
the total speed improvement. So you might expect type
inference to contribute a factor of perhaps two to execution
speed over the interpreter.

The Cost of Type Inference

Type inference is a complex process and it can require
considerable computational resources, both in time and
memory.

A worst-case analysis shows that type inference has
time complexity of O(n7), where n is the size of the program.
(In this context, program size refers roughly to the number of
variables and operations.) In other words, the amount of time
it possibly can take for type inference is proportional to the
seventh power of the size of the program. If that were really
the case in practice, it would be truly alarming — the time for
type inference in a 100-line program could be 10,000,000
times longer than for a 10-line program.

While it’s possible to contrive programs that achieve
the O(n7) figure, it’s very difficult to do and nothing like this
kind of time complexity occurs in “real” programs. We’ve
timed type inference on a large number of Icon programs,

including some real monsters. The observed time complexity
from these tests is only O(n2).

From a practical point of view, type inference is very
fast for small programs. For large ones, type inference can be
slow, but it’s not impossibly slow.

The amount of space required for type inference also is
a concern. A worst-case analysis gives a space complexity of
O(n3). In practice, it seems to be more like O(n2). This
definitely can be a limiting factor for a large program com-
piled on a platform with a small amount of memory. It’s one
thing to have to wait a long time for an Icon program to
compile, but it’s quite another to have it fail to compile
because of lack of memory.

Fortunately, if type inference requires too much in the
way of resources, it can be disabled by a command-line
option.

Open Questions

It seems obvious that you can get more out of type
inference by taking care in the way you program, although
there are pitfalls as noted below.

The questions are how much benefit you can get and
what you need to do to get it.

At present, these matters are somewhat murky. If a
program already has a high degree of type consistency,
increasing its type consistency probably isn’t going to help
much, unless a type inconsistency at a critical place is having
a big effect (the figures given above are static ones and don’t
take into account how often different expressions are evalu-
ated). But suppose you have a program with a type consis-
tency of 60% that could be improved to 100% (such improve-
ments are not always possible — in fact, they rarely are).
You’d expect to get a noticeable improvement in execution
speed.

We’ve worked on several programs with mixed results.
One problem is that type inference is complicated and even
knowing what type inference discovers on a per-expression
basis doesn’t always lead to obvious improvements. It’s also
easy to out-smart yourself — increasing type consistency
actually can slow a program down if what you do introduces
additional computations into the program.

We hope to develop some programming guidelines that
will be easy to follow and that will lead to improved program
performance without requiring an advanced degree in type
inference. Better yet, we’re looking at the possibility of
developing tools that work in conjunction with type inferencing
to assist programmers in improving the performance of their
programs. Program visualization, which is one of the focuses
of our current research, seems particularly apt here.

It’s worth remembering, however, that execution speed
isn’t everything. There are plenty of programs in which
execution speed isn’t important at all. And one of the virtues
of Icon is that it makes programming easy and even fun.

The Icon Analyst / 11

That’s not compatible with excessive concern for perfor-
mance. But in those cases where performance must be a
serious consideration, help is on its way.

Reference

1. The Implementation of an Optimizing Compiler for Icon,
Kenneth Walker, technical report TR 91-16, Department of
Computer Science, The University of Arizona, 1991.

Programming
Tips

Building
Lists

Icon often pro-
vides several
ways of doing
the same thing.
Such alterna-
tives add rich-
ness to the lan-
guage, but they
also mean you
have to choose
among them.

Sometimes stylis-
tic concerns are
paramount, but there

are times when
questions of speed
and storage re-
quirements need
consideration.
Worse, if you
happen to do

something that’s inappropriate and don’t think of another,
better way, the impact on program performance can be seri-
ous.

List construction is a case in point. There are two basic
ways of building up a list one element at a time: list concatena-
tion and using the deque (“double-ended queue”) functions
put() and push().

For example, in building up a list of lines from a file, you
might do it either of the two following ways:

 lines := []

 while lines := lines ||| [read()]

or

 lines := []

 while put(lines, read())

The difference in performance between the two meth-

Downloading Icon Material

Most implementations of Icon are available for
downloading electronically:

BBS: (602) 621-2283

FTP: cs.arizona.edu (cd /icon)

ods is dramatic — list concatenation is much slower than
using put(), and the performance of list concatenation be-
comes increasingly worse as the list becomes large.

Why is this? It partly has to do with how lists are
implemented, but there’s also a basic difference between the
two language features. Having to create a separate list for each
line of input in list concatenation should be a warning.

In list concatenation, both arguments must be lists;
hence the need for creating a one-element list. A new list is
created with enough space for the elements of both lists to be
concatenated, and then the elements of the two lists are copied
into the new list. In the case here, the result is then assigned
back to lines, replacing its former value. Note that the two lists
used in the concatenation are no longer needed once the
assignment is made. They are garbage collected if necessary,
but the net effect is a lot of allocation and copying.

This points up another problem with using list concat-
enation to add an element to a list. If there already are n
elements in the list, there must be enough memory for this list
and for the new list of n+1 elements; the space from the first
list is not available for re-use until after the assignment is
made back to lines. If n is large …

Why should the use of put() be better? In good part,
that’s because the implementation of lists takes into account
the possibility that elements may be added by deque func-
tions. Space is provided in advance, and the addition of a new
element does not require the allocation of more space until
what’s there is used up. If more space is needed, another block
is allocated, but all the elements that are already in the list are
unaffected.

The implementation of lists is rather sophisticated in
this regard. See References 1 and 2 for the details.

You might well argue that you shouldn’t have to be an
expert on the implementation of Icon to use it efficiently.
That’s true, and if you look at the Icon language book [3], you
won’t get much help either. The examples given there for list
concatenation illustrate the operation but also use a bad
programming practice —

the result of trying to provide ex-

amples that are easy to understand without giving enough
attention to their appropriateness in practice. In the book’s
defense, the subsequent examples of building lists use deque
functions where they are the better choice.

12 / The Icon Analyst

In any event, the Icon language book does not attempt
to say much about efficiency — it’s a complicated and
advanced topic, and one that depends on implementation
details that may change.

If you want a simple rule that is appropriate in most
situations, it would be to use list concatenation only when you
already have two lists to concatenate, and especially when
they both are large. Don’t form a one-element list just so you
can add an element to another list by list concatenation.

When you have concerns about efficiency, and espe-
cially when you’re trying to chose between alternative pro-
gramming techniques, we recommend benchmarking [4-5].
The program empg.icn in the Icon program library makes
this easy. Sometimes it takes a little thought to find simple
expressions to compare performance. Here are the ones we
used as input to empg for comparing list concatenation and
the deque method:

:lines := []
lines |||:= [" "]

and

:lines := []
put(lines, " ")

The first line in each case creates a list for subsequent
use, but evaluates it only once (the colon indicates this). The
second expression, on the other hand, is evaluated repeatedly
(1,000 times is the default, but that can be changed when you
run the benchmarking programs).

In our benchmark tests, when run with 1,000 iterations,
list concatenation takes more than 33 times longer than the
deque method. List concatenation also performs 73 garbage
collections for the default 65KB block region, while the deque
method doesn’t do a single garbage collection. For 5,000
iterations, list concatenation takes more than 388 times longer
than the deque method and performs a rather amazing 2,995
garbage collections, while the deque method still doesn’t do
a single garbage collection.

In addition, since the list concatenation method requires
two large lists to be in memory at the same time, the block
region expands to over 120KB. This only works on platforms
that have enough memory. For example, you can’t create a
5,000-element list one element at a time by using list concat-
enation on an standard MS-DOS system.

References

1. The Implementation of the Icon Programming Language,
Ralph E. Griswold and Madge T. Griswold, Princeton Uni-
versity Press, Princeton, New Jersey, 1986.

2. Supplementary Information for the Implementation of
Version 8 of Icon, Ralph E. Griswold, Icon Project Document
112, Department of Computer Science, The University of
Arizona, 1990.

3. The Icon Programming Language, second edition, Ralph
E. Griswold and Madge T. Griswold, Prentice Hall,
Englewood Cliffs, New Jersey, 1990.

4. “Benchmarking Expressions”, The Icon Analyst 1,
August 1990, pp. 10-12.

5. “Benchmarking Expressions”, The Icon Analyst 2,
October 1990, pp. 10-11.

What’s Coming Up

In the next issue of the Analyst, we’ll have an article
on how to get to operating-system facilities from inside an
Icon program.

We’ll also have an article on encapsulating expressions
in procedures and the advantages this provides.

Another feature of the next issue will be an analysis of
a complete program from problem specification through the
details of coding.

Back Issues

Back issues of The Icon Analyst are
available for $5 each.

This price includes shipping in the United
States, Canada, and Mexico. Add $2 per order for
airmail postage to other countries.

