
The Icon Analyst / 1

April 1992
Number 11

In-Depth Coverage of the Icon Programming Language

2. Each word of the line is stored with its associated line
number.

3. Steps 1 and 2 are repeated until all lines are read.

4. The word and line-number information then is orga-
nized and each word is printed out with a list of line numbers
in which it occurs.

The program specification additionally requires that
even if a word appears more than once on a line, the line
number is listed only once. This turns out to be a crucial issue
in the data representation.

A few other points about the program are worth men-
tioning:

• The definition of a word is naive — just a string of
letters.

• Upper- and lowercase letters are considered to be
equivalent.

• Words less than three characters long are omitted from
the concordance.

An example of output from the concordance program is
shown in the box below.

 1 On the Future!–how it tells
 2 Of the rapture that impells
 3 To the swinging and the ringing
 4 Of the bells, bells, bells–
 5 Of the bells, bells, bells, bells,
 6 Bells, bells, bells–
 7 To the rhyming and the chiming of the bells!

and 3, 7
bells 4, 5, 6, 7
chiming 7
future 1
how 1
impells 2
rapture 2
rhyming 7
ringing 3
swinging 3
tells 1
that 2
the 1, 2, 3, 4, 5, 7

Output of the Concordance Program

Data Representation: A Case Study
One of the joys of Icon is that it provides a wealth of data

types and allows many ways of representing data in a program.

Very often the data representations you choose for a
particular program have a significant effect on how you write
the program. Although the algorithms you use probably would
be the same whether you encode a tree as a string or encode it
using records, the programming techniques are likely to be
somewhat different. Perhaps more important, the resources the
program requires may be quite different for different data
representations.

While efficiency may not be the first concern in the
design of a program, it often becomes an important consider-
ation as the program matures. Memory utilization is usually the
more crucial issue, since a program may not run at all if there
is not enough memory available. This problem is particularly
critical for personal computers in general and for MS-DOS in
particular.

This article presents a case study of a program that
produces a simple concordance — a listing of the lines in which
the words of a text appear. The program is interesting because
the choice of data representation affects the programming
techniques only slightly, but it has a dramatic impact on its
memory requirements. Because the choice of data representa-
tion doesn’t affect programming techniques significantly, it is
possible to compare different data representations easily.

The Concordance Program

The concordance program is basically quite simple:

1. A line of text is read in and written out with a line
number.

 In this issue …

Data Representation: A Case Study … 1

Modeling Icon Functions … 5

Command-Line Arguments … 7

Programming Tips … 11

From Our Readers … 12

What’s Coming Up … 12

2 / The Icon Analyst

Concordance program using a table of tables
#

global uses, lineno, width, min_size

procedure main(args)
 local word, line

 width := 15 # width of word field
 min_size := 3 # smallest word to cite
 uses := table()
 lineno := 0

 every tabulate(words()) # tabulate the words

 output() # print the citations

end

Add line number to citations for word
#
procedure tabulate(word)

 /uses[word] := table()
 uses[word][lineno] := 1
 return

end

Generate words
#
procedure words()
 local s, line

 while line := read() do {
 lineno +:= 1
 write(right(lineno,6), " ", line)
 map(line) ? while tab(upto(&letters)) do {
 s := tab(many(&letters))
 if ∗s >= min_size then suspend s
 }
 }

end

Print the results
#
procedure output()
 local word, line, numbers

 write()

 uses := sort(uses,3) # sort citations
 while word := get(uses) do {
 line := ""
 numbers := sort(get(uses), 3)
 while line ||:= get(numbers) || ", " do
 get(numbers) # skip marking value
 write(left(word,width), line ? tab(–2))
 }

end

A Table of Tables

When we wrote the first version of this concordance
program several years ago, we kept the words in a table (a
natural choice at the time). The question was then how to keep
track of the line numbers for each word. We used tables for
this also, with a table of line numbers for each word. Thus, the
words and line numbers were kept in a table of tables.

The program itself consists of a loop in which the lines
of text are read and written while the structures for the words
and line numbers are built. The complete program is shown in
the box at the left.

The procedure tabulate() is of particular interest, and
the procedure output() is also relevant in the discussion here:

In the procedure tabulate(), a check is first made to see
if word is already in the table uses. If it isn’t, it is assigned an
empty table to hold its line numbers. Then the line number is
added to the table for word by assigning 1 to it (any non-null
value would do). Note that if the line number is already in the
table, this assignment has no affect; duplicate line numbers
are eliminated automatically.

In output(), uses is sorted to produce a list that consists
of each word followed by the table of its line numbers. Then
a line is built up for each word with the numbers of the lines
in which it appears. The line is written with the trailing comma
and blank removed by string scanning. (You might try your
hand at seeing if the concatenation can be avoided by just

procedure tabulate(word)

 /uses[word] := table()
 uses[word][lineno] := 1
 return

end

procedure output()
 local word, line, numbers

 write()

 uses := sort(uses, 3)
 while word := get(uses) do {
 line := ""
 numbers := sort(get(uses), 3)
 while line ||:= get(numbers) || ", " do
 get(numbers)
 write(left(word,width), line ? tab(–2))
 }

end

A Table of Tables

A Concordance Program

The Icon Analyst / 3

A Table of Lists

Using sets to keep track of the line numbers and auto-
matically eliminate duplicate ones is handy but hardly neces-
sary. Lists can be used instead of sets, giving a table-of-lists
representation.

Since the line numbers never decrease as words are
processed, checking the last line number put onto the end of
a list is all that’s needed to avoid duplicates.The procedure
tabulate() needs changing accordingly:

In addition, since the lists of line numbers are already
sorted, it is not necessary to sort them in output():

numbers := get(uses)

is all that’s needed.

With the change from sets to lists, the program requires
considerably less memory than before and hence can handle
larger texts that the previous versions when run on a platform
with a limited amount of memory.

A Table of Strings

Having gone this far, we wondered if there was a less
memory-intensive way to represent the data.

This led us to consider other data representations. It’s
hard to imagine keeping track of the words in a structure other
than a table. There has to be way of finding the words. Icon
does this efficiently with tables and trying to program some-
thing else is a big job that might come out badly.

On the other hand, it’s clearly possible to build up the
lists of line numbers “on the fly” and avoid using the memory
used by the other versions to hold the line numbers until after
all the input is read.

We’d been avoiding this approach, since we thought it
would be awkward to detect duplicate line numbers in strings.
It’s actually not that bad when you get down to it, although we
admit we didn’t get it right on the first few tries and it took
some work to get it to a point where it is now.

For a table of strings, uses now needs to have the empty
string as the default value:

writing the data as it is processed, as described in recent issues
of the Analyst.)

A Table of Sets

If you’re an old hand at Icon, the use of a table of tables
for keeping track of the words and line numbers probably
seems very natural. If you’re new to Icon, you may wonder
why a table of sets wasn’t used. The reason is simple: The
original program was written before Icon had sets. Sets not
only handle the “membership” issue with line numbers more
naturally than tables, but sets also don’t require as much
memory as tables.

It doesn’t take much to convert the program to use sets
instead of tables. Only the procedures tabulate() and out-
put() need changing:

The two tabulate() procedures are even more similar if
the one for tables uses insert():

/uses[word] := set()
insert(uses[word], lineno,1)

And, as you can see, the procedure output() for sets is
somewhat simpler than it is for tables.

The issue might have ended here except for the fact that
both a table of tables and a table of sets take a lot of memory.
These two versions of the concordance program run out of
memory very quickly when run under MS-DOS, for example.

procedure tabulate(word)

 /uses[word] := set()
 insert(uses[word], lineno)
 return

end

procedure output()
 local word, line, numbers

 write()

 uses := sort(uses, 3)
 while word := get(uses) do {
 line := ""
 numbers := sort(get(uses))
 while line ||:= get(numbers) || ", "
 write(left(word,width), line ? tab(–2))
 }

end

A Table of Sets

procedure tabulate(word)

 if /uses[word] := [lineno] then return
 if uses[word][–1] ~= lineno
 then put(uses[word], lineno)
 return

end

A Table of Lists

4 / The Icon Analyst

uses := table("")

Aside from this, the only changes to the program are
again in tabulate() and output():

You might try to see if you can handle the problem of
duplicate line numbers using string scanning. We haven’t
been able to come up with a solution that isn’t tortuous.

Performance Comparisons

It’s easy to make meaningful comparisons among the
four programs, because the differences between them are
minor and isolated.

We ran the programs under Version 8.0 of Icon with a
524-line input text containing 1730 words, 324 of which are
different, and comprising a total of 18,354 characters. Here
are the figures for memory utilization, in bytes:

version tables sets lists strings

string allocation 139,954 139,954 139,954 140,173

block allocation 141,036 110,771 71,180 51,512

total allocation 280,990 250,726 211,134 191,685

block region size 116,224 94,208 81,088 20,224

The block region sizes are the minimums required for the
programs to run to completion.

As expected, the amount of memory allocated for
strings is the same for the table, set, and list representations —
they all do the same thing with strings.

In case you’re wondering why the amount of memory
allocated for strings is slightly larger for the string represen-
tation version of the program, it’s a consequence of the string
comparison needed to check for duplicate line numbers:

uses[word][–2 –: ∗lineno] == lineno

The line number is an integer, which must be converted to a
string for the comparison. Since a string comparison opera-
tion that succeeds returns its right argument as a string, space
for this string must be allocated. In any event, it’s a minor
issue.

The really significant figures are the required sizes of
the block regions. 65,024 is the maximum size a block region
can be in MS-DOS. Thus, only the string version of the
concordance program runs to completion under MS-DOS for
the input text we used in this test. (Version 8.5 of Icon supports
multiple block and string regions, allowing larger texts to be
processed in MS-DOS.)

Of course, memory utilization isn’t the only issue. If, for
example, the string version of the program were much slower
than the other versions, that would be a cause for concern.

We ran the programs on a Sun 4/490 and got these
results:

tables 1.250 sec.

sets 1.161 sec.

lists 1.096 sec.

strings 1.083 sec.

There’s not all that much difference in the running
speed of the four versions of the program, although it is
interesting that they get progressively faster. The differences
in speed can be partly attributed to the progressively smaller
amounts of allocation, but the more significant factor is the
number of garbage collections they perform: the table repre-
sentation does 4 garbage collections, the set representation
does 3 garbage collections, and the other two do 2 garbage
collections.

Reflections

There are several points worth noting in this case study.
One is that it clearly can pay to give careful consideration to
data representation. And even if you chose an inappropriate
one initially, it may not be that hard to change to a better one
— there are very few lines of differences in the programs
studied here.

If there was any surprise for us, it was that the string
representation was the fastest of the lot. We knew it would use
less memory, but we expected to pay for it in speed.

Of the four programs, the table, set, and list representa-
tions are all quite similar in what they do. The string represen-
tation, on the other hand, despite its similarity in form to the
other programs, builds the output as it goes, instead of
deferring it until after all input is processed. Of course, the
strings that are written have to be constructed eventually in
any case.

Of the four programs, we prefer the one that uses sets for
the natural and elegant way is handles duplicate line numbers.

procedure tabulate(word)

 if uses[word][–2 –: ∗lineno] == lineno then
 return
 else {
 uses[word] ||:= lineno || ", "
 return
 }

end

procedure output()
 local word

 write()

 uses := sort(uses,3)
 while word := get(uses) do
 write(left(word, width), get(uses) ? tab(–2))

end

A Table of Strings

The Icon Analyst / 5

But we can’t argue with the performance of the string repre-
sentation.

And That Question

Earlier we raised the issue of writing the output directly
to avoid the concatenations in the final phase of the program.
Here’s how it can be done for the set representation:

procedure output()
 local word, i

 uses := sort(uses, 3)

 while word := get(uses) do {

 writes(left(word,width))
 numbers := sort(get(uses))

 while i := get(numbers) do
 if ∗numbers = 0 then write(i)
 else writes(i, ", ")
 }

end

Using this method, the string allocation is reduced from
139,954 bytes to 43,772 bytes, but it doesn’t change the other
memory use (and it doesn’t save a garbage collection for the
input text we used for these comparisons).

It also reduces the running time for the set version from
1.161 sec. to 1.075 sec. Since most of the time in this program
is spent analyzing the input text and building the structures,
it’s not surprising that there isn’t more improvement in speed.

Note that this method is not applicable to the string
version of the program. On the other hand, the figures given
above were run on a version of Icon that does not have the
optimization for string concatenation that is so effective when
a string is appended to the last allocated string [1].

Reference

1. “String Allocation”, The Icon Analyst 9, pp. 4-7.

Modeling Icon Functions

There’s no substitute for actually implementing a fea-
ture of a programming language to gain an understanding of
how it works. And, for Icon, you often can do the implemen-
tation in Icon itself and not have to go to a low-level language
like C. There’s an example of this approach in the article on
modeling string scanning in Reference 1.

It’s even simpler to write procedures that model Icon’s
built-in functions. Since a procedure that has the same name
as function overloads the function (that is, replaces it), you can
try out such procedures in real programs.

Modeling Icon’s functions by procedures can be in-
structive in several ways. In modeling a function, you have to
think about details that you might never consider otherwise.
This can give you a better understanding of the function —
and a better one than you’re likely to get reading a description
of the function in a book. It may also give you a better
appreciation of all the things that Icon takes care of for you.
And if you write a procedure to replace a function, you can
easily trace it or add instrumentation and diagnostics [2].

If you are going to model a function, there are several
ways you might approach it. One is to produce the required
functionality using compact and idiomatic Icon programming
techniques. The model of tab() given in Reference 3 is an
example:

procedure tab(i)
 suspend .&subject[.&pos : &pos <– i]
end

This procedure has several subtle aspects and probably
is not what you’d write if you hadn’t seen it before.

A less idiomatic but more easily understood version is

procedure tab(i)
 local save_pos

 save_pos := &pos

 if &pos := i then {
 suspend .&subject[save_pos : &pos]
 &pos := save_pos
 }

 fail

end

Even this more “open” formulation shows the subtleties
of Icon. It’s necessary to dereference the substring of the
subject before suspension. Otherwise, the procedure tab()
would return a variable to which an assignment could be made
to change the subject, as in

tab(i) := "xxx"

This is an interesting idea, but it’s not what the function tab()
does.

Another way to handle this problem is to introduce an
intermediate result, as in

6 / The Icon Analyst

 result := &subject[save_pos:&pos]
 suspend result

However, the reason for doing this might be lost on a casual
reader, and one of the purposes of modeling a function with a
procedure is to make things clear.

Another aspect of modeling functions concerns type
checking and conversion. In the procedure above, if i is not an
integer or convertible to one, a run-time error occurs in the
expression

&pos := i

That is the appropriate thing to happen, but it’s not evident in
the modeling. It would be better to put an explicit conversion
and test in the procedure:

i := integer(i) | runerr(101, i)

There’s another subtlety in the expression

 &pos := i

If i is non-positive, the value assigned to &pos is automati-
cally converted to the positive equivalent with respect to the
length of the subject. Again, it might be better to make this
explicit in the procedure. With this, the entire procedure is:

procedure tab(i)
 local save_pos

 i := integer(i) | runerr(101, i)

 save_pos := &pos

 if &pos := cvpos(i, &subject) then {
 suspend .&subject[save_pos : &pos]
 &pos := save_pos
 }

 fail

end

with the support procedure

procedure cvpos(i,s)

 if i <= 0 then i +:= ∗s + 1
 if 1 <= i <= ∗s + 1 then return i
 else fail

end

The function upto(c, s, i, j) is another good candidate
for modeling because it raises issues about default arguments
that may not have occurred to you. You know if the last three
arguments are omitted (or null) that upto(c) applies to the
subject in the current scanning environment at the current
position through the end of the subject. But what if s is omitted
but i isn’t?

Here’s the answer (we admit we had to refer to the C
code in the actual implementation to be sure we got it right —
we weren’t sure and we didn’t trust the description in the Icon
language book):

procedure upto(c, s, i, j)
 local k

 if /s := &subject then {
 /i := &pos
 }
 else {
 s := string(s) | runerr(103, s)
 /i := 1
 }

 i := integer(i) | runerr(101, i)
 i := cvpos(i, s) | fail

 if not(/j := ∗s + 1) then {
 j := integer(j) | runerr(101, j)
 j := cvpos(j, s) | fail
 if i > j then i :=: j
 }

 every k := i to j do
 if any(c, s[k]) then suspend k

 fail

end

The actual computations of the positions returned by
upto() raises another question about modeling functions.
When is it permissible to use one function when modeling
another? If you’re modeling upto() and any() at the same
time, you certainly can’t model them in terms of each other.

We prefer to use more primitive operations in modeling
functions. For example, the computation in upto() can be
done as

if !c == s[k] then suspend k

This is very inefficient, but efficiency presumably is not the
issue here.

The question of using functions in modeling raises
other issues. What functions can’t be modeled without using
other functions? What functions can’t be modeled by proce-
dures at all? What then is the smallest set of functions that are
needed to support the entire function repertoire of Icon?

If you think about this a little, you’ll see that most of
Icon’s functions can be modeled and modeled without using
any other function. However, while you can model write()
using writes() (although it’s a bit tricker than you might
think), you can’t model writes() as a procedure.

Assuming all of Icon’s operators are available for use in
modeling (we’ll not try to model them), you might find it
interesting to go through Icon’s function repertoire to identify
those that are “basic”. We’d be interested to see your list.

Before leaving the subject of modeling functions, let’s
look at a function what has a particularly interesting imple-
mentation: map(s1, s2, s3).

The way this function is actually implemented is impor-
tant, since efficiency is a significant concern. While effi-
ciency in a procedural model of map() is not an issue, such a

The Icon Analyst / 7

model can serve to illuminate the actual implementation.

The character mapping performed by map() is done by
building an array of characters based on s2 and s3 and the
indexing into it with the characters of s1 to get the required
result.

The significant point is that building the mapping array
is a comparatively time-consuming process. To avoid build-
ing the mapping array unnecessarily, the arguments s2 and s3
and the mapping array are cached. If map() is called with the
same values of s2 and s3 as the last time it was called, the
cached mapping array is used instead of building a new one.

This technique is particularly effective because of the
way map() usually is used, in a loop with the same second and
third arguments, as is typified by

while line := map(read(), &lcase, &ucase) do …

Here’s the complete procedure, patterned after the
function as written in C:

procedure map(s1, s2, s3)
 local i, result
 static last_s2, last_s3, map_array

 initial map_array := list(256)

 s1 := string(s1) | runerr(103, s1)

 s2 := def_str(s2, string(&ucase)) |
 runerr(103, s2)
 s3 := def_str(s3, string(&lcase)) |
 runerr(103, s3)

 if (s2 ~=== last_s2) | (s3 ~=== last_s3) then {

 last_s2 := s2
 last_s3 := s3

 if ∗s2 ~= ∗s3 then runerr(208)

 every i := 1 to 256 do
 map_array[i] := char(i – 1)

 every i := 1 to ∗s2 do
 map_array[ord(s2[i]) + 1] := s3[i]

 }

 result := ""

 every i := 1 to ∗s1 do
 result ||:= map_array[ord(s1[i]) + 1]

 return result

end

Note that map_array is first set up to map every character to
itself and then the mappings of the characters of s2 to s3 are
written over the identity mapping.

The procedure def_str() defaults the null value to the
appropriate string:

procedure def_str(s1, s2)

 if /s1 then return s2
 else return string(s1)

end

References

1. “Modeling String Scanning”, The Icon Analyst 6, pp.
1-2.

2. “From the Wizards”, The Icon Analyst 2, p. 12.

3. The Icon Programming Language, second edition, Ralph
E. Griswold and Madge T. Griswold, Prentice Hall,
Englewood Cliffs, New Jersey, 1990, p. 178.

Command-Line Arguments

Almost all programs require some input data. In addi-
tion to input files to process, many programs require some
specific information, such as options for processing data.
Often this information is needed only when the program
begins execution.

If a program runs interactively, it can query the user for
the information it needs. But even in these days of sophisti-
cated graphical user interfaces, many programs are run “off
line”. This is particularly true of UNIX, where pipes and a
firmly entrenched computing culture frequently result in one
program running another program or one program piping data
into another program. In such situations, there is no user to
query. Programs written to run in such a way must be written
to work without interactive input.

For these situations, or where no better user interface is
available, the best method of providing information to a
program often is on the command line when the program is
executed.

Executing Icon Programs

The details of executing an Icon program and providing
it command-line arguments vary somewhat, depending on the
operating system on which it’s run and on whether you’re
using the Icon interpreter or the Icon compiler.

To avoid complicating the discussion here, we’ll use the
UNIX environment for examples. It has the virtue of being
free of complicating details and, if you’re using Icon in a
different environment, you’ll easily see the differences.

When using the Icon interpreter, the linker produces an
icode file, which is executable on most UNIX platforms. The
compiler, of course, produces a real executable file:

icont prog

8 / The Icon Analyst

and

iconc prog

produce essentially the same results — they produce an
executable file named prog from the source file named
prog.icn.

In either case, just entering the program name causes
the program to execute. All that’s needed is

prog

Anything that appears on the command line after the
program name constitutes arguments to the program. For
example, in

prog data.log

data.log is an argument to prog.

It’s also possible to go directly into execution when
using either the compiler or interpreter by using the –x option:

icont prog –x
iconc prog –x

Notice that the –x comes after the Icon source program name
or names. It is a separator; arguments to icont and iconc come
before the source file names, while arguments to the running
Icon program come after the –x, as in

icont –t prog –x data.log

where –t is an option to icont and data.log is an argument to
prog.

In subsequent examples, we’ll assume an executable
file already exists.

Arguments

When a program is executed from the command line,
any arguments following the program name are made into a
list of strings. This list becomes the value of the argument of
the procedure main() (if it has one).

Command-line arguments are separated by white space
(blanks and tabs). For example, if prog.icn begins as

procedure main(args)
...

and is executed as

prog log.dat log.out

the value of args is a list containing the two strings "log.dat"
and "log.out", as if args had been created by

args := ["log.dat", "log.out"]

As always, there are numerous questions of syntax.
Suppose, for example, you want a blank as part of an argu-
ment. That’s easy enough; just put quotes around the argu-
ment, as in

prog "log.dat log.out"

which results in one argument, as if args had been created by

args := ["log.dat log.out"]

Note that the quotes are not part of the argument string itself.

But what if you want a double quotation mark in an
argument? In UNIX, you can enclose the argument containing
the double quotation mark in single quotation marks or
precede the double quote by a backslash. But what about
single quotes and backslashes in arguments?

If you really need such characters in arguments (and
there are quite a few “special” characters to worry about), then
you need to know how your command-line interpreter (shell)
works. Things can get pretty messy — we’ll leave it to you to
explore these issues if you’re not already familiar with the
details. For most programs, however, arguments to Icon
programs do not need to contain “special” characters and the
usual separation of arguments by white space on the com-
mand line provides all the capabilities you need.

In most Icon programs, command-line arguments serve
one of two purposes:

• They provide the names of files that the program uses.

• They provide options that affect how the program
works.

Files

While standard input and output are sufficient and
convenient for most programs, some programs need named
files. This is true, for example, for platforms on which the
translated and untranslated modes of reading and writing files
produce different results as the result of line-termination
conversion. See Reference 1 for a detailed description of the
issues involved.

Since standard input and output are always done in the
translated mode, a file must be opened by name inside a
program that reads or writes it in untranslated mode. The
program fileprnt.icn in the Icon program library provides an
example. This program reads a file and prints various repre-
sentations of each character in it. If the input were taken from
standard input on, say, an MS-DOS system, carriage-return/
linefeed line terminators would be converted to linefeeds
during input and the program would produce erroneous out-
put.

The way to handle this problem is to specify the input
file name on the command line:

fileprnt data.log

where fileprnt.icn begins as

procedure main(args)

 input := open(args[1], "u") |
 stop("cannot open file")

...

The Icon Analyst / 9

Options

Many programs can be easily configured to perform
computations in different ways. For example, a word-listing
program might produce unsorted output, sorted output, sorted
output in ascending or descending order, only unique words,
and so on.

Such options allow one program to serve many needs.
In most environments, the best way to specify options is on the
command line.

Since a command line can contain various kinds of
information, some method is needed to distinguish options
from other command-line arguments.

Most operating systems have conventions for how
options are specified, but they usually do not enforce these
conventions. For example, in UNIX it is conventional (but by

no means universal) to indicate an option by an initial dash in
an argument. The letter following the dash identifies the
option, and there may be additional modifiers following the
letter.

For example, in UNIX

wordlist –sa –u

might indicate that the word list is to be sorted in ascending
order with only unique words listed. Here, a (“ascending”) is
a modifier for s (“sort”).

White space between an option and its modifier usually
is optional, so that

wordlist –s a –u

is equivalent to the command line above.

In MS-DOS, an initial slash is conventional, although
some programs also accept dashes as well. Thus, in MS-DOS
the options might appear as follows:

wordlist /sa /u

If you’re writing Icon programs for your own use, it
hardly matters what syntax you use for options, although
choosing a consistent style is certainly worthwhile. If you’re
writing programs for others, you probably will want to use a
syntax that is familiar to them.

In the Icon program library, most programs follow a
UNIX-like convention and use the procedure options() in the
Icon program library to process options. The virtue of using
options() is that it provides a consistent interface. It also
handles all kinds of details (options can be very complex) as
well as error-checking.

options() is called with two arguments — a list of
strings (normally the argument to main()) and a string speci-
fying allowable options and the nature of their modifiers, if
any:

options(args, optstring)

Each character in optstring corresponds to an option
that the program supports. If an option has an modifier, the
type of the modifier is given by the next character:

: The modifier of the option is a string.

+ The modifier of the option must be an integer.

. The modifier of the option must be a real number.

For example,

options(args, "s:u")

indicates that the options s and u are supported options, that
the modifier of s must be a string, and that u has no modifier.

options() returns a table containing entries for all the
options that appear in args. The corresponding values are the
modifiers for the options, if given, or 1 if no modifier is
specified. The table’s default value is null. For example,

opts := options(args, "s:u")

The Bright Forest Company
 Tucson Arizona

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

voice: (602) 621-8448

fax: (602) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

...{uunet,allegra,noao}!arizona!icon-project

and

© 1992 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

10 / The Icon Analyst

order := \opts["s"]

assigns the modifier of the s option to order if s is specified
in args.

options() removes options and their modifiers from
args but leaves other arguments in args. Thus, for example,
if there are both options and file names, the file names remain
in args after options() processes the options. Options and
other arguments, such as file names, can be freely intermixed
and there is no notion of order in the table returned by
options().

The argument "–" standing alone is not considered to be
an option and is left in args. UNIX applications typically use
"–" to stand for standard input or standard output.

Gregg Townsend comments: “Although there are a few
well-known exceptions, it is also conventional in UNIX for
only input files to be named as command arguments, with
output redirection handled by special shell syntax. A program
that interprets an argument as an output file name may give
someone an unpleasant surprise. The ideal UNIX filter pro-
gram accepts any number of input files, concatenating them as
necessary, and reads standard input if no file name is given.”

Parameter Strings in ProIcon

Most platforms have a command-line processor from
which Icon can be run, even if they also support a graphical
user interface. The Macintosh (except under its MPW sub-
system) is the notable exception. Most Macintosh applications
have no way of specifying options when they are launched, but
instead rely on menus and dialogs after they are launched.

ProIcon [2], which runs under the standard Macintosh
graphical user interface, offers compatibility with Icon pro-
grams designed for use in the command-line mode by means
of the Parameter String … entry in its Options menu:

A text-entry box pops up in which arguments can be
entered:

The values entered are treated as they would be by a
command-line processor. For example, given the parameter
string shown in the box above, the argument of main() is a list
of the four strings "cyan", "yellow", "magenta", and "black".

You also can set the parameter string when you launch
a ProIcon program by holding down the option key. A dialog
box comes up:

 See the ProIcon manual for more details [2].

Argument Files

Sometime it’s useful to have the arguments for a
program in a file (one argument per line) rather than entering
all the arguments on the command line. This is particularly
useful if there are many arguments or if they are syntactically
complicated.

The common syntax for programs that support argu-
ment files is to use the character @ as a prefix to a file name.
For example,

prog @argfile

could be used to indicate that the arguments for prog are in
argfile.

The latest version of options() in the Icon program
library supports such argument files. It allows argument files
to be freely interspersed with other arguments and allows
argument files to specify other argument files.

References

1. The Icon Programming Language, second edition, Ralph
E. Griswold and Madge T. Griswold, Prentice Hall,
Englewood Cliffs, New Jersey, 1990, pp. 135-136.

2. The ProIcon Programming Language for the Apple Macin-
tosh Computers; Version 2.0, The Bright Forest Company,
Tucson, Arizona, 1990.

The Icon Analyst / 11

Programming
 Tips

Exploiting Expression-Based Syntax

Most (but hardly all) imperative programming lan-
guages distinguish between expressions and statements. In
these languages, an expression produces a value, but a state-
ment just performs some action and has no associated value.
Typical statements in such a languages are

if expr1 then expr2 else expr3

and

return expr

while typical expressions are

expr1 ∗ expr2

and

expr1 = expr2

A statement is syntactically illegal where an expression
is expected, which can be annoying at times. For example, you
might want to return the value of the expression evaluated in
an if-then-else statement.

There are some programming languages, including
Icon, in which there are no statements; everything executable
is an expression. This means that a construction like

if expr1 then expr2 else expr3

is an expression and has a value. As you might expect, the
value of if-then-else is the value of the selected expression.

In Icon, unlike most other programming languages, an
expression does not simply have a value; it has an outcome.
The word outcome is used here in a technical sense and
includes the possibility of no value (failure), a single value, or
many values (generation). Thus, in Icon, the outcome of

if expr1 then expr2 else expr3

is the outcome of expr2 or expr3, whichever is selected.

The outcome of an if-then-else expression usually is
not used, but it can be. For example,

if expr then write("succeeded") else write("failed")

can be recast as

write(if expr then "succeeded" else "failed")

Consider also

if i < j then every write(i to j) else every write(j to i)

which writes the integers from i to j or j to i. Since outcome
includes generation, this expression can be recast as

every write(if i < j then i to j else j to i)

We don’t necessarily recommend using Icon’s expres-
sion-based syntax in this way; such expressions tend to be
hard to understand. But you should know they are possible and
how they work, if only because you may run into them in Icon
programs written by others.

There’s one place where the “factoring out” that’s
possible in Icon can be particularly helpful. Consider

case expr of {
 1: return expr1
 2: return expr2
 3: return expr3

...
 }

A more compact form is

return case expr of {
 1: expr1
 2: expr2
 3: expr3

...
 }

Back Issues

Back issues of The Icon Analyst are available
for $5 each. This price includes shipping in the
United States, Canada, and Mexico. Add $2 per
order for airmail postage to other countries.

12 / The Icon Analyst

From Our Readers

We’re always glad to hear from readers of the Ana-
lyst. Some of the issues they’ve raised are listed below.

Who writes the articles for the Analyst? Why are
there no bylines? I’d like to know who writes what.

To date, we, the editors, have written all the articles for
the Analyst, which is why you don’t see bylines. Where
there’s contributed material, such as programming tips, we
always provide attribution.

I’d like to contribute an article to the Analyst. How do
I do that? What are the guidelines? How far in advance of
publication do you need it?

As indicated in the answer above, we’ve not published
any contributed articles in the Analyst to date. We’d gener-
ally prefer to publish such contributions in the Icon Newslet-
ter, which has a much larger readership than the Analyst.
We do not, however, rule out contributed articles in the
Analyst. Send us your contribution and we’ll let you know
where we think it should appear.

As to the mechanism for contributions, we need the text
in machine-readable form — we won’t undertake to keyboard
contributions from printed text. If there are special typo-
graphical requirements, a printed copy with notes, if neces-
sary, should accompany the machine-readable material.

We can handle a wide variety of magnetic media in
various formats. We do our work on a Macintosh, but we
easily can handle MS-DOS diskettes. Plain ASCII text usu-
ally is easiest, although we can handle some word processor
formats. For anything other than ASCII text on a Macintosh
or MS-DOS diskette, please check with us in advance.

As to publication schedules, the Analyst is written
from four to 10 months in advance, depending on the time of
year. We try to get ahead during the summer, so that all issues
through the following June are done in draft by August.

In the case of the Newsletter, we begin assembling the
next Newsletter as soon as one is published. We do not work
farther ahead as we do for the Analyst.

I use SNOBOL4 as well as Icon. I’d like to see articles
in the Analyst on SNOBOL4, especially on pattern match-
ing.

The Analyst is about Icon and most of our readers
subscribe principally because of an interest in Icon. While we
don’t plan to include articles in the Analyst on SNOBOL4,
per se, we have started an article on comparing SNOBOL4
pattern matching to string scanning in Icon. We’re not particu-
larly pleased with what we have so far, but we’ll continue to
work on it.

In the Icon book you show how to construct trees, dags,
and graphs using Icon data structures. It think it would be
interesting to readers of the Analyst if you’d show how to
construct and manipulate some other, more specialized data
structures.

Good idea — we’ll add that to our queue (actually, it’s
a heap).

I never have really understood co-expressions. The
second edition of the Icon book is better on this subject than
the first edition, but I’m still a little lost. How about an article
on co-expressions in the Analyst?

We doubt we can do much better by way of describing
co-expression in an article in the Analyst than we did in the
second edition of the Icon book. Maybe we can find a program
that uses co-expressions in an essential way and include it in
our “anatomy” series.

It seems to me there’s a lot of material in each issue of
the Analyst. Doesn’t it get difficult to put an issue together
every two months? Don’t you run out of material? How long
do you expect to keep this up?

Very good questions; we ask ourselves such things
from time to time. It does take a lot of time to put together an
issue of the Analyst. We try to avoid the pressure of
publication deadlines by working well ahead (see the answer
to a previous question).

We have an essentially endless supply of some features,
such as program anatomies. For other features, such as the
programming tips, we’re finding it increasingly difficult to
come up with new, interesting material.

The material that is the easiest and most enjoyable to
write about comes from new things going on with Icon, such
as the optimizing compiler, X-Icon, and program visualiza-
tion.

As to how long we can “keep this up” … we don’t know.
At present, it is a demanding but rewarding occupation from
which we have no plans to retire.

What’s Coming Up

In the next issue of the Analyst, we’ll introduce a new
feature — exercises to test your programming skill. The
subsequent issue will have our solutions. If this feature works
out well, we’ll continue it on an irregular basis.

Next time we’ll also have another in the series on the
anatomies of programs. The next one will be a suffix calcu-
lator, which illustrates string invocation.

We’ll also continue the series of articles on the optimiz-
ing compiler for Icon. The next article will describe how the
compiler is organized and give a peek inside at some of the
details.

