
The Icon Analyst / 1

August 1992
Number 13

In-Depth Coverage of the Icon Programming Language

 In this issue …

Face Lift for the Analyst … 1
Solutions to Exercises … 1
An Introduction to X-Icon … 5
Programming Tips … 10
What’s Coming Up … 12

Face Lift for the Analyst

The Analyst is now beginning its third year of
publication. Starting with this issue, we’ve made a
few changes in the typographical design to make
the Analyst more readable and, we hope, more
attractive.

Until now, we’ve used Times for the body text
in which articles are set and Helvetica for captions
and program material. These type faces have their
merits and both are widely used — so widely used,
in fact, as to be painful for persons interested in
typographic design.

We’ve decided that the Analyst needed a
body face that is more “open” than Times. We tried
several alternatives and finally picked Palatino for
its grace and legibility.

The new sans-serif face that replaces Helvetica
is Frutiger. Frutiger actually is very similar to
Helvetica — it takes careful examination to find the
small differences in characters between the two
faces. The characters in Frutiger are, however, a
little wider than in Helvetica, which makes Frutiger
easier to read.

We’ve also increased the type size and now
are setting 11 points on 13 points instead of the
former 10 on 12.

In addition to the changes in type faces, we’ve
changed the style of the Analyst’s title slightly to
give it a crisper look. For this, we used the “Inline”
effect from Effects Specialist.

Solutions to Exercises

In the last issue of the Analyst, we posed some
problems involving expressions to generate se-
quences of values. Our solutions follow. We’ve
added some discussion, since there are different
ways of solving most of the problems, as well as
different ways of formulating the same solution in
Icon.

If you produce better or more interesting solu-
tions than the ones that follow, please send them to
us. We’ll include them in a future issue of the
Analyst.

Problem 1. A sequence consisting of the names of
the months of the year: "January", "February", …
"December".

This one is easy and straightforward. A simple
alternation is all that’s needed:

"January" | "February" | "March" | "April" |
 "May" | "June" | "July" | "August" |
 "September" | "October" | "November" |
 "December"

On the other hand, if you need a list of the
names of the months for some other reason, such a
list could serve double duty:

months := [
 "January", "February", "March", "April",
 "May", "June", "July", "August",
 "September", "October", "November",
 "December"]

Then !months can be used to generate the names.

Problem 2. A sequence consisting of the lowercase
letters in increasing alphabetical order.

You could use a simple alternation here too,
but there’s a much more concise method:

!&lcase

Although &lcase is a cset, !&lcase generates one-
character strings.

2 / The Icon Analyst

Problem 3. A sequence consisting of the lowercase
letters in decreasing alphabetical order.

To get the letters in decreasing alphabetical
order, you could do something like this:

&lcase[26 to 1 by –1]

We prefer

!reverse(&lcase)

It’s worth noting that reverse() is only evaluated
once in this expression.

Problem 4. An infinite sequence consisting of the
lowercase letters in increasing alphabetical order,
repeatedly.

The word “repeatedly” should suggest re-
peated alternation:

|!&lcase

You need to watch the els and vertical bars here —
they look very much alike in a sans-serif face. In
fact, we’ve set the vertical bars in a different face for
this article to make them somewhat easier to dis-
tinguish from els.

Problem 5. An infinite sequence consisting of the
lowercase letters in decreasing alphabetical order,
repeatedly.

The same idea applies here:

|!reverse(&lcase)

Problem 6. A sequence consisting of strings repre-
senting the times in minutes in the 24-hour day,
starting midnight and ending at the minute before
midnight: "00:00", "00:01", … "00:59", "01:00",
… "23.59".

The solution to this problem has two compo-
nents: a generator for the hours and a generator for
the minutes.

0 to 23 generates the hours and 0 to 59
generates the minutes, but the results need to be
padded with zeros:

right(0 to 23, 2, "0")
right(0 to 59, 2, "0")

All that remains is a concatenation with colons
added as separators:

right(0 to 23, 2, "0") || ":" ||
 right(0 to 59, 2, "0")

Problem 7. An infinite sequence consisting of the
digit 1: 1, 1, 1, 1, … .

This one is simpler than the previous re-
peated sequences, although it may seem strange at
first sight:

|1

Problem 8. An infinite sequence of randomly dis-
tributed strings "H" and "T".

The expression ?s produces a randomly se-
lected character from s, so ?"HT" produces an "H"
or a "T" at random. Again, repeated alternation
provides the desired sequence:

|?"HT"

Problem 9. An infinite sequence consisting of ran-
domly selected digits.

The same idea works here:

|?&digits

To generate integers instead of strings, you could
do this:

integer(|?&digits)

or this:

|(?10 – 1)

Problem 10. An infinite sequence consisting of
randomly selected characters.

“Characters” here includes all of the possible
256 characters, so a solution is:

|?&cset

Another possibility is:

|char(?256 – 1)

Problem 11. An infinite sequence consisting of the
squares of the positive integers: 1, 4, 9, 16, … .

The general approach to the problem of gen-
erating a sequence of values based on the sequence
of positive integers is to generate the positive inte-
gers and then apply a function to the results to get
the desired sequence.

One model for this is

i := 0 & |(i +:= 1) & f(i)

where f(i) produces the desired value (which need
not be an integer, of course). This also can be
written as

(i := 0, |(i +:= 1), f(i))

For the squares, this becomes

(i := 0, |(i +:= 1), i ^ 2)

The Icon Analyst / 3

There’s an entirely different approach that
uses a “closed form” from which the ith Fibonacci
number can be computed directly:

√ 5

2
√ 51 +

2
1 – √ 5

–

i i

This is rather complicated, especially for repeated
computation in a sequence. There’s a simpler form
[1]:

√ 5

2
√ 51 +

 i

rounded to the nearest integer

Pre-computing the constants, this can be cast in the
form of the following Icon expression:

integer(0.5 + 0.4472136 ∗ 1.618033989 ̂ seq())

This works correctly for the first few dozen Fi-
bonacci numbers, but at some point floating-point
arithmetic in Icon lacks the precision necessary to
yield the correct integer value.

Problem 13. An infinite sequence consisting of the
factorials of the positive integers: 1, 2, 6, 24, 120,
720, … .

After the Fibonacci numbers, the factorials
are easy:

(i := 1) & |(i ∗:= seq())

The repeated alternation can be moved inside the
parentheses, since all that’s necessary is for the
variable to be generated repeatedly:

(i := 1) & (|i ∗:= seq())

Problem 14. An infinite sequence consisting of the
“triangular numbers”: 1, 3, 6, 10, 15, 21, … .

The triangular numbers are an instance of the
polygonal numbers, the two-dimensional part of the
more general figurate numbers [2]. As the name
suggests, these numbers have geometrical inter-
pretations. The first four triangular numbers are
given by the number of nodes in the following
figures:

There are lots of variations on this theme, such as
using

(i := 1) | |(i +:= 1)

to produce the positive integers. There is an easier
way: seq(). Using it, an expression to generate the
squares is just

seq() ^ 2

Note that something like

(1 to 1000000) ^ 2

does not satisfy the problem specification, since it
only generates a finite sequence of squares.

Problem 12. An infinite sequence consisting of the
Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, … .

It’s hard to keep the Fibonacci numbers out of
exercises like this, since they have so many fascina-
tion properties and there are so many ways to
generate them.

Fibonacci numbers are defined by the recur-
rence relation:

f (i) = 1 i = 1, 2
f (i) = f (i – 1) + f (i – 2) i > 2

It’s easy to formulate a recursive procedure based
on this recurrence relation, but since procedures
are not allowed in solutions to these exercises, a
recursive procedure surely can’t help. An iterative
procedure suggests a method:

procedure fibseq()

 suspend (i | j) := 1
 repeat {
 i :=: j
 suspend j +:= i
 }

end

It takes a little cleverness to get from a procedure to
a procedure-free expression, but once you see the
method, it’s not all that hard:

((i | j) := 1) | |((i :=: j) & (j +:= i))

We’ve added more parentheses than are necessary
to be sure the grouping is clear.

The left expression in the main alternation
initializes the two variables and also produces the
first two values in the Fibonacci sequence. After
that, all the “action” is in the right expression in the
main alternation.

4 / The Icon Analyst

Similarly, the first three pentagonal numbers are
given by the following figures:

We’ll leave it to you to construct additional figures
in this sequence.

There are formulas for the figurate numbers.
For example, the ith triangular and pentagonal
numbers are given by the formulas

i(i + 1)/2 and i(3i –1)/2

The sequence for the triangular numbers there-
fore can be produced simply by using the first
formula, incrementing i at each step as in previous
expressions. There’s an easier approach, however,
and one that’s recommended for unknown se-
quences: Take the first difference of successive
terms, to see if it suggests something. In the case
here, the first difference yields 2, 3, 4, 5, 6, … . In
other words, if t(i) is the ith triangular number,
then

t(i) = t(i – 1) + i

Of course, we haven’t proved this, but it’s easy
enough using the formula above.

From this, a sequence to generate the triangu-
lar numbers is just

(i := 1) | (i +:= seq(2))

Problem 15. An infinite sequence consisting of the
prime numbers: 2, 3, 5, 7, 11, 13 … .

Once you’re working with integer sequences,
it’s natural to wonder about the sequence of the
most mysterious numbers of all — the prime num-
bers. While there is no known method for comput-
ing primes efficiently in sequence, a brute-force
method is simple — just generate all the integers
and filter out those that are not prime. The trivial
observation that 2 is the only even prime leads to
the following expression:

2 | ((i := seq(3, 2)) &
 (not(i = (2 to i) ∗ (2 to i))) & i)

The second operand of the conjunction,

not(i = (2 to i) ∗ (2 to i))

fails if i can not be represented as the product of
two integers. Otherwise, the result of the expres-
sion is just i, the third operand of the conjunction.

It is, of course, not necessary to check all the
way to i ∗ i. A much better test is

not(i = (k := (3 to sqrt(i) by 2)) ∗ (i / k))

There are all kinds of other possibilities, which we
leave as exercises.

Problem 16. An infinite sequence consisting of n
copies of each positive integer n: 1, 2, 2, 3, 3, 3, 4, 4,
4, 4, … .

This one is entirely different from the previ-
ous exercises. This solution uses limitation in com-
bination with repeated alternation:

i := seq() & (|i \ i)

Acknowledgment

Gregg Townsend provided the last method
given here for computing the Fibonacci numbers.
Andrew Appel provided the Icon expression on
which the first method of generating the primes
numbers given above is based. Bill Griswold and
Gregg Townsend provided the basis for the second
one. See References 3 and 4 for more discussion of
ways to compute prime numbers in Icon.

References

1. Knuth, Donald E. The Art of Computer Program-
ming, Vol. 1, Fundamental Algorithms, Addison-
Wesley, Reading, MA., 1969, pp. 78-83.

2. A Handbook of Integer Sequences, N. J. A. Sloane,
Academic Press, 1973.

3. “Programming Corner”, The Icon Newsletter 25,
pp. 10-11.

4. “Programming Corner”, The Icon Newsletter 35,
p. 4.

The Icon Analyst / 5

• Text in arbitrary type faces and sizes, in-
cluding proportional-width faces, can be dis-
played using write() and writes() in the same
manner as strings are written to files.
• Individual characters entered from the key-
board can be processed as they are typed
without having to wait for a return character.
• Points, lines, arcs, smooth curves, and poly-
gons can be freely intermixed with text.
• Colors can be used for both text and graph-
ics.

As you might imagine, it takes quite a bit of
mechanism to accomplish all of this. (No one has
succeeded in finding a simple way of dealing with
graphics, and all present systems are painfully
large and complex.) In addition to what X-Icon
does automatically, it provides 39 functions and 12
keywords associated with graphics.

Obviously, we can’t describe everything about
X-Icon here. We’ll just attempt to illustrate, mostly
by example, what it’s like to program in X-Icon.

Basic Window Operations

In order to use X, you need to know some-
thing about its coordinate system. The screen and
each window are treated as portions of an x-y
plane of pixels, with the origin (0,0) at the upper-
left corner. Pixel positions increase in the x direc-
tion to the right and downward in the y direction:

0,0

y

x

Suppose you want to create a 400-by-200 pixel
window on the screen with the upper-left corner of
the window at x-y position (10,20). This is done in
X-Icon with the open() function, giving a name
(title) for the window as the first argument (much
as the name of a file is given), and with "x" as the
second argument to indicate that an X window is to
be opened. Subsequent arguments give the initial
values of attributes associated with the window. In
the case above, this might be:

An Introduction to X-Icon

X-Icon is the name we use for a version of Icon
that supports extended display facilities via the X
Window System [1].

The X Window System, which we’ll just call X
from now on, is a large and complicated package
that supports windows, graphics, displayed text,
interaction with input devices such as a keyboard
and mouse, and so on. There does not seem to be a
single word that aptly describes all of these capa-
bilities. We’ll use “graphics” subsequently with
the understanding that the term as used here in-
cludes all that goes along with displays.

X-Icon is designed to provide graphical capa-
bilities for Icon in a way that avoids many of the
details and tedious programming tasks that are
necessary when, for example, accessing X directly
from C.

With X-Icon you can display windows; draw
points, lines, and various shapes; display text in a
variety of sizes and type faces; accept input di-
rectly from the keyboard; determine the position of
the mouse when buttons are pressed and released;
and so forth.

In many cases, X-Icon provides access to the
underlying X capabilities in a relatively direct
manner. (If you are familiar with X, X-Icon inter-
faces X at the functional, Xlib level, not at the Xt
toolkit level). In other respects, however, X-Icon
handles matters automatically that otherwise
would require intricate and error-prone coding.

For example, X mandates an event-driven
paradigm in which interaction between the user
and the program must be handled at every instant
by the program. In X-Icon, on the other hand, this
event-driven model is optional. It is possible to
write many graphic applications in X-Icon with
very ordinary looking code.

Similarly, the display is maintained automati-
cally by X-Icon. You don’t have to worry about
redrawing the screen if a window is opened, moved,
or closed.

X-Icon Capabilities

From the perspective of a programmer, X-
Icon offers the following kinds of capabilities:

• Windows can be opened and closed as de-
sired, using the functions open() and close().

6 / The Icon Analyst

example := open(
 "hello",
 "x",
 "pos=10,20",
 "width=400",
 "height=200"
) | stop("∗∗∗ cannot open window")

The value returned by open() in this case is
assigned to a variable, example, to provide a way
to refer to this widow subsequently. The usual
alternative is provided to terminate program ex-
ecution with an error message in case it is not
possible to open the window. The result of the
open() is a blank window:

You now can write text in the window, as in

write(example, " Hello world!")

which produces:

Drawing (lines, shapes, and so forth) is done
with functions. For example, the following func-
tion call draws a rectangle 50 pixels wide and 20
pixels high with its upper-left corner at position
(60,80) in the window:

XDrawRectangle(example, 60, 80, 50, 20)

The result is:

The names of most X-Icon functions start with
an X (to distinguish them from similar functions
that might be written for other graphical systems,
such as Microsoft Windows). The rest of the name
usually is derived from the name of the corre-
sponding Xlib function. The result often is rather
long and cumbersome, but at least it is descriptive,
which becomes important with such a large reper-
toire of functions.

Although it’s not shown here, several rect-
angles can be drawn with one call of
XDrawRectangle(), which takes an arbitrary num-
ber of arguments that specify successive quadruples
of x-y coordinates, width, and height. This is true
for most drawing functions.

Window Attributes

As suggested by the example of open() given
earlier, an X window has numerous attributes. X-
Icon supports 44 attributes in all, with default
values for attributes that are not explicitly speci-
fied.

Two important attributes are the background
and foreground colors of a window. A window is
filled initially with the background color when it is
opened. Text, points, and lines are rendered in the
foreground color. As indicated in the preceding
example, the default background color is white
and the default foreground is black. If the window
had been opened on a color monitor with the
additional attribute "bg=gray", the subsequent
operations would have produced a window that
looks like this:

The Icon Analyst / 7

domly selected also.
Here’s a first cut at the program:

procedure main(arg)

 height := 500
 width := 300

 colors := [
 "red",
 "blue",
 "green",
 "yellow",
 "purple",
 "white",
 "black"
]

 canvas := open(
 "canvas",
 "x",
 "height=" || height,
 "width=" || width
) | stop("∗∗∗ cannot open canvas")

 repeat { # drawing loop

select dimensions

 w := ?width
 h := ?height

select center

 x := ?width – w / 2
 y := ?height – h / 2

select color

 XFg(canvas, ?colors)

draw a rectangle

 XFillRectangle(canvas, x, y, w, h)

pause to reflect

 delay(100)

 } # continue

end

The delay is provided to prevent the drawing from
proceeding too rapidly.

Incidentally, when the sizes and positions of
the rectangles are selected in this way, portions of
them may fall outside the window. Such portions
are “clipped” and not drawn.

A typical display from this program is:

The attributes associated with a window can
be changed after the window is opened. For ex-
ample,

XFg(example, "white")

changes the foreground color of example to white.
Some functions draw shapes that are filled in

the foreground color. For example,

XFillRectangle(example, 200, 100, 50, 50)

draws a solid white square:

Example — Random Shapes

What we’ve described so far is enough to
write a simple X-Icon program to display shapes of
randomly selected colors and sizes – a (poor) sort
of “modern” art. As with any such program, there
are a lot of features you might imagine. We’ll start
something simple and inflexible.

Let’s specify a window 500 pixels wide and
300 pixels high. Allowing the size to be specified on
the command line is left as an exercise [2]. We’ll
draw filled rectangles first, and generalize this
later. And we’ll select colors from a small palette.

The dimensions of the rectangles will be se-
lected randomly from between one pixel and the
window dimensions. Their positions will be ran-

8 / The Icon Analyst

Events are queued so that they are not lost if
it takes a while for the program to get around to
processing them. The queue is an Icon list that is
the value of XPending(window). For example,

∗XPending(window) > 0

succeeds if there is an event pending in window.
The function XEvent(window) produces the

next event for window and removes it from the
queue. If there is no pending event, XEvent() sim-
ply waits for one. When XEvent() removes an
event from the queue, the position on the screen at
which the event occurred also is recorded in Icon
keywords.

The value of a keyboard event is a one-charac-
ter string corresponding to the key pressed. Mouse
events are integers for which there are correspond-
ing keywords. For example, &rpress and &rrelease
are the values for the events that occur when the
right mouse button is pressed and released, re-
spectively.

Events can be used to control a program. For
example, pressing and releasing the right mouse
button could be used to cause the drawing pro-
gram given earlier to stop and start. Similarly,
pressing the q key on the keyboard could be used
to cause the program to terminate.

To illustrate this, a call to a procedure

checkevent(canvas)

could be added at the end of the repeat loop. The
procedure might look like this:

procedure checkevent(window)

process pending events

 while *XPending(window) > 0 do {

 case XEvent(window) of {
 "q": exit() # quit
 &rpress: { # pause
 until XEvent(window) === &rrelease
 return # resume
 }
 }

 }

 return

end

The while loop continues as long as there is an
event pending in window. If the pending event is
a q, the program execution terminates occurs via

It’s also possible to draw filled ellipses, as
well as unfilled shapes. All the X-Icon functions for
doing these kinds of things take the same argu-
ments, so it’s easy to generalize this program by
specifying a list of functions

shape := [
 XFillRectangle,
 XFillArc,
 XDrawRectangle,
 XDrawArc
]

and replacing the call above to select a drawing
function randomly:

(?shape)(canvas, x, y, w, h)

Now a typical display looks like this:

Events

When the mouse pointer is in an X-Icon win-
dow, pressing a key, pressing a mouse button,
dragging the mouse with a button pressed, and
releasing a mouse button cause “events” in that
window.

The Icon Analyst / 9

exit(). (The window is closed and vanishes in such
a case.) If the right mouse button is pressed, control
drops into another loop waiting for the button to be
released. Note that any other events that occur are
ignored.

More About X-Icon

As suggested by X-Icon’s 39 functions and the
44 window attributes it supports, we’ve only be-
gun to touch on X-Icon’s capabilities here.

We’ll have more to say about X-Icon in future
issues of the Analyst and also have some articles
on some of the applications we’ve written using X-
Icon.

In the meantime, if you’re interested in know-
ing more about X-Icon, we have a 41-page technical
report that describes the full range of its capabili-
ties [3]. As a subscriber to the Analyst, you can get
a free copy of this report. Just ask for the “X-Icon
TR” and be sure to mention that you are a sub-
scriber to the Analyst.

Where X-Icon is Going

X-Icon presently runs on several UNIX plat-
forms. The code itself has no particular depen-
dency on UNIX, and it should be possible to get X-
Icon running on other platforms that support X.

The X in X-Icon of course refers to its use of the
X Window System. But the X also could be taken to
reflect its somewhat experimental nature.

We’ve learned a lot about incorporating
graphic capabilities in a high-level programming
language since we started to develop X-Icon. We
now know better ways of handling some things.
And, of course, X is not the only graphics game in
town. We only chose it for our work because it is
widely available and readily accessible in our envi-
ronment.

Similar kinds of facilities could be provided,
for example, on the Amiga, the Atari ST, the Macin-
tosh, Microsoft Windows, and OS/2 using their
own graphic systems. Such graphic systems all
differ in various respects. Ideally, graphical capa-
bilities for Icon should be independent of any
particular underlying graphic system and be por-
table across a wide range of platforms.

This is a tall order — a capability of one
graphic system (and one that users of that system
view as important) often is lacking in another
system. Portability and commonality across di-

verse platforms tend to exclude some features on
individual platforms or else require considerable
work to add to platforms that don’t already sup-
port them.

There’s also the problem that users of a spe-
cific platform expect applications to support the
“look-and-feel” of that platform.

No one has yet produced a satisfactory uni-
versal system for graphics and we don’t have any
pretensions that we can do this. We think the
proper approach is to develop higher-level ways of
using graphics in Icon based on X and then to
explore other graphics systems.

The Bright Forest Company
 Tucson Arizona

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

voice: (602) 621-8448

fax: (602) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

...{uunet,allegra,noao}!arizona!icon-project

and

© 1992 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

10 / The Icon Analyst

Acknowledgments

X-Icon is the inspiration of Clint Jeffery, who
did most of the design and implementation. Some
of the material in this article was adapted from an
earlier paper [4].

References

1. “The X Window System”, R. W. Scheifler and J.
Gettys, ACM Communications on Graphics, Vol. 5,
April 1986, pp. 79-109.

2. “Command-Line Arguments”, The Icon Ana-
lyst 11, pp. 7-10.

3. X-Icon: An Icon Window Interface, Clinton L.
Jeffery, technical report TR91-1, Department of
Computer Science, The University of Arizona,
1991.

4. “X-Icon: An Icon Window Interface”, Clinton L.
Jeffery and Ralph E. Griswold, Proceedings of the
Fifth International Conference on Symbolic and Logi-
cal Computing, April, 1991, pp. 19-38.

The term “recursive generator” refers to a
situation in which a procedure suspends with a call
to itself (perhaps though intermediate calls). Sev-
eral examples of recursive generators are given in
the Icon language book [1].

Like many other “light-bulb” experiences, it’s
often difficult to see how to formulate a recursive
generator, but when you do, the insight may be a
revelation.

We recently had such an experience. We were
trying to come up with a nom de plume for the
author of a projected mystery novel. We had lists of
first names (Mary, George, Constance …) and last
names (Glenn, Roberts, Hankle …) and we were
trying various combinations. We finally decided
that it would be fun, and possibly useful, to try all
possible combinations. There were enough pos-
sible combinations that a program was needed.

This kind of thing is easy enough to do in Icon:

first := ["Mary", "George", "Constance", …]
last := ["Glenn", "Roberts", "Hankle", …]

every write(!first, " ", !last)

or, for something more complicated than just print-
ing,

every name := !first || " " || !last do
 process(name)

We then asked the usual question program-
mers ask: “How do we generalize this to n lists?”

There’s clearly no problem with formulating
a solution for three lists, four lists, and so on for any
specific value of n, but suppose we don’t know
how many lists there will be? The problem is that
every generating expression has to be written down
in the program, and if you don’t know how many
there are in advance, there’s no obvious way to do
this.

In such a situation, a good approach is to
think of recursion to handle dynamically what
cannot be handled statically. That is, devise a pro-
cedure that explicitly handles one of the n compo-
nents of the problem and then call it recursively to
handle the remaining n–1 components.

So we started by postulating a procedure

allcat(L1, L2, L3, …)

to generate all possible concatenations of the ele-
ments of L1, L2, L3, … . We expected allcat() to
contain something like this

!L1 || allcat(L2, L3, …)

Recursive Generators

Recursion is a powerful and well-known tool
for formulating solutions to problems in which
data or algorithms are defined in terms of them-
selves. The ability of an Icon expression to generate
a sequence of values often can be used to provide
concise and elegant formulations of computations
that otherwise would be tedious and error-prone.
The combination of recursion and generation is
powerful indeed.

Programming
 Tips

The Icon Analyst / 11

With this in hand, only the details remain, as they
say. (And this is where many well-conceived plans
end in failure.)

A good way to proceed is first to find a solu-
tion and then refine it. In the refinement you may
find a model that will work in similar situations in
the future without need for the intermediate solu-
tions that come from a first effort.

In the case here, the question is how to pass an
arbitrary number of lists to allcat(). An easy an-
swer is to put them in a list:

allcat([L1, L2, L3, …])

Note that the list of lists need not appear explicitly
in a program — it could be built up prior to the call
to allcat().

The procedure allcat() then might start out
like this:

procedure allcat(L)

 L1 := get(L) # oops; get() might fail

 # now compute !L1 || allcat(L)
…

At this point, three things need to be considered:
1. How to handle the case when L is empty.
2. How to stop the recursion.
3. How to return the concatenations.
L might be empty because allcat() is called

with an empty list initially. While that might not be
expected, it needs to be handled. The natural inter-
pretation of a empty list is that there are no items to
concatenate. In this case allcat() should produce no
results — that is, it should fail:

L1 := get(L) | fail

It’s also possible for L to become empty as a
result of taking a list off of it as suggested in the
code fragment above. This occurs when allcat() is
called with a list that contains a single element. The
“concatenations” from a single list consist of just
the elements in it, which suggests

L1 := get(L) | fail

if *L = 0 then suspend !L1

The suspend is used, of course, since allcat() is
supposed to generate concatenations. Since the ar-
gument of suspend generates all the elements of
L1, a call of the procedure in which this expression
occurs also generates all the elements of L1.

The final step is to handle the general case in

which allcat() is called recursively:

else suspend !L1 || allcat(L)

That is, all the results generated by allcat() for
the remainder of the list L are concatenated onto
each of the strings generated by !L1.

But there’s a bug here. Every time allcat() is
called, it removes an element from L. Because of
Icon’s pointer semantics [2], all calls of allcat() are
working on the same list. L is entirely consumed in
the concatenations for the first result produced by
!L1. The formulation above won’t work at all be-
cause of this. The thing to do is pass a copy of L.
With this, the procedure becomes:

procedure allcat(L)

 L1 := get(L) | fail

 if *L = 0 then suspend !L1
 else suspend !L1 || allcat(copy(L))

end

At this point, you might note that L does not
have to be a list of lists — it could be a list of any
values for which element generation produces
strings or values convertible to strings. For ex-
ample,

allcat([&lcase, &ucase])

generates

aA
aB
…
zA
zB
…
zZ

Similarly, the names as discussed at the beginning
of this article are generated by

allcat([file, " ", last])

This works as desired because !" " generates a
single " ".

This kind of usage suggests changing the
identifier L1 to x:

procedure allcat(L)

 x := get(L) | fail

 if *L = 0 then suspend !x
 else suspend !x || allcat(copy(L))

end

12 / The Icon Analyst

The parentheses in the last expression are pro-
vided for clarity; they are not needed, since the list
invocation operator has high precedence. Notice
that L is not copied in the recursive call. Copying is
not necessary, since a new list is created automati-
cally when a procedure with a variable-length
argument list is called.

If you aren’t accustomed to using procedures
that can have a variable number of arguments in
combination with list invocation, it may take you a
while to get used to this kind of formulation. But
once you see what’s going on, you should be able
to find many uses for the technique.

By the way, notice that we’ve constructed a
recursive generator. It happened quite naturally,
not by specific design. That’s usually the way
recursive generators come about.

References

1. The Icon Programming Language, second edition,
Ralph E. Griswold and Madge T. Griswold, Prentice
Hall, Englewood Cliffs, New Jersey, 1990, p. 170.

2. “Pointer Semantics”, The Icon Analyst 6, pp.
2-8.

As indicated above, this is a solution. It works,
but it’s not the best possible formulation. The awk-
ward part of this solution is the way that allcat()
has to be called — with a list argument. This means
the person using allcat() has to construct a list. A
better approach is to allow the user to call allcat()
with as many arguments as are needed, as is pos-
sible for built-in functions such as write(). That is,
instead of having to write

allcat([x1, x2, x3, …])

the user can write

allcat(x1, x2, x3, …)

Icon has a feature just for this purpose: A
procedure can be declared with an argument that
is a list that automatically gatherers up all the
arguments in a call of the procedure. In the case
here, the procedure header is

procedure allcat(L[])

where the brackets indicate this method for han-
dling the arguments. Thus, a call of the form

allcat(x1, x2, x3, …)

results in L in the procedure in having a list value
as if

L := [x1, x2, x3, …]

had been evaluated.
That takes care of the way allcat() is called,

but there’s now a problem when it calls itself
recursively: allcat() now expects several arguments,
and those arguments are now in an Icon list, L.

Again, there is a feature for handling this
problem: list invocation. The expression

allcat ! L

which, following the previous formulation, is
equivalent to

allcat(x2, x3, …)

since x1 has been removed from L at the point of the
recursive call.

The entire procedure therefore is

procedure allcat(L[])

 x := get(L) | fail

 if ∗L = 0 then suspend !x
 else suspend !x || (allcat ! L)

end

What’s Coming Up

All programming languages have idioms that
are peculiar to the specific syntax and semantics of
the language. Icon, with its rich expression-evalu-
ation mechanism, has a large and interesting set of
idioms. In the next issue of the Analyst, we’ll have
the first of two articles on idiomatic usages in Icon
— full of things we think you’ll find interesting.

We’ll also have an article on using arrays in
Icon, and a description of a new experimental
version of the Icon interpreter than allows several
programs to run under the same invocation of the
interpreter and communicate with each other.

A summary of responses to the questionnaire
from Analyst 12 is slated for the next issue also. If
you haven’t sent back your questionnaire yet, please
take a few minutes now to do so.

