
The Icon Analyst / 1

December 1992
Number 15

In-Depth Coverage of the Icon Programming Language

 In this issue …

Idiomatic Programming … 1
Monitoring Icon Programs … 6
Programming Tips … 11
What’s Coming Up … 12

Idiomatic Icon

This is the second of two articles on idiomatic
programming in Icon. The numbering of idioms
continues from the first article.

Factoring Expressions

Because of the way that generators and goal-
directed evaluation work, it’s often possible to
“factor out” operations that are applied to several
alternatives. For example,

find(1) | find(s2) | find(s3)

can be written more compactly as

find(s1 | s2 | s3) (22)

This kind of idiomatic usage has the nice property
of being not only more concise but also easier to
understand than the expanded form.

This idiom is a reminder that where alterna-
tion can be used, other generators can also. For
example,

find(!words) (23)

applies find() to all the elements of words, which
might, for example, be a set or list.

Another useful factoring idiom is illustrated
by

every close(\(f1 | f2 | f3)) (24)

which closes any of f1, f2, or f3 whose values are
nonnull.

Factoring also is possible where different op-
erators are applied in alternation to the same argu-
ments. Thus

parse(text) | error(text)

can be written as

(parse | error)(text) (25)

and

integer(x) | string(x) | proc(x)

can be written as

(integer | string | proc)(x)

And, as above, it’s worth remembering that the
same idea applies to other generators, as in

(!fnclist)(x) (26)

See [1] for a more detailed discussion of the uses of
this kind of idiom.

Other kinds of factoring are possible because
control structures in Icon are expressions, not state-
ments. For example,

if count > 0 then state := 1 else state := 0

can be written as

state := if count > 0 then 1 else 0 (27)

Similarly,

case state of {
 0: return i
 1: return j
 2: return k
 }

can be written more compactly as

return case state of { (28)
 0: i
 1: j
 2: k
 }

 In a similar vein, a construction like

2 / The Icon Analyst

An idiomatic approach for handling the spe-
cial case of the last item is to put the alternative in
the argument of tab(), as in

text ? { (30)
 while process(tab(find(marker) | 0)) do
 =marker | break
 }

Here, tab(0) finds the last item when there is not
another instance of marker. In this case, =marker
in the do clause fails and break terminates the
loop.

Quoting strings: Sometimes it’s necessary to
construct strings with quotation marks around
them (as, for example, in a program that writes
another program). You can do this by concatenat-
ing literal quotation marks, as in

qs := "\"" || s || "\""

but it’s easy to get lost between the quotes for the
literals and the escaped quotes. An easier method
is

qs := image(s) (31)

This method has the additional advantage of pro-
viding escape sequences for any characters in s,
like quotes, that require escape sequences in pro-
gram text.

Limitation: Sometimes it’s necessary to limit
the number of times an expression can be resumed.
This often happens when testing a generator that
can produce a large or even infinite number of
results. The way to do this is to use the limitation
control structure, as in

every write(primeseq()) \ 100 (32)

You might well argue that this is hardly an idiom.
That’s true, but we are listing it here because nov-
ice programmers often do something like this:

i := 1
every write(primeseq()) do {
 i +:= 1
 if i > 100 then break
 }

Note that this doesn’t work correctly if the limit is
0, while the limitation control structure does work
correctly for this case.

 Repeated Alternation: This leads us to another
topic. Icon only has a few generators. Most opera-
tions in Icon are cast in the conventional way and
produce at most a single result. For example, read()

if x := expr1 then return x
else if x := expr2 then return x
else return y

can be written as

return expr1 | expr2 | y (29)

Some care is needed in the use of constructions like
this. For example

return expr1 | expr2

causes the procedure call to fail if both expr1 and
expr2 fail, since return causes return from a proce-
dure call with the outcome of its argument. This can
lead to mistakes, since

suspend expr1 | expr2

does not cause the procedure call to fail if both
expr1 and expr2 fail — it simply does nothing and
execution continues with the expression after the
suspend.

Odds and Ends

As we warned in the first article on idioms,
there are many idioms, including some of the most
important and commonly used ones, that don’t fall
into any specific class except “miscellaneous”. Here
they are.

Scanning a list of items: Strings frequently con-
sist of items separated by markers such as commas
or blanks, but without a marker after the last item.
Extracting and processing the items one by one can
be done using string scanning to find successive
markers. The problem is with the last item, which
is not followed by a marker.

An unattractive solution is to append a marker
to the end of the string before scanning it, as in

text ||:= marker

text ? {
 while process(tab(find(marker))) do
 =marker
 }

Another unattractive solution is to handle the
last item separately after all the other items have
been processed, as in

text ? {
 while process(tab(find(marker))) do
 =marker
 process(tab(0))
 }

The Icon Analyst / 3

produces (at most) one value every time it is evalu-
ated — it doesn’t generate lines from the input file
by suspending and being resumed.

There’s a reason why only a few operations in
Icon are generators. Although generators are very
useful in the appropriate context, they can be dan-
gerous and difficult to control. For example, if
read() were a generator,

flag == read()

would read the entire input file if it didn’t contain
a line equal to flag.

It’s for this reason that Icon’s built-in opera-
tions are cast as generators only when it’s neces-
sary to preserve an internal state between the
production of successive values.

For example, find(s) needs to “remember”
the value of s and where it is in the subject between
the production of successive positions. The sus-
pension/resumption mechanism allows this. In
the case of read(), however, no such “memory” is
needed; that’s handled by the input mechanism
itself.

Another reason why there are only a few
generators in Icon is that it’s easy to make a genera-
tor out of a non-generator by using repeated alter-
nation. For example,

|read() (33)

generates all the lines of the input file. It stops at the
end of the file because repeated alternation stops if
its argument doesn’t produce a value. Similarly,

|?x (34)

generates an infinite sequence of values selected at
random from x.

Another interesting idiom is

|!x (35)

which generates the elements from x repeatedly as
if x were circular.

Incidentally, if you want to produce the re-
sults of evaluating an expression a fixed number of
times, you can do this using conjunction with an
expression that generates the desired number, as
in

(1 to 5) & !x (36)

which generates the elements from x five times.
Note that repeated alternation can be used in

combination with limitation, as in

every write(|read()) \ 100 (37)

It’s important to remember that limitation
limits the total number of values, not the number of
times the repeated alternation control structure is
applied. In Idiom 37 these are the same, but in

|!x \ i

they generally are not.
Another idiomatic use of repeated alternation

arises in the use of co-expressions. The activation
operator,

@C

produces at most one result from the expression
associated with the co-expression C. If it generated
all results instead, it would defeat the purpose of
co-expressions, which allows the controlled pro-
duction of values from an expression.

On the other hand, it’s sometimes necessary
to produce a sequence of values from a co-expres-
sion. This can be done in a loop, as in

while x := @C do
 suspend x

Repeated alternation provides a neater idi-
omatic formulation:

suspend |@C (38)

Empty lists: Suppose you want to determine if
a list L is empty. The obvious way is

if ∗L > 0 then …

Another (idiomatic?) way is

if L[1] then … (39)

Yet another is

if !L then … (40)

Of the three methods, the second two are certainly
less obvious in their intentions, and the third more
so than the second. The third method has the
somewhat dubious virtue of requiring the fewest
keystrokes.

Although such tests are not likely to be used
often enough for efficiency to be a consideration,
for whatever it’s worth, the first is the slowest, the
second is about 20% faster. The speed of the third
depends significantly on whether or not the list is
empty; it is about twice as fast as the first if it is, but
about the same as the first if it isn’t. These are just
quirks of the implementation.

4 / The Icon Analyst

other than preventing output, unless the program
uses the value produced by write() in a significant
way. This possibility can be handled by the slightly
more subtle

write := writes := –1 (45)

which causes the last argument of write() and
writes() to be produced (which is what these
functions do after writing). Of course, it’s possible
to contrive programs where this idiom won’t
work. We’ll leave it to you to find examples.

Generating elements: If you have a structure L
that is a list of lists, it’s worth noting that

!!L (41)

generates all the elements of the lists in L. For
example,

!!L === x (42)

can be used to determine if any element is the same
as x. The same idea works for records whose fields
contain lists, and so on.

We had an occasion recently to use multiple
element generation when using records whose
fields were lists of integers. The problem got even
more interesting when such records were passed
to a procedure declared with a variable number of
arguments. A section of the code looked like this:

procedure plot(points[])
...

 if \debug then
 every write(!!!points)

...

Multiple generation also can be useful when
dealing with the results of sorting a table. The
default for sort(T) produces a list of two-element
lists containing the key/value pairs. Therefore, to
write out successive keys and their values

every write(!!sort(T)) (43)

can be used. Nevertheless, sort(T, 3), which pro-
duces a “flat” list of successive keys and values is
better, since it requires much less memory. The
code equivalent to Idiom 43 is

every write(!sort(T, 3))

Disabling functions: Sometimes it’s useful to
be able to disable functions. For example, when
measuring the performance of a program, it may
be useful to get rid of output. There’s an easy way
to do this for most programs: Just add

write := writes := 1 (44)

at the beginning of the main procedure. This has
the effect of making expressions like

write(s1, s2)

operate as if they had been written

1(s1, s2)

The argument selection operation simply returns
the value of s1. This has no effect on the program

The Bright Forest Company
 Tucson Arizona

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

voice: (602) 621-8448

fax: (602) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

...uunet!arizona!icon-project

and

© 1992 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

The Icon Analyst / 5

Another case where it’s useful to replace a
function is in a program that uses system(). This
function is powerful, but it’s also quite dangerous
[2]. In testing a program that uses system(), a good
start is to add

system := write (46)

at the beginning of the main procedure. Calls of
system() then just write their arguments. Of course,
this change is hardly as transparent as disabling
output in the manner discussed above.

Avoiding negation: Alternation often can be
used to replace the more conventional logical ne-
gation control structure. When opening a file, it is
very important to catch a case in which open() fails
[3]. The obvious method is:

if not (file := open(name)) then
 stop("∗∗∗ cannot open file")

Negation, even in a simple case like this, tends
to be confusing. An idiomatic alternative is

file := open(name) |
 stop("∗∗∗ cannot open file") (47)

It’s worth noting that, in general

if not expr1 then expr2

is not equivalent to

expr1 | expr2

since the latter expression generates all the values
of expr1 before those for expr2, while the former
produces at most one value from expr1 and that
value is not included among the values generated
by the if-then expression.

Case folding: We’ll end with one final idiom
that is not an idiom at all, but simply the use of
deliberately designed default values.

Case differences among letters often are not
significant. In fact, it’s often easier to design a
program that is insensitive to case, as in one that
processes commands. For this,

map(line) (48)

is all that’s needed, since if the second and third
arguments of map() are omitted, uppercase letters
are mapped to their lowercase equivalents.

Incidentally, the design decision to map up-
percase letters to lowercase ones, rather than the
other way around, was based on years of annoy-
ance with computer output that was printed all in
uppercase. Such output was prevalent partly be-

cause of the limitations of early computer printers,
partly because of the limitations of computer archi-
tecture and software, and partly, would you be-
lieve, because some persons thought (and still do)
that the use of all uppercase letters would (rightly)
identify the printed material as having originated
on a computer and (wrongly) that this would lend
it more importance. Of course, these days, with
sophisticated printers, it’s often impossible to tell
whether printed material originated from a com-
puter or a person, and the distinction often is
irrelevant. But we still like lowercase letters better
than uppercase ones.

Conclusions

This list of idioms is by no means exhaustive.
Almost by definition, it can’t be.

 We’ve already had some additional sugges-
tions from readers. If you have favorite Icon idioms
that are not listed here, please send them to us.
When we get enough of them, we’ll write another
article for the Analyst.

References

1. “Result Sequences”, The Icon Analyst 7, pp. 4-
8.

2. “Getting to the System”, The Icon Analyst 10,
pp. 1-2.

3. “Writing Bullet-Proof Programs”, The Icon
Analyst 10, p. 10.

6 / The Icon Analyst

Monitoring Icon Programs

In the last issue of the Analyst, we described
MT Icon [1], a version of Icon that allows several
programs to run in the same execution environ-
ment and communicate with each other. While MT
Icon has many uses, it was motivated by our re-
search in program visualization and visual debug-
ging, in which a monitor needs to obtain informa-
tion about what’s going on in a monitored program.

The key phrase in the preceding paragraph is
“obtain information”. We need to explain both
what we mean by information and how it is ob-
tained.

All kinds of things go on “under the surface”
when an Icon program runs. There are, of course,
many things directly related to the computations
the program carries out, such as performing arith-
metic, making assignments to variables, calling
procedures, and so forth. These kinds of activities
are of potential interest to monitors that may, for
example, be watching for assignment to a particu-
lar variable or be checking on the use of a particular
procedure. But there are many other kinds of activ-
ity that are less directly related to the actual com-
putations a program performs, such as the location
in the source program where execution is taking
place, storage allocation, garbage collection, type
checking and conversion — in fact, a host of things
may be of interest to a monitor.

While it is easy enough to see how a program
to be monitored can be loaded and activated by a
monitoring program using MT Icon, there’s evi-
dently no way for a monitor to get information
about the program it is monitoring without addi-
tional facilities.

Producing Information for Monitoring

One possibility would be to insert code in the
program to be monitored to activate the monitor
and pass information to it. This code intrusive ap-
proach has many problems and serious limita-
tions. Except for the most trivial kinds of monitor-
ing, manual code insertion is impractical. Code
insertion can be done automatically with a prepro-
cessor (variant translators work nicely for Icon [2]).
But the increase in source-code size for extensive
monitoring makes this technique impractical for
programs of even moderate size, and the penalty in
execution speed is substantial. Furthermore, with
source-code insertion there is no way to get infor-

mation about internal operations such as storage
allocation and garbage collection.

Instrumentation

We have taken a different approach — one
that provides detailed information about a pro-
gram without having to modify it. Instead of put-
ting code in the source program to report events,
we’ve modified the Icon interpreter itself, adding
instrumentation code that reports on events that
occur when a program is running.

This instrumentation code originally wrote
information about program events to a file, which
could be piped into a monitor or saved for later
“post-mortem analysis” [3, 4]. In this mode, moni-
tors were entirely passive. They could not stop the
execution of the monitored program when a spe-
cific event occurred, nor could they examine its
data.

Recently we’ve changed this instrumentation
and integrated it into MT Icon, so that a monitored
program and a program that monitors it both run
under the same invocation of the MT Icon inter-
preter. This allows monitors to get more informa-
tion, get it with less overhead, and take an active
role. Note that in this model, a monitor is necessar-
ily an Icon program.

Monitoring

A monitor requests information about spe-
cific kinds of events in the monitored program.
When such an event occurs in the monitored pro-
gram, control is automatically transferred back to
the monitor by co-expression activation, transmit-
ting information about the event in the process.
After processing the event, the monitor re-acti-
vates the monitored program.

The activation of the monitor by the moni-
tored program is implicit and happens in the in-
strumentation code that is built into the implemen-
tation. The monitored program is not aware that
this has happened. It effectively “goes to sleep”
while the monitor is processing the event and then
“wakes up” when the monitor re-activates it.

Of course, the execution of the monitored
program is slowed down by monitoring. Checking
for events isn’t particularly time-consuming, but
the monitored program isn’t running at all while
the monitor is active. However, unless the monitor
does something intrusive to the monitored pro-

The Icon Analyst / 7

gram (which it can but normally doesn’t), the
computations performed by the monitored pro-
gram are unaffected by the act of monitoring.

So far we’ve been talking in general terms. In
order to understand what’s going on, we need to
talk about the process more concretely from the
point of view of a monitor.

Monitors

A monitor is actively involved in requesting
events and processing them. A monitor requests
an event by calling a built-in function. When an
event occurs in the monitored program, the func-
tion returns. The monitor then can process the
event.

Note that the monitor “goes to sleep” when it
requests information about events and is ”awak-
ened” when an event occurs in the monitored
program. But from the point of view of the moni-
tor, it just calls a function, which may take some
time to perform the requested computation before
it returns. This is no different, in principle, from
calling any other function.

Events

Before going on, we need to say more about
the way that events are characterized. An event has
two components: an event code and an event value.
These are ordinary Icon values. The event code
identifies the nature of the event, such as an assign-
ment, the allocation of a string, or a garbage collec-
tion. Event codes normally are one-character
strings. The event value depends on the nature of
the event. The event value associated with an
assignment is a string that identifies the variable to
which the assignment is being made. The event
value associated with the allocation of a string is
the number of bytes allocated for the string. The
event value associated with a garbage collection is
an integer that identifies the storage region in
which an attempted allocation caused the garbage
collection. And so on.

A monitor requests an event from a moni-
tored program by

EvGet(mask)

where mask is a cset containing the event codes of
interest. Only those events specified in mask are
reported by the instrumentation. If mask is omit-
ted or null, all events are reported. EvGet() fails

when the monitored program terminates.
When EvGet() returns, two keywords in the

monitor are set: &eventcode and &eventvalue,
corresponding to the code and value for the event.
A simple example of monitoring is

while EvGet() do
 write(
 image(&eventcode),
 " : ",
 image(&eventvalue)
)

This loop requests all events in the monitored
program and writes out the corresponding event
codes and values.

Setting up a Monitor

You may be wondering how a monitor gets
started, how EvGet() knows what program is be-
ing monitored, and so on. We’ve developed a
substantial amount of infrastructure to take care of
such things in order to make monitors easy to
write. Much of the infrastructure is written in Icon
and is contained in a library named evinit.

A monitor links evinit and starts by calling
the procedure

EvInit(s)

where s is the name of the icode file to be moni-
tored. EvInit() loads s and performs various initial-
ization tasks, including assigning commonly used
values to global variables so that many aspects of
monitoring can be specified symbolically. EvInit()
also assigns the co-expression for the program
being monitored to &eventsource. This co-expres-
sion is useful in accessing information in the moni-
tored program using MT Icon functions.

A complete program, evlist.icn, to monitor all
events as given above is

link evinit

procedure main(argl)

 EvInit(argl[1]) | stop("∗∗∗ can't load file")

 while EvGet() do
 write(
 image(&eventcode),
 ": ",
 image(&eventvalue)
)

end

8 / The Icon Analyst

This monitor takes the name of the monitored
program from the command line. For example,

evlist prog

lists all the events that occur when prog is run.
In many cases, the monitored program needs

its own command-line arguments. In order to
handle this, EvInit() can be called with a list instead
of a string. In this case, the first element of the list
is taken to be the name of the icode file and the rest
of the list is passed to main() in the corresponding
program. Thus, a more general form of evlist.icn
might start as

procedure main(argl)

 EvInit(argl) | stop("∗∗∗ can't load file")
...

Then

evlist prog prog.dat prog.log

causes evlist to monitor prog as if prog had been
called from the command line as

prog prog.dat prog.log

There’s still the question about what to do
about input and output, especially standard input,
which may be needed by the monitored program,
and standard output, which may be written by the
monitored program. Like load(), EvInit() has three
additional file arguments that can be used to specify
standard input, standard output, and standard
error output for the monitored program. These
default to the corresponding files in the monitor.
Consequently, in

evlist concord <sample.txt >sample.con

the output of both evlist and concord are written to
sample.con — not exactly what you’d want.

There are various things that can be done
about this. With visualization, and hence X-Icon, in
mind, a good start is to use a window for the output
of the monitor. Using this approach, evlist.icn might
look like this:

link evinit

procedure main(argl)

 EvInit(argl) | stop("∗∗∗ can't load file")

 window := open("evlist", "x") |
 stop("∗∗∗ cannot open window")

 while EvGet() do

 write(window,
 image(&eventcode),
 " : ",
 image(&eventvalue)
)

end

Incidentally, when X-Icon writes to a window, it
scrolls when the window is full, so the list of events
goes by much as it would on the screen of a typical
terminal.

As you might imagine, just listing all the
events that occur in a program is not very useful.
For one thing, there are too many events to com-
prehend easily. In order to be useful, a monitor
needs to be selective about events.

More About Events

The instrumentation in MT Icon is extensive.
There are more than 100 different kinds of events.
In addition to the kinds of events mentioned ear-
lier, there are clock ticks, line and column changes
corresponding to the location of execution in the
source program, virtual machine instructions [5],
structure references, string scanning events, and
so on.

The evinit library provides a global variable
for each kind of event. These global variables start
with E_ to distinguish them from other variable
names. For example, the value of E_Assign is the
event code for assignment, and the value of E_String
is the event code for string allocation. Thus, moni-
tors can be written symbolically, in terms of these
global variables, without reference to the actual
one-character strings for event codes.

The following monitor, which tabulates func-
tions calls, illustrates the selection of a single kind
of event:

link evinit

procedure main(argl)

 EvInit(argl) | stop("∗∗∗ can't load file")

 fcalls := table(0)

 mask := cset(E_Fcall)

 while EvGet(mask) do
 image(&eventvalue) ? {
 ="function " &
 fcalls[tab(0)] +:= 1
 }

The Icon Analyst / 9

The instrumentation of MT Icon includes
events for run-time errors. The corresponding val-
ues are the error numbers. Such events occur be-
fore possible error termination, so a monitor can
watch for them and allow a user to decide whether
to convert an error to failure or let it cause error
termination. This can be done as follows:

while EvGet(E_Error) do {

 if keyword("error", &eventsource) = 0 then {

 write(window,
 "Run–time error ",
 &eventvalue,
 ": ",
 keyword("errortext", &eventsource)
)

 write(window,
 "in ",
 keyword("file", &eventsource),
 " at line ",
 keyword("line", &eventsource)
)

 writes(window, "Convert to failure? ")

 if read() == !"yY" then
 keyword("error", &eventsource) := 1
 }

 }

If no run-time error occurs in the monitored pro-
gram, this monitoring code does nothing. How-
ever, if a run-time error occurs in the monitored
program and error conversion is not enabled there,
the monitor provides information about the error
to the user, who may then indicate that the error is
to be converted to failure. In this case, setting
&error to 1 in the monitored program causes the
offending expression to fail.

Artificial Events

All the events described so far are produced
by instrumentation in the MT Icon interpreter. A
program also can produce events at the source
level. The function

event(code, value)

in a monitored program produces an event in that
program that transfers control to the monitor and
sets its &eventcode to code and its &eventvalue
to value.

Thus, “artificial” events can be produced by

 window := open("fcalls", "x",
 "lines=" || (*fcalls + 3),
 "columns=25") |
 stop("∗∗∗ can't open window")

 fcalls := sort(fcalls, 3)

 write(window, " function calls:")
 write(window)

 while write(window, " ",
 left(get(fcalls), 15),
 right(get(fcalls), 8))

 XEvent(window)

end

Typical output from this monitor is:

The monitor above is passive and, in fact,
produces no output until the monitored program
terminates. Monitors can take a much more active
role and can affect the behavior of the monitored
program if they wish.

Consider, for example, run-time errors [6]. It
is possible, using the keyword &error, to have a
run-time error converted into failure instead of
having it cause error termination. This feature is,
however, difficult to use, since it does not discrimi-
nate among different kinds of errors and applies to
the entire program.

10 / The Icon Analyst

inserting calls of event() in a program, either manu-
ally or with a preprocessor as suggested earlier.
Since most kinds of events are covered by instru-
mentation in the interpreter, calls of event() in a
program normally would be sparse and used only
for special purposes.

The event codes produced by artificial events
are not limited to the one-character strings used by
the instrumentation. For example, the event code
from an artificial event can be an integer or even a
structure.

EvGet() has an optional second argument,
which if non-null, allows reporting of events whose
event codes are not one-character strings. Such
event codes are reported regardless of the mask.

One use of artificial events is to a allow a
program to send “disabling” and “enabling” events
that a monitor recognizes and uses to turn moni-
toring off and on. Thus, a program can restrict
monitoring to a particular portion of itself. The
disabling and enabling codes, given symbolically
by E_Disable and E_Enable, are integers, so they
are reported to EvGet() regardless of its mask.

Code in a monitor for disabling and enabling
events can be written as follows:

while EvGet(mask, 1) do
 if &eventcode === E_Disable then {
 while EvGet('', 1) do
 if &eventcode === E_Enable
 then break
 }
 else {
 … # regular monitoring
 }

Each event first is checked to see if it is a disabling
event. If it is, EvGet() is called with an empty cset,
turning off the reporting of all ordinary events
until an enabling event occurs.

Note that the use of artificial events requires
cooperation between a monitor and the program it
monitors.

Discussion

With more than 100 kinds of events that ex-
tensively cover source-language semantics and also
include many aspects of the implementation itself,
there are many possibilities for program monitors.
We’ll discuss some of these in the next issue of the
Analyst.

There’s an even more exciting possibility —
having several different monitors all monitoring
the same program. MT Icon obviously allows sev-
eral monitors to be loaded, but it’s necessary to
have some mechanism by which multiple moni-
tors can get events from the same program and
work cooperatively. In a subsequent article, we’ll
described Eve, a program written by Clint Jeffery
that serves as a controller for multiple monitors.

Acknowledgments

Clint Jeffery developed most of the features of
MT Icon that are needed for monitoring. Ralph
Griswold and Clint Jeffery provided the instru-
mentation in the Icon interpreter with help from
Gregg Townsend and Ken Walker.

References

1. The MT Icon Interpreter, Clinton L. Jeffery, Icon
Project Document IPD169, Department of Com-
puter Science, The University of Arizona, 1992.

2. “Variant Translators”, The Icon Analyst 7, pp.
2-5.

3. “Memory Monitoring”, The Icon Analyst 1,
pp. 7-10.

4. “Memory Monitoring”, The Icon Analyst 2,
pp. 5-9.

5. The Implementation of the Icon Programming Lan-
guage, Ralph E. Griswold and Madge T. Griswold,
Princeton University Press, Princeton, New Jersey,
1986, pp. 110-129, 264-278.

6. “Writing Bullet-Proof Programs”, The Icon
Analyst 10, pp. 10-11.

Downloading Icon Material

Most implementations of Icon are avail-
able for downloading electronically:

BBS: (602) 621-2283

FTP: cs.arizona.edu (cd /icon)

The Icon Analyst / 11

for literals, as in upto("x"), which should be writ-
ten as upto('x').

2. Let Icon do type conversions for you. If type
conversion is need, let the implicit mechanism do
its work, don’t do it yourself.

For example, if n is a string that represents a
number, use

n + 1

not

numeric(n) + 1

Of course, these two expressions produce different
results if n is a string that doesn’t represent a
number.

3. Order case clauses by likelihood of match-
ing. Case clauses in a case expression are evaluated
in the order they appear. If "yes" is more likely
than "no", then put "yes" first, as in

case answer of {
 "yes": …
 "no": …

...
 }

In fact, it’s worth knowing that a case expres-
sion is equivalent to a series of if expressions, as in

if answer === "yes" then …
else if answer === "no" then …
else if …

Note that value comparison is used in case expres-
sions.

4. Avoid unnecessary concatenation. Concat-
enation allocates storage and copies strings. Often
strings to be written out can be constructed and
written in order without concatenation. See Refer-
ence 1.

5. Use as few elementary operations as pos-
sible. There is a certain amount of overhead for
every operation performed in Icon. Where there is
a way of doing something that requires fewer
operations than another way, it’s generally faster
to use the one that requires the fewer operations.
For example,

s == ""

is faster than

∗s = 0

for determining if a string is empty.

Programming
 Tips

Efficiency

Most programmers are concerned about how
fast their programs run. Execution speed usually
depends most significantly on large-scale aspects
of a program like its structure, the algorithms it
uses, and the strategy with which the program-
ming tasks are approached. But there are some
lower-level matters than can help make programs
run faster. If you tend to these lower-level aspects
of programming as a matter of habit, you won’t
have to go back over a program to fine tune it for
efficiency.

A few suggestions along these lines follow.
We’ve mentioned some of these before, but we’re
repeating them here, since we continue to see
programs that could benefit from their applica-
tion.

1. Use the types that operations expect. Fail-
ure to do this results in type conversions that
otherwise might be unnecessary. The most fla-
grant examples of poor usage in this regard occur

12 / The Icon Analyst

6. When possible, use element generation in-
stead of subscripting when indexing through a
structure. For example,

every x := !L do …

is faster than

every x := L[1 to ∗L] do …

The reason the first form is faster is not so much
that it uses fewer operations but that element gen-
eration keeps track of where it is in a structure,
while the second form must locate each element
separately.

7. Avoid cset construction in loops. It is, of
course, good programming practice to avoid any
computation in a loop that can be moved outside.
The problem with cset construction is that it’s easy
to overlook it. For example,

while tab(upto(~&letters)) do …

constructs the complement of &letters every time
through the loop.

You might ask why Icon doesn’t take care of
this automatically, since it’s clear that ~&letters is
a way of specifying a constant. Handling this at
compile time is called constant folding. It’s just
something the implementation of Icon doesn’t do.

8. Dispose of structures when they are no
longer needed. Space for allocated data, which
includes all structures in Icon, is automatically
reclaimed by garbage collection if Icon needs more
space.

Some programs build large data structures,
use them, and then go on to other computations,
leaving behind references to the data structures
even though they are no longer needed.

The garbage collector has no way of knowing
that data that logically can be referenced (such as
the values of global variables) will not, in fact,
actually be referenced in the future. The garbage
collector must, therefore, keep such data. Further-
more, in the case of a structure, all the data in the
structure must be kept, as must everything this
data references, and so on.

Simply assigning a null value to a variable
that references a structure that is no longer needed
is all that’s needed to “free” it and all the data it
references. A simple expression like

database := &null

may do wonders to speed up subsequent program

execution.
9. Use an every loop to perform a task a speci-

fied number of times.
This may seem so obvious that it doesn’t need

mentioning, but persons who start using Icon after
using another programming language sometimes
fail to see the similarity between every and the for
control structure of the other language. Instead,
they write while loops, incrementing a counter
and testing for a limit.

Reference

1. “String Allocation”, The Icon Analyst 9, pp. 6.

What’s Coming Up

In the next Analyst, we’ll have an article on
using program monitors to visualize program ex-
ecution in Icon. We’ll explain what program visu-
alization is, describe some of the problems associ-
ated with it, and show some examples of our work
so far.

Following up on the article on arrays in issue
14 of the Analyst, we’ll describe how to use tables
to implement sparse arrays in which only a small
percentage of all possible elements are actually
referenced.

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.

