
The Icon Analyst / 1

February 1993
Number 16

In-Depth Coverage of the Icon Programming Language

Until a few years ago, visualization was avail-
able only to a few persons with access to expensive
special-purpose equipment. The recent decline in
the cost of computer systems with good graphical
processing capabilities has made visualization eco-
nomically practical for “ordinary mortals” like us.

Much of the focus of scientific visualization is
on the physical world — models of complex mol-
ecules, the representation of fluid flow, and so
forth. For this reason, scientific visualization is
sometimes referred to as “visualizing reality”, al-
though if often goes beyond reality into somewhat
fanciful subjects like colliding neutron stars. The
term program visualization refers to the rendering
of computational processes in a visual fashion.

Issues in Program Visualization

There are many intriguing and difficult issues
in program visualization. In most scientific visual-
izations, there is an underlying physical reality
and geometry. Molecules exist. Fluid flow is some-
thing we can experience. Computational processes
are just as real, but they are more abstract. There
often is no natural geometry in computational
processes to provide an obvious basis for under-
standable images.

More specifically, some aspects of program
behavior are not cast as images easily or naturally.
For example, we still don’t have a good way of
representing control flow in generators and goal-
directed evaluation.

Some aspects of programs, such as data struc-
tures, involve the interconnection of many compo-
nents. The problem of automatically laying out
large graphs in a understandable fashion is very
hard and is a research topic in itself. Producing
attractive graphs automatically (and aesthetics are
important to understandability) is, in general, out
of the question.

Then there’s the “real-estate” problem. Most
computer displays are relatively small. There’s
hardly ever enough room to present images the

 In this issue …

Program Visualization … 1
Sparse Arrays … 9
What’s Coming Up … 12

Program Visualization

Over the past few years we have become in-
creasingly interested in ways in which program
performance and behavior can be characterized in
an understandable way. When we say program
behavior, we don’t mean the results produced by
program execution but the more general character-
istics of program execution as a whole. For Icon,
we’re interested in the places where a program
spends most of its time, how deep recursion gets,
how extensive goal-directed evaluation is, how
much and what kinds of storage the program allo-
cates, how much type conversion it performs, and
so forth.

The problem with understanding program
behavior in a high-level language like Icon is the
enormous amount of computational activity that
occurs during program execution. One source-lan-
guage operation may produce dozens of lower-
level events that are important in understanding
program behavior. In raw form, such information is
all but incomprehensible. Traditional methods for
summarizing data, such as tables and charts, may
omit or even obscure important patterns of activity.

The key to understanding program behavior
is visualization. In the sciences, the word visualiza-
tion is used to refer to the rendering of objects and
processes in the form of images, often animated.
Such images make it possible to understand things
by utilizing the amazing visual-processing capa-
bilities of the human brain and mind. (The funda-
mental importance of images in human life is pointed
out by one of the main definitions of “to see”— to
understand.)

2 / The Icon Analyst

Figure 1. A MemMon Display

way you’d like.
While we don’t propose to solve such funda-

mental problems, we do have some new ideas
about program visualization that seem interesting.

Previous Work — Memory Monitoring

Our first adventure in program visualization
dates back to 1985, when Gregg Townsend set out
to design a system for displaying the management
of allocated data in Icon.

To get the data needed to visualize storage
management, he added instrumentation code to
the Icon interpreter to write out information about
storage allocation and garbage collection.

The resulting tool, called MemMon, shows
Icon’s allocated data regions, with each allocated
object appearing as it is allocated [1, 2]. Different
types of data are represented by different colors on
the display. Figure 1 shows a typical MemMon
display. Of course, a great deal is lost in a black-
and-white snapshot. If you still have the color
MemMon image that came with the second issue of
the Analyst, you might want to dig it out and take
a look at it.

MemMon proved very useful in several ways:
understanding the role of different types of data,
evaluating alternative programming techniques,
identifying inefficient programming techniques,

locating and correcting inefficiencies in the imple-
mentation, and so forth.

The success of MemMon inspired our current
work in program visualization. And the pursuit of
good visualization tools has led us into several
other areas.

Laying the Groundwork for Visualization

Some program visualization techniques re-
quire modifying the program to be visualized by
inserting calls to display routines. We wanted to be
able to visualize the execution of a program with-
out modifying it or unduly perturbing its behav-
ior. This led to extensive instrumentation of the
Icon interpreter.

Since program visualization is a relatively
new field, much work is experimental and specu-
lative. It’s difficult to justify investing months of
effort in developing a new visualization tool whose
usefulness cannot be assured in advance. One way
to make programming easier is to use a high-level
programming language — a theme we’ve pro-
moted for many years. What’s more natural than
writing program visualization tools in Icon? But
we went a step further.

MT Icon was written so that a program to be
visualized could run in the same execution space
as a visualization tool, enabling the tool to access

The Icon Analyst / 3

the program state and data of the program being
visualized [3]. At the same time, the instrumenta-
tion code was changed to pass information by
means of co-expression activation, instead of writ-
ing it to an output stream. This model offers the
advantage that a visualization tool can deal with
data from the program it is visualizing in its native
format.

Graphics programming, which underlies pro-
gram visualization, is still a difficult area. To en-
gage in experimental work, we needed ways to
make graphics programming easier. This led to the
development of X-Icon, which adds graphic capa-
bilities to Icon [4, 5].

It is indeed much easier to program graphics
in X-Icon than it is to program them in, say, C. The
pleasant surprise was to discover that graphic
applications written in X-Icon run acceptably fast
for program visualization on current workstations.
In fact, in many cases, the speed is limited by
graphic actions, not by X-Icon.

So, as is typical of such research projects, we
set aside our original objectives while we devel-
oped the infrastructure to achieve them. Along the
way, however, we have been able to work on issues
related to program visualization and to develop
some program visualization tools. Now that the
mechanism to support program visualization is in
place, we can get back to our original objectives
and concentrate on program visualization and its
applications.

Examples

Our work so far is largely exploratory. Some
examples follow.

Visual Metaphors
Traditional visual representations of abstract

data take the form of charts and graphs. In the case
of program visualization, these usually are ani-
mated to show the course of program execution.
It’s rather natural for programmers to think in
terms of directed graphs, tables of values, and so
forth. But there’s a lot of evidence that part of the
human mind works more effectively on patterns
and that patterns are important in characterizing
program behavior.

One approach to exploiting the pattern-match-
ing capabilities of the human mind is to use meta-
phorical representations in place of the more literal
ones.

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

voice: (602) 621-8448

fax: (602) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

...uunet!arizona!icon-project

and

© 1993 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

The Bright Forest Company
 Tucson Arizona

Last year we tackled storage management as
a specific subject for such investigations. Storage
management is a good subject because it is “rich”
in terms of the number and variety of events that
occur during program execution. The relatively
literal visualization provided by MemMon also
provided a basis for comparison.

So we set out to visualize storage allocation
using a variety of visual metaphors. In the result-
ing visualization tools, different types are repre-
sented by different colors as they are in MemMon.
But their geometries and animations mostly bear
little relationship to those of MemMon or to the
actual layout of memory.

4 / The Icon Analyst

For example, we tried visualizing storage al-
location as randomly placed dots, with colors cor-
responding to the type allocated and areas corre-
spond to the amounts of allocation — a “splatter
painting” of storage allocation. See Figure 2.

Such a representation certainly is not literal,
but you can “see” things you otherwise might not.
You get an overall “picture” of the frequency and
amount of allocation, how the pattern changes
with the course of program execution, and you
often can detect distinct phases of program execu-
tion.

We went on from there to try other visual
metaphors with names like pinwheel, nova, tapes-
try, web, flowers, haystack, cannonade, and so on.

When this coding orgy ended, we had more
than 30 ways of visualizing storage allocation meta-
phorically. Of these, some were plainly awful —
ideas that seemed good but that just didn’t pan out.
Some of the visualization metaphors were, not
surprisingly, mundane. But a handful were inter-
esting and useful.

Since animation is an essential component of
these visualizations, it’s difficult to get any real
idea of what they’re like from looking at snapshots.
We have, however, put six of our favorite views of
storage allocation at the end of this issue of the
Analyst.

All the snapshots are from the same program
and taken at the same point in execution. Compare
the “splatter” view in Figure 2 with the corre-
sponding color view to see the difference that color
makes. In looking at the color views, you may find
it helpful to know that strings are ivory, lists are

cyan, record are purple, sets are red, and tables are
green.

To get an idea of what kinds of things differ-
ent views reveal, note the prominence of strings in
the pinwheel and tapestry views, and their relative
insignificance in the nova and splatter views. The
pinwheel and tapestry views show only the num-
ber of allocations, not the amount allocated, while
the nova and splatter views show the amount.
Thus, many strings are being allocated, but they
are small. This aspect of allocation in this program
shown here is not easily seen in MemMon, by the
way.

Incidentally, it’s a testimony to the ease of
graphics programming in X-Icon that all these
visualization tools were written over a period of a
few weeks when other business was going on.
Along with developing the tools themselves, we
developed infrastructure to make it easier to write
new tools. By the end (when we ran out of fresh
ideas and energy), it was taking from 30 minutes to
an hour or two to write a new tool, depending on
its geometrical complexity. When a tool is that easy
to write, it is not so painful if you discover it’s
useless.

You may think the metaphorical views are
whimsical or even goofy. They may be. But at an
hour or so apiece, it’s cheap fun.

Coping with Limited Screen Space
Except for very expensive experimental sys-

tems, the amount of space available for visualiza-
tion is very limited. This problem isn’t unique to
program visualization — typical graphical user
interfaces attempt to create the illusion of a desk-
top on a screen that’s less that a foot square (try
working on a physical desk of that size). The prob-
lem isn’t only size — the resolution of even the best
computer monitors is far less than that of paper.

You know the standard ways of dealing with
this problem: multiple windows, scrolling, over-
lapping or hidden objects, pull-down menus, vari-
ous devices for zooming in and out, visual filing
metaphors, icons, text in a tiny size, and so forth.

In program visualization, the problems are
only worse. If you’re trying to understand a pro-
gram, you almost certainly want to be able to look
at the text of the program itself. But even in a high-
level programming language like Icon, a program
may be hundreds or even thousands of lines long
— certainly too long to fit on the screen in a

Figure 2. A “Splatter” View of Allocation

The Icon Analyst / 5

readable format all at once. Even the call tree of an
Icon program may have hundreds of nodes and
nicely occupy the entire screen, if given the oppor-
tunity.

And suppose you want to see all the data
structures a program has created. A program may
produce hundreds or even thousands of struc-
tures, and even one structure, like a list or table,
may have thousands of elements.

So it falls to the person writing program visu-
alization tools to find ways to use screen space to
display information in a compact yet understand-
able way.

The standard approach to displaying a large
amount of text is to scroll within a window. For
non-textual displays, the ability to zoom in and out
and select interesting areas can be useful.

A more unusual and promising approach to
limited screen space in program visualization is to
use “fish-eye” views [6]. The idea is to give a larger
amount of screen space to portions of an image of
greatest current interest, with material of less inter-
est getting less space.

Figure 3 is a snapshot of a visualization tool
that provides a fish-eye view of text. The type size
for the text is largest near the point of interest,
dwindling in size to the vanishing point for text
further away. A scrollbar allows the portion of the
text of greatest interest to be selected. Note that
although portions of the text far from the center of
attention are illegible, they still provide useful cues
in the patterns of line lengths. Incidentally, this
tool relies on scalable fonts that are supported by
the X11R5 release of X.

An approach to the call-tree problem men-
tioned earlier is shown in Figure 4, which is a
snapshot of a tool called Algae (to suggest the
miniaturizing of a tree). In Algae, “cells” on a
hexagonal grid are highlighted as procedures call
other procedures (resulting in vertical growth) and
as procedures suspend (resulting in horizontal
growth.

The user can interact with Algae, laying down
barriers that cause the monitored program to stop
if procedure ”growth” exceeds the specified
bounds. The rectangular barriers shown in Figure
4 are produced by clicking with the left mouse
button on a cell, which establishes a corner. The
user also can create a barrier of arbitrary shape by
clicking on individual cells with the right mouse
button. If procedure call or suspension growth

reaches the barrier, the monitored program stops,
after which the user has a variety of options.

Sometimes miniature views can give an idea
of a pattern of behavior that may be lost when
rendered in a larger size. Figure 5 on the next page
shows output from a “piano roll” visualization of
program activity.

Figure 3. A Fish-Eye View of Text

Figure 4. “Algae”

6 / The Icon Analyst

Figure 5. A “Piano-Roll” View of Execution

The vertical axis represents source-code loca-
tion, with each vertical pixel position correspond-
ing to one source line. If the program is too long for
the window, the display is scaled, and more than
one line is assigned to a pixel. The horizontal axis
represents time, with each pixel column corre-
sponding to one clock tick (10 milliseconds, in this
case). Note the repetitive nature of the image. This
shows that the program is performing a major
computation repeatedly, presumably in a loop.
This image illustrates an interesting aspect of pro-
gram visualization: You often can learn something
useful about a program using visualization with-
out ever seeing the program itself.

This kind of visualization also can be com-
bined with a source-code listing to relate activity to
specific sections of the source code, but such a
visualization requires a considerable amount of
screen space.

Visualizing Data
One of the most exciting aspects of our system

for program visualization is the ability of a monitor
to access data in a monitored program [3]. And,

since the monitor and the monitored program are
both written in Icon, data can be processed di-
rectly. For example, a monitor can generate ele-
ments of a list in a monitored program in the same
way it would generate the elements of a list of its
own.

In fact, a monitor can modify data in the
monitored program or even insert its own data into
the monitored program. The possibilities go far
beyond visualization. Imagine how this capability
could be used in a debugger.

Getting back to program visualization, there
are again many ways to view the same structure.
Figure 6 below shows a multi-window visualiza-
tion tool in which each window shows the details
of a data structure. Scrolling is available for struc-
tures that have many elements. Note that the rep-
resentation of data in this tool is nonetheless essen-
tially textual.

An example of a tool that takes a more meta-
phorical view, motivated by the problem of limited
screen space, is shown in Figure 7 on the next page.
The larger window shows all the structures in the
program, color coded by type with identifying
serial numbers. Clicking on a structure causes
another window to pop up, showing the details of
the structure in miniature. A table and a list are
shown.

The really difficult problem in visualizing
structures is showing the relationships among
them. Since structures in Icon have pointer seman-

Figure 6. Visualizing Data

The Icon Analyst / 7

You might expect multiple visualizations to
be too slow to be useful. We certainly worried
about this and went to some lengths to reduce
overhead where we could. It was a relief to find
that multiple visualizations generally run accept-
ably fast. Of course, speed depends on the hard-
ware you have. We usually run on Sparc IPXs.
Note also that our visualizations are compara-
tively simple. We have not, for example, attempted
any three-dimensional views, realistic renderings,
or sophisticated animations.

There’s another side to this. The ability of a
human mind to comprehend images, although
amazingly large, is still limited. With multiple
visualizations, shifts of attention from one visual-
ization to another slow down comprehension fur-
ther. It’s not unusual for such visualizations to run
too fast for ready comprehension; it may be neces-
sary to delay them artificially or for the user to
“take a breath”, stopping monitoring altogether
for a while.

Tool Interaction
It is important for users to be able to interact

with visualization tools. Such interaction can be
used to select different visualization options, to
chose among alternate views, and so on.

More interesting possibilities lie in the visual
specification of important aspects of program be-
havior. Algae’s barriers to recursion and suspen-
sion illustrate the possibilities.

Tools also may interact with each other. For
example, if the user clicks on a pixel in a piano roll
display, it signals a text browsing tool, if present, to
display the portion of the program surrounding
the line corresponding to the selected location on
the piano roll display.

Conclusions

We’ve come a long way from poring over
computer listings of octal core dumps (yes, core) to
interactive animated color visualization.

We’ve just begun to explore program visual-
ization in Icon. There are so many possibilities that
it’s hard to decide what to do next.

Of course, visualization does not need to stand
alone. In the back of our collective mind (not so far
back, actually) is a visual programming environ-
ment for Icon.

Figure 7. Another View of Data Structures

tics [7], this suggests arrows pointing from struc-
ture to structure. This sounds easier than it is. Some
programs have many structures and the resulting
graph may be large and impossibly complicated.

There are some obvious things that can be
done, such as restricting data visualization to sub-
sets of structures. There also are fish-eye approaches
to visualizing data. We have not given much atten-
tion to such possibilities yet.

Multiple Visualizations, Multiple Views
Even a simple programming language has

many features you might wish to visualize. For a
sophisticated, high-level programming language
like Icon, there are literally hundreds of possibili-
ties. And, as suggested by the examples of visual-
izing storage allocation mentioned earlier, there
also are many different possibilities for viewing
the same aspect of program behavior. It’s not nec-
essarily the case that one way of viewing program
behavior is better than others. The best view may
depend on the situation.

In fact, a program visualization system needs
to be able to support multiple, simultaneous visu-
alizations. We have approached this problem by
designing a program monitor that loads other pro-
gram monitors and serves as an event multiplexer.
This monitor, called Eve [8], does not perform any
visualizations of its own. Instead, Eve services
other monitors that perform visualizations. Eve
gets events from the monitored program and dis-
tributes them to other monitors. Figure 8 on the
next page shows a snapshot of multiple visualiza-
tions with Eve’s window at the upper left.

Eve displays a menu listing visualization tools
from which a user can make selections that may
include start-up options for tool configuration. Eve
provides buttons to start and stop monitoring,
disable and enable specific visualizations, or
“iconify” them (turning their visualization win-
dows into icons).

8 / The Icon Analyst

4. X-Icon: An Icon Windows Interface, Clinton L.
Jeffery, Technical Report TR 91-1, Department of
Computer Science, The University of Arizona, 1991.

5. “An Introduction to X-Icon”, The Icon Analyst
13, pp. 5 -10.

6. “Generalized Fisheye Views”, George W. Furnas,
CHI’86 Proceedings; Human Factors in Computing
Systems, New York, 1986, pp. 16-23.

7. “Pointer Semantics”, The Icon Analyst 6, pp. 2
-8.

8. Eve: An Icon Monitor Coordinator, Clinton L.
Jeffery, Icon Project Document IPD179, Depart-
ment of Computer Science, The University of Ari-
zona, 1992.

9. “Icon Class Projects’, Icon Newsletter 39, pp. 11-
12.

10. “Visualizing Program Execution in Icon”, Pro-
ceedings of the Sixth International Conference on Logi-
cal and Symbolic Computing, Madison, South Da-
kota, 1992, pp. 33-46.

Figure 8. Multiple Visualizations Under Eve

Acknowledgments

Clint Jeffery wrote Algae, Eve, and the fish-
eye tool for visualizing text. The tool for display-
ing Icon’s data structures textually was written by
Song Liang as a class project [9]. Gregg Townsend
wrote MemMon and the first version of the piano-
roll visualization tool.

Most of the material in this article appeared
first in a conference paper [10].

References

1. The Visualization of Dynamic Memory Manage-
ment in the Icon Programming Language, Ralph E.
Griswold and Gregg M. Townsend, Technical Re-
port TR 89-30, Department of Computer Science,
The University of Arizona, 1989.

2. “Memory Monitoring”, The Icon Analyst 2,
pp. 5 -9.

3. “Monitoring Icon Programs”, The Icon Ana-
lyst 15, pp. 6-10.

The Icon Analyst / 9

Sparse Arrays

In Issue 14 of the Analyst [1], we showed
various ways in which multi-dimensional arrays
can be implemented using lists of lists. As men-
tioned in that article, there are limitations on the
size of an array that can be implemented in this
way — it may require too much memory.

Very often, however, large arrays are “sparse”,
and only a small percentage of their elements are
actually referenced.

Consider, for example, a monitor that follows
the location of program execution in a monitored
program, counting the number of times each pro-
gram token is evaluated. The natural representa-
tion of the program is a two-dimensional array
with a row for each program line and with columns
corresponding to characters of the lines. Execution
does not occur on white space in a program, and
only one location is needed for each token. Further-
more, since some lines usually are longer than
others, the use of a rectangular array has the effect
of adding white space to the ends of some lines. For
typical programs, only a few percent of the ele-
ments in such a location array are ever referenced.

This suggests a sparse array in which space
for all elements in not allocated when the array is
created. Such an implementation thus requires a
mechanism for adding to the array depending on
the elements that actually are referenced.

Tables of Tables

Icon’s table data type is the obvious candidate
for implementing sparse arrays. Tables start out
empty and an element (and the space for it) is
allocated only when the element is referenced the
first time. What could be more natural for sparse
arrays? For example, a one-dimensional sparse
array can be created by

A := table()

and indexed as

A[i] := x

If this is the first time A is subscripted with i, an
element is created for the index (key) i.

Implementing sparse arrays using tables is
not all easy going, however. The problems are
inherent in the deferred allocation. If, for example,
a two-dimensional array is implemented as a table
of tables, it might start out the same way as a one-

dimensional array:

A := table()

Now consider an array reference:

A[i][j] := x

As shown above, the first subscript, i, is not a
problem. But A[i] is null, the default value given
when A was created. If nothing else is done, there’s
a run-time error when an attempt is made to sub-
script this null value with j.

The apparently obvious thing to do is to cre-
ate A as

A := table(table())

so that the default value of an element of A is itself
a table. This is a nice idea, but it doesn’t work. The
double subscript works, but the values in the array
don’t come out as expected.

The results may be baffling. In fact, this is one
of the commonest and most frustrating problems
for novice (and sometimes experienced) Icon pro-
grammers. They often even think there’s some-
thing wrong with the implementation of Icon.

The problem is that there is only one table that
serves as the default value for all newly referenced
elements of A. We’ve mentioned this problem and
its relatives before [2]. Despite what you might like
to have happen, the expression above is equivalent
to

T := table()
A := table(T)

which illustrates that there are only two tables
associated with the array. No wonder things don’t
come out right!

10 / The Icon Analyst

No, there isn’t any way around this, like

A := table(create |table())

This just gives A a default value that’s a co-
expression. There’s no way to have this co-expres-
sion automatically activated to produce new tables
as needed. And if you think about it, you’ll realize
there can’t be and still have consistent semantics
for expression evaluation and tables.

What’s required instead is an explicit test for
a new key. If a key is new, a new table needs to be
assigned to it. Going back to the original formula-
tion, this initialization of new elements of A can be
done as follows:

A := table()
...

/A[i] := table()
A[i][j] := x

so that if A[i] is null, and hence i is a new key, a table
for “column” i is created.

For a two-dimensional sparse array, this ini-
tialization, although annoying, is not all that bad.
And it can be hidden in a procedure such as

procedure ref_sparse(A, i, j)

 /A[i] := table()

 return A[i][j]

end

Notice that since the value returned is a reference
to an element of a structure, it is a variable and
assignment can be made to the procedure call, as in

ref_sparse(A, 1, 5) := x

Sparse arrays with many dimensions are more
of a problem. If the number of dimensions is large
(or unlimited), a recursive approach based on the
procedure above can be used [3].

Subscript Encoding

There’s another technique that can be used to
implement sparse arrays of arbitrarily high dimen-
sionality using a single table. It isn’t pretty, but it
works and avoids the complexity of the tables-of-
tables approach.

The idea is to encode multiple subscripts as a
single string. For example, instead of using

A[i][j] := x

you might use

A[i || ":" || j] := x

where the colon is used to separate the integers.
We told you it wasn’t pretty … . The ugliness

can be hidden in a procedure, however:

procedure ref_sparse(A, i, j)

 return A[i || ":" || j]

end

This encoding device works with any number
of subscripts, so a more general procedure is

procedure ref_sparse(A, subscripts[])
 local s

 s := ""

 every s ||:= !subscripts || ":"

 return A[s]

end

Note that the trailing colon produced by the every
loop causes no problem and it’s easier, simpler,
and faster to leave it at the end of the key.

With this formulation, it’s possible to write
expressions like

ref_sparse(A, 1, 5, 100, 200000, 4) := x

A List of Tables

There are situations in which sparse arrays
can be implemented with a combination of lists
and tables. If a two-dimensional array is not very
sparse and if it’s relatively short and of fixed extent
in one dimension, the list-of-lists approach given
in Reference 1 can be usefully recast as a list of
tables:

A := list(n)
every !A := table()

Thus, there is a fixed number of rows, n, but the
number of columns is unlimited. The resulting

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.

The Icon Analyst / 11

dexes as strings may need to be modified, or it may
not work at all.

We also have glossed over issues like provid-
ing an initial value for all the elements of a sparse
array. In the list-of-tables approach, handling this
is easy. For example,

A := list(n)
every !A := table(0)

creates a sparse array with elements whose initial
values are zero.

Choosing an Array Representation

We’ve shown four ways of representing ar-
rays: as a list of lists, as a table of tables, as one table
with encoded subscripts, and as a list of tables.
Which is the best representation to use? This de-
pends on the situation. If an array is not sparse or
if it is not too big, the list-of-lists representation is
the simplest and most efficient one. If a sparse
representation is needed, there still are several
choices, and the best one depends on details.

The factor to consider first is space. Although
the use of tables to allow referenced elements to be
added to the original structure saves space for
elements that are never referenced, tables are larger
than lists and table elements are larger than list
elements. Hence, if an array is not sufficiently
sparse, a sparse representation can actually take
more space than the list-of-lists representation.
Even where a sparse representation is clearly ap-
propriate, the relative merits of the different sparse-
array representations depend both on the degree
and nature of the sparseness.

Referencing a table also is somewhat slower
than referencing a list, although the difference is
not as much as you might think, and it ordinarily is
a secondary consideration.

While it is not possible to give precise guide-
lines for the choice of an array representation, a
example may help in understanding what the fac-
tors are and how important they are.

A Comparative Example

We tried all of the representations with the
program monitor described at the beginning of
this article. The program we used for comparing
the representations was of modest size: 102 lines,
with the longest line having 73 characters. Thus the
conceptual 73 × 102 array consisted of 7,446 ele-
ments in all. When the program was run, there

structure is shown below. In this form, a sparse
array consists of one list and n tables:

A 1

 2

 n

Note that this representation fits the situation
of the program tokens mentioned at the beginning
of this article.

One nice property of this representation is
that no special initialization of new elements is
needed — all the necessary tables are created ini-
tially. For example,

A[i][j] := x

works as it stands.

Comments on Using Tables to Implement
Arrays

Tables offer great flexibility. But with this
flexibility may come problems. For example, a
table can be subscripted with any value. Unlike
lists, there are no bounds checks for tables, so there
is no automatic check of an out-of-bounds array
reference. That must be provided in, say, an array-
referencing procedure.

There are more subtle problems. There is no
type conversion of table subscripts, so, for example
T[1] and T["1"] reference different elements of T.
It’s easy for errors to occur as the result of this, and
these errors may be hard to find. Again, the rem-
edy is to provide explicit conversion in a proce-
dure. Note that a table subscript need not even be
numeric, which means that provision has to be
made for handling erroneous types as array in-
dexes.

On the other hand, there are situations in
which having a sparse “array” that can be
subscripted by non-numeric “indexes” can be very
handy. However, it’s probably best not to think of
such a structure as an array. Of course, if indexes
can be non-numeric, the encoding of multiple in-

12 / The Icon Analyst

were 58,001 evaluations of tokens, but only 187
different tokens, so the array was about 97.5%
sparse — definitely a candidate for a sparse repre-
sentation. However, the test program was small
enough that the list-of-lists representation was
practical and it therefore could be compared to the
sparse representations.

The results are shown at the bottom of the
page. The figures for space are for bytes allocated
for the structures used for the arrays.

It’s actually possible to work out the approxi-
mate space requirements using the formulas cited
in Reference 4 if you have one additional piece of
information about the sparse array: the number of
different columns that have referenced elements,
which is 42 in this example. (This information is
needed for the table-of-tables representation.)

The relative speeds should not be surprising,
although the penalty for the sparse representa-
tions may not be as much as you’d expect.

On the other hand, the space used by the
sparse representations shows that they really are
worthwhile. However, before concluding that a
table with encoded subscripts uses the least space,
you need to know that the strings used to encode
the subscripts require a lot of space. In fact, in this
example, 283,173 bytes were allocated for strings.
Many of these were duplicates, however, and all
but 22,521 bytes could be reclaimed by garbage
collection. So a fairer figure for encoded subscripts
is 28,149 bytes.

It’s also worth mentioning that in the table-of-
tables representation, the creation of new tables
was done in-line. If it’s done with a procedure, the
time increases to 50.1 seconds.

Which one to choose? In this case, we prefer
the list-of-tables representation for its simplicity,
economical use of memory, and speed. You may
feel differently. And, of course, it all depends on
the amount and nature of sparseness. For example,
if all the tokens evaluated had been in a few col-

umns, the table-of-tables representation would be
more appealing.

References

1. “Arrays”, The Icon Analyst 14, pp. 2-4.

2. “Idiomatic Programming”, The Icon Analyst
14, pp. 4-8.

3. “Programming Tips”, The Icon Analyst 13, pp.
10-12.

4. “Memory Utilization”, The Icon Analyst 4, pp.
7-10.

 list table list table with encoded
 of lists of tables of tables subscripts

bytes 63,774 10,964 13,500 5,628
seconds 41.6 45.6 42.6 46.0

Comparison of Array Representations

What’s Coming Up

Over the years there have been a few pro-
gramming languages closely associated with Icon
that have become “lost” — languages that no
longer exist or at least are not in general use.

Four SNOBOL languages preceded Icon. We
don’t count these as lost. Despite substantial dif-
ferences among the SNOBOL languages, the first
three are really earlier versions of SNOBOL4, and
SNOBOL4 is hardly dead — it’s still available and
in use on several contemporary platforms.

There are three Icon-related languages that
we do count as lost — SL5, Rebus, and Seque. SL5
was a fully developed programming language in
its own right that immediately preceded Icon. It
was, in fact, abandoned to make room for Icon.
Rebus, on the other hand, was an experiment in
casting SNOBOL4 in a syntax that resembles Icon.

Seque was something entirely
different — an experiment in
elevating the concept of se-
quences of values to first-class
data types.

Starting in the next is-
sue of the Analyst, we’ll de-
scribe these languages and
indicate how they relate to
Icon.

m
os

ai
c

no
va

pi
nw

he
el

w
eb

ta
pe

st
ry

sp
la

tte
r

V
ie

w
s

of
 S

to
ra

ge
 A

llo
ca

ti
on

 in
 I

co
n

