
The Icon Analyst / 1

April 1993
Number 17

In-Depth Coverage of the Icon Programming Language

 In this issue …

Lost Languages — SL5 … 1
Drawing in X-Icon … 7
Subscription Renewal … 12
What’s Coming Up … 12

tational repertoire [6-10]. We won’t attempt to cover
all of SL5 here. Instead we’ll focus on the highlights
and those features that are most relevant to Icon.

Basic Features

Most imperative programming languages (in-
cluding SNOBOL4) have both expressions (that
produce values) and statements (that do something
but don’t produce values). SL5, on the other hand,
has only expressions, although some of them look
like statements. Thus, in SL5

if expr1 then expr2 else expr3

is an expression and it produces a value (the value
of expr2 or expr3, depending on which is selected).
Icon inherited this way of casting computation.

Like SNOBOL4, SL5 stresses run-time flexibil-
ity. Structures are created at run-time, the meaning
of operations can be changed at run-time, and so on.
Not surprisingly, SL5 also has automatic storage
management with garbage collection to reclaim
space when needed.

None of these features is unusual. The unusual
features of SL5 are its method of controlling pro-
gram flow, the way it deals with various aspects of
procedures, and its approach to pattern matching.

Lost Languages — SL5

Background

As you probably know, Icon is only the latest
in a series of programming languages. It all started
in 1962 at Bell Labs with the development of a
language called SNOBOL [1], which was designed
to make it easier to manipulate symbolic informa-
tion represented by strings of characters. There
were three successive SNOBOL languages, culmi-
nating in 1968 with SNOBOL4 [2], which added
sophisticated data structures.

Further work on this kind of programming
language moved to The University of Arizona in
1971. This work first used SNOBOL4 as a basis for a
number of experiments [3-5]. Eventually, the struc-
ture of SNOBOL4 became too limiting, which led to
the design of an entirely new programming lan-
guage called SL5 (“SNOBOL Language 5”). The
name, although barely disguising its origins, was
chosen to avoid the impression that the new lan-
guage was just a variant of earlier SNOBOL lan-
guages. SL5 was, in fact, very different from its
SNOBOL ancestors, although it contained many
ideas derived from them.

If you’re familiar with SNOBOL4, you’ll see
both differences and similarities between SNOBOL4
and SL5 in what follows. Whether or not you know
SNOBOL4, you’ll see what preceded and shaped
Icon.

SL5 eventually became a large language in the
sense of having many features and a large compu-

2 / The Icon Analyst

Control Structures

In order to understand control structures in
SL5, it is helpful to know how flow of control is
handled in its predecessor. In SNOBOL4, the ex-
ecution of a statement may succeed or fail, an idea
that originated in COMIT [11]. SNOBOL4, how-
ever, does not have conventional control struc-
tures like if-then-else and while-do. Instead it has
conditional gotos that allow program execution to
be directed to different statements depending on
the success or failure of the current one, as in

 IDENT(X, Y) :S(YES)F(NO)

In SNOBOL4, success and failure are termed sig-
nals.

These days gotos are deprecated because of
the unstructured, confusing, and error-prone styles
of programming that they allow. Furthermore, the
absence of conventional control structures in
SNOBOL4 makes it necessary to construct even
simple loops using gotos and labeled statements.

One of the goals of SL5 was to support con-
ventional control structures while preserving the
useful concept of signals. In SL5, an expression
produces a result that contains both a value and a
signal. A result is constructed by the expression
v&s, where v is the value and s is the signal.

Signals are nonnegative integers and are used
in control structures to affect the flow of control.
The signal 0 corresponds to failure and any posi-
tive signal (normally 1) corresponds to success. For
example, the operation i > j produces the signal 1 if
i is greater than j but the signal 0 otherwise. In

if i > j then expr1 else expr2

the signal produced by i > j determines whether
expr1 or expr2 is evaluated. Thus, SL5 avoids
Boolean values and allows any kind of expression
to be a control expression — an idea that has been
further refined in Icon.

SL5 allows a result to be composed from a
value and any nonnegative integer signal. The
signal component of a result also can be extracted
to become a value.

Procedures

The most interesting aspect of SL5 is the way
that it deals with programmer-defined procedures.
Procedures are created at run-time, as illustrated
by

gcd := procedure(i, j)
 while i ~= j do
 if i > j then i := i – j else j := j – i;
 return i
end;

Note that a procedure value is assigned to gcd.
Such a procedure then can be called in the conven-
tional manner, as in

k := gcd(47, 25);

Procedure invocation in most programming
languages is an atomic operation as illustrated in
this example. In SL5, however, procedure invoca-
tion can be decomposed into three separate opera-
tions:

• creation of an environment for the proce-
 dure

• binding of arguments to the environment
• “resuming” the environment to execute the

 code for the procedure

The expression

e := create p

creates an environment for the procedure p and
assigns it to e. (The create operation here is not
directly related to Icon’s create for co-expressions.)

Arguments are bound (transmitted) to an en-
vironment by

e with (expr1, expr2, …, exprn)

where expr1, expr2, …, exprn are evaluated and
their values are bound to e. That is, they become
the values of the formal parameters of p in e.

Finally, the execution of p is initiated with

resume e

All this is not necessary if all you want to do
is call a procedure and get its result back. However,
the decomposition of procedure invocation allows
more sophisticated use of procedures, as illus-
trated by the following procedure:

genlab := procedure(prefix, i)
 repeat {
 return prefix || i;
 i := i + 1
 }
end;

This procedure might be used as follows:

The Icon Analyst / 3

label := create genlab with ("L", 1);
...

top := resume label;
...

bottom := resume label;
...

 which assigns L1 to top and L2 to bottom, respec-
tively, assuming there are no intermediate resump-
tions of label. The crucial point here is that when a
procedure returns, its environment remains intact
and it can be resumed to continue execution. New
arguments can be passed to the environment, as in

label with ("P", 100);

to change the values produced on subsequent re-
sumptions.

It’s easy to see how SL5’s resumption mecha-
nism accomplishes what Icon does with suspend.
SL5 is, however, more general than Icon — any
suspended environment can be resumed at any
time. SL5’s return mechanism also is more general
than Icon’s. In SL5, it is not necessary for a proce-
dure to return control to the procedure that re-
sumed it. The general form of return in SL5 is

return r to e

where r is the result (value and signal) to be re-
turned and control is transferred to e, which can be
any environment. If you’re familiar with coroutines,
you’ll recognize that SL5 provides a very general
coroutine mechanism in which many procedure
environments can be in existence at any one time
and in which control can be transferred among
them in any order.

A few more aspects of procedures in SL5 need
to be mentioned before we go on to other parts of
the language. As you’ve probably guessed from
the examples above, if no signal is specified in
return, 1 (for success) is supplied by default. There
also are two abbreviations that make programs
easier to read:

succeed v

is a synonym for

return v&1

and

fail v

is a synonym for

return v&0

In both cases, if v is omitted, the empty string is
returned. (In SL5, the empty string serves a role
similar to that of the null value in Icon.)

Identifiers in SL5 can be declared to be global,
private, or public. The declaration global has the
same meaning as it does in Icon; such identifiers
are available throughout a program. Similarly,
private is equivalent to local in Icon; such identifi-
ers are available only within a single environment.
The public declaration is more interesting. It pro-
vides the interpretation of undeclared identifiers.
The meaning of an undeclared identifier is deter-
mined when an environment is created. This is
done by searching for public identifiers in the
ancestors of the environment in which the creation
is done. An example that illustrates the usefulness
of this kind of scoping is given in the section on
data structures.

Filters

SL5 built on the SNOBOL4 idea of attaching
procedural components to variables. The underly-
ing idea is that it’s often useful to have something
done automatically when a value is assigned to a
variable or when a variable is dereferenced to get
its value.

This is particularly useful in reading and writ-
ing. When a value is assigned to out in SL5, that
value also is written. For example,

out := "Hello world";

writes Hello world. Similarly, when the value of in
is used, a new line of input is read and becomes the
value of in. If there is no more input, the reference
to in fails. Thus,

while out := in;

copies input to output.
In addition to such built-in associations, SL5

allows filters to be associated with variables in two
ways: assignment and dereferencing. Filters are
simply environments that are resumed automati-
cally when a variable is referenced. A filter for
dereferencing is associated with a variable by

v :– – e

and a filter is associated with a variable for assign-
ment by

v :– e

As many filters as are needed can be attached

4 / The Icon Analyst

to a variable; they are processed in the order that
they are attached.

Since filters are environments, filtering ac-
tions can be written using procedures. The argu-
ments of a filtering procedure are the value and
signal of the result being filtered. For example, to
restrict the values assigned to count to positive
integers, the following procedure could be used:

procedure posint(v, s)
 repeat
 if ident(datatype(v), "integer") and
 v > 0 then return v&s
 else return v&0
end;

...

count :–– create posint;

Positive integers pass through this filter unchanged.
Other values are passed through with a failure
signal. If the failure signal reaches the assignment,
the assignment is not performed and the assign-
ment expression fails. The procedure above re-
veals some other aspects of SL5; you should be able
to figure out their meanings.

Filters also can be used in passing values to
environments. The default argument transmission
method is by value, as in Icon. Values also can be
passed by reference. The method of transmission is
specified in the procedure heading, as in

procedure p(i, x:ref)

in which i is passed by value and x is passed by
reference.

Programmer-defined filters also can be used
in argument transmission. For example, to assure
that the procedure gcd given earlier is called only
with positive integer values, all that’s needed is

gcd := procedure(i:posint, j:posint)
...

String Scanning

String scanning in SL5 resembles both pattern
matching in SNOBOL4 and string scanning in
Icon. It is closer to SNOBOL4 in that SL5 environ-
ments, like SNOBOL4 patterns, are data objects
that embody scanning operations, while in Icon,
scanning operations are applied directly.

SL5 has a number of functions and operators
that build scanning environments. For example, in

pet := ="dog" | ="cat"

the alternation operator creates an environment
that matches either "cat" or "dog". Subsequently,

animal ? pet

applies this environment to animal.
Other environment constructors include

 e1 – – e2 concatenation of e1 and e2
 move(i) move i characters
 tab(i) move to character i
 break(s) move up to character in s
 span(s) move past characters in s

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

voice: (602) 621-8448

fax: (602) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

...uunet!arizona!icon-project

and

© 1993 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

The Bright Forest Company
 Tucson Arizona

The Icon Analyst / 5

The SNOBOL4 and Icon analogies should be
obvious. The difference between SL5 and Icon is
that in SL5, these expressions create environments;
they do not perform any scanning. Scanning oc-
curs when an environment is resumed in a scan-
ning expression. Like patterns in SNOBOL4, how-
ever, environments can be combined to form more
complex environments.

SL5 distinguishes between accepting strings
during scanning and synthesizing strings as a re-
sult of scanning. Thus, move(i) creates an environ-
ment that accepts i characters, but it does not
contribute to the result of scanning. The environ-
ment created by =move(i), on the other hand,
contributes the characters accepted to the result of
scanning.

SL5 has four public scanning variables:
 subject string being scanned
 cursor position in subject
 scanlength length of subject
 scanvalue current synthesized result

Since SL5 uses environments in string scan-
ning, programmer-defined procedures can be used
in scanning. An example is a procedure to pad the
result of synthesis to a fixed number of columns:

synpad := procedure(i, c) private s;
 s := scanvalue;
 scanvalue := rpad(scanvalue, i, c);
 succeed;
 scanvalue := s;
 fail
end;

Note that the previous value of scanvalue is saved
so that it can be restored if synpad() is resumed (as
the result of the failure of a subsequent scanning
environment).

Data Structures

It may not surprise you at this point to learn
that SL5 also uses environments for programmer-
defined data structures.

Records are easy, since the identifiers in an
environment can be accessed as “fields” of the
environment. For example, a procedure for use
with employee records might be

employee := procedure(name, age, salary)
 end;

Then

hire := create employee;

creates an environment, and values can be as-
signed to its fields as in

hire.name := "John Smith";
hire.age := 35;
hire.salary := 32500.0;

It would be syntactically neater if this could
be written as a procedure call:

hire := employee("John Smith", 35, 325000.0)

However, since hire needs to be an environment, it
is necessary for employee() to return its own envi-
ronment. This is done using the keyword &self:

employee := procedure(name, age, salary)
 return &self
end;

To use environments for more complicated
data structures, it usually is necessary to perform
some initialization before returning &self. For the
example above, an additional field might be added
for the tax rate:

employee := procedure(name, age, salary)
 private taxrate;
 taxrate := rate(salary);
 return &self
end;

Stacks provide a more interesting example of
a programmer-defined data structure:

stack := procedure private push, pop;
 public stk;
 push := create procedure(x)
 repeat {
 stk := node(x, stk);
 return x
 }
 end;
 pop := create procedure private t;
 repeat
 if ident(stk) then fail
 else {
 t := stk.value;
 stk := stk.link;
 return t
 }
 end;
 return &self
end;

6 / The Icon Analyst

Here a stack is composed of a linked list of nodes,
which are records with two fields, value and link.

A stack is created by

parse := stack();

The fields push and pop are procedures, so that

parse.push(x)

pushes x onto parse, and

x := parse.pop();

pops a value off of parse and assigns that value to
x unless parse is empty, in which case parse.pop()
fails. Note that the public identifier stk in stack()
provides the interpretation for the undeclared iden-
tifiers stk in pop and push, so that they apply to the
stack for parse.

Conclusions

Writing this article has been an interesting
experience for us. It’s been years since we’ve given
a serious thought to SL5, and we had to forage
through old documents to produce the description
we’ve given here.

In retrospect, SL5 has many interesting fea-
tures. (We’ve only described the main ones here;
there’s a lot more to SL5). Not surprisingly, on
rediscovering some of the features of SL5, we
thought “Gee, those would be neat things to have
in Icon.” But Icon has grown large. If there’s any-
thing we think language designers should do is
avoid the temptation to “kitchen sink” (to coin an
abominable verb from a noun).

Not everything in SL5 is good. It’s very gen-
eral procedure mechanism is appealing, but it’s
also somewhat overbearing and, because of its
generality, inefficient.

For better or worse, SL5 was abandoned in
favor of Icon, simply because we did not have the
resources to support two languages. And SL5 re-
ally is dead — or so we think. It was implemented
only for the DEC-10 and CDC 6000 and we no
longer have the code. But who knows what’s on a
dusty tape in some forgotten cabinet?

Although SL5 is gone, it served a useful pur-
pose. It led to Icon and has influenced the design of
other programming languages. The most notable
of these is EZ [12], a very high-level language with
a persistent memory that permits it to double as a
programming environment.

Acknowledgments

SL5 was a substantial project, and many per-
sons contributed to its design and implementation.
The principal contributors were Diane Britton, Fred
Druseikis, Ralph Griswold, Dave Hanson, and Tim
Korb.

References

1. “SNOBOL, A String Manipulation Language”,
Journal of the ACM, David J. Farber, Ralph E.
Griswold, and Ivan P. Polonsky, Vol. 11, No. 1
(January, 1964), pp. 21-30.

2. The SNOBOL4 Programming Language, second
edition, Ralph E. Griswold, James F. Poage, and
Ivan P. Polonsky, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1971.

3. Advanced Data Structure Manipulation Facilities
for the SNOBOL4 Programming Language, John C.
Hallyburton, Jr., Ph.D. dissertation, Department of
Computer Science, The University of Arizona,
Tucson, Arizona, 1974.

4. An Extended Function Definition Facility for
SNOBOL4, Frederick C. Druseikis and Ralph E.
Griswold, technical report S4D36, Department of
Computer Science, The University of Arizona,
Tucson, Arizona, 1973.

5. A Generalized Facility for the Analysis and Syn-
thesis of Strings, and a Procedure-Based Model of an
Implementation, John N. Doyle, Master’s thesis,
Department of Computer Science, The University
of Arizona, Tucson, Arizona. 1975.

6. “String Analysis and Synthesis in SL5”, Ralph E.
Griswold, Proceedings of the ACM Annual Confer-
ence, 1976, pp. 410-414.

7. Procedure-Based Linguistic Mechanisms in Pro-
gramming Languages, David R. Hanson, Ph.D. dis-
sertation, Department of Computer Science, The
University of Arizona, Tucson, Arizona. 1976.

8. “The SL5 Procedure Mechanism”, David R.
Hanson and Ralph E. Griswold, Communications of
the ACM, Vol. 21, No. 5 (May, 1978), pp. 392-400.

9. “Filters in SL5”, David R. Hanson, The Computer
Journal, Vol. 21, No. 2 (May, 1978), pp. 134-143.

10. “Data Structures in SL5”, David R. Hanson,
Computer Languages, Vol. 3, No. 3 (October, 1978),
pp. 181-192.

The Icon Analyst / 7

11. “A Programming Language for Mechanical
Translation”, V. H. Yngve, Mechanical Translation,
Vol. 5, No. 1 (1958), pp. 25-41.

12. “EZ Processes”, David R. Hanson and Makoto
Kobayashi, International Conference on Computer
Languages, 1990, pp. 90-97.

tions can be omitted, in which case &window is
assumed to be the window for the operations. For
example,

XFg("red")

changes the foreground color for &window to red.
Omission of the window argument is op-

tional:

XFg(canvas, "red")

sets the foreground color for the window canvas.
Now on to a description of drawing in X-Icon.

Points

The function XDrawPoint() exemplifies the
drawing functions. It has the form

XDrawPoint(window, x1, y1, ..., xn, yn)

where window is the window in which points at
x,y coordinates x1, y1, ... xn, yn are drawn.

As mentioned above, the window argument
can be omitted, in which case it defaults to &win-
dow. In the description that follows, we’ll omit this
argument, since the use of the &window default
simplifies programming and is good practice in
most situations.

As indicated above, XDrawPoint() allows an
arbitrary number of arguments, in this case x,y
coordinate pairs. Other drawing functions also
allow multiple arguments, so that multiple draw-
ings of the same type can be done with a single
function call. To simplify the presentation that
follows, we won’t show multiple sets of arguments
unless they are needed in examples, but it’s worth
keeping the possibility in mind.

Lines

The function XDrawLine(x1, y1, x2, y2) draws
a line from the first x,y coordinate to the second. As
indicated above, multiple lines can be drawn in
one call by adding extra argument pairs, in which
case the lines are connected. For example,

XDrawLine(
 100, 75,
 100, 150,
 200, 150,
 200, 75
)

produces the result shown in Figure 1.

Drawing in X-Icon

We covered the basic aspects of X-Icon in an
earlier article in the Analyst [1]. Since that time, X-
Icon has matured and there are now implementa-
tions for VMS and OS/2 under Presentation Man-
ager in addition to the former ones for UNIX.

As interest in X-Icon has increased, we’ve
received requests to say more about it in the Ana-
lyst. This is the first of a series of articles designed
to cover all the features of X-Icon. These articles are
descriptive and tutorial in nature. If there’s enough
interest, we’ll have articles of a more technical
nature later. On the other hand, we realize that
many of you can’t run X-Icon, so we’ll be careful
not to let X-Icon dominate the Analyst. (This is the
longest of the articles we have planned.)

There’s a new technical report on X-Icon [2].
As a subscriber to the Analyst, you can get a free
copy of this report for the asking. Be sure to iden-
tify yourself as a Analyst subscriber, because we
can’t make this offer to everyone.

A word to OS/2 users: Although X-Icon has
essentially the same basic functionality under Pre-
sentation Manager as it does on X platforms, there
are some differences. In this and subsequent ar-
ticles, the description is based on X. See Reference
2 for information about OS/2 differences.

The Subject Window

One addition we’ve made to X-Icon since the
earlier article is support for a subject window, in-
spired by the way that the way the subject of string
scanning is used to simplify string analysis opera-
tions. If the value of &window is a window, as in

&window := open("game board", "x") |
 stop("∗∗∗ cannot open window")

then the window argument in many X-Icon func-

8 / The Icon Analyst

XDrawCurve(
 100, 75,
 100, 150,
 200, 150,
 200, 75,
 150, 50
)

produces the result shown in Figure 3.

Figure 3. XDrawCurve()

If the first and last points are the same, the curve is
smooth and connected through that point. For
example,

 XDrawCurve(
 100, 75,
 100, 150,
 200, 150,
 200, 75,
 150, 50,
 100, 75
)

produces the result shown in Figure 4.

Figure 1. XDrawLine()

XDrawSegment() is similar to XDrawLIne(),
but separate lines are drawn between each set of
coordinate pairs. Thus,

XDrawSegment(
 100, 75,
 100, 150,
 200, 150,
 200, 75
)

produces the result shown in Figure 2.

Figure 2. XDrawSegment()

XDrawCurve() draws a smooth curve con-
necting every point specified in its argument list.
For example,

Downloading Icon Material

Most implementations of Icon are available
for downloading electronically:

BBS: (602) 621-2283
FTP: cs.arizona.edu (cd /icon)

The Icon Analyst / 9

Figure 4. XDrawCurve()

X-Icon uses Catmull-Rom splines for draw-
ing curves. If you’re interested in the method, see
Reference 3.

Rectangles

The function XDrawRectangle(x, y, w, h)
draws a rectangle in the foreground color whose
upper-left corner is at x and y and whose width and
height are w and h, respectively. The width and
height determine the perceived size of the rectangle;
the actual dimensions are w + 1 and h + 1. For
example,

 XDrawRectangle(100, 75, 100, 50)

produces the result shown in Figure 5.

Figure 5. XDrawRectangle()

The function XFillRectangle() is similar to
XDrawRectangle(), except that the interior of the
rectangle is filled with the foreground color. For
example,

XFillRectangle(100, 75, 100, 50)

produces the result shown in Figure 6.

Figure 6. XFillRectangle()

As with other drawing functions, multiple
rectangles can be drawn by providing four addi-
tional arguments for each additional rectangle.

Polygons

Polygons can be drawn with the function
XDrawLine(), being sure that the first and last
points are the same. For example,

XDrawLine(
 100, 75,
 100, 150,
 200, 150,
 100, 75
)

produces the result shown in Figure 7.

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes shipping
in the United States, Canada, and Mexico.
Add $2 per order for airmail postage to other
countries.

10 / The Icon Analyst

is the starting angle of the arc. The starting angle 0
is at 3 o’clock. The argument extent is the extent of
the arc (not the ending angle). Positive values for
angles are in the counter-clockwise direction.
Angles are specified in 64ths of a degree.

For example,

XDrawArc(100, 75, 50, 50,
 90 * 64,
 270 * 64
)

produces the result shown in Figure 9.

Figure 9. XDrawArc()

If h is omitted, it defaults to w, producing a
circular arc. If h and w are different, the result is not
a true elliptical arc, but rather a “squashed” circu-
lar arc (at least on our X servers).

If start is omitted, it defaults to 0. If extent is
omitted, it defaults to 64 ∗ 360, producing a com-
plete circle.

XFillArc() is like XDrawArc(), except the arc is
filled with the foreground color.

Line Attributes

The default line width is one pixel. A different
line width can be set when a window is opened or
subsequently changed using the linewidth at-
tribute. For example,

XAttrib("linewidth=3")

sets the line width for subsequent drawing to three
pixels.

The attribute linestyle determines the style of

Figure 7. Polygon with XDrawLine()

The function XFillPolygon() produces a filled
polygon. The beginning and ending points are
connected if they are not the same. For example,

 XFillPolygon(
 100, 75,
 100, 150,
 200, 150
)

produces the result shown in Figure 8.

Figure 8. XFillPolygon()

Arcs and Circles

XDrawArc(x, y, w, h, start, extent) draws an
arc bounded by the rectangle specified in the first
four arguments. The center point of the bounding
rectangle is x + w / 2, y + h / 2. The argument start

The Icon Analyst / 11

lines. The default line style is "solid", as shown in
preceding figures. The line style "doubledash"
produces a dashed line. For example,

XAttrib("linewidth=2")
XAttrib("linestyle=doubledash")
XDrawRectangle(100, 75, 100, 50)

produces the result shown in Figure 10.

Figure 10. A Dashed Rectangle

The line style "onoff" is similar to
"doubledash", except that with "onoff" the back-
ground part of the line is not drawn.

Note: Line attributes do not apply to
XDrawCurve(), which always draws a one-pixel
solid line.

Fill Attributes

The attribute fillstyle determines the way that
shapes are filled. The default fill style is "solid", as
illustrated in Figure 6. There are two other fill
styles, "stippled" and "opaquestippled".

A stipple is a repeating bit pattern used as a
mask when filling shapes. The function

XSetStipple(w, i1, i2, ... in)

defines a stipple pattern of width w, which must be
between 1 and 32, inclusive. The least significant w
bits of each subsequent integer argument are inter-
preted as a row in the pattern. For example,

XSetStipple(7, 0, 1, 3, 7, 15, 31, 63)
XAttrib(“fillstyle=stippled”)
XFillRectangle(100, 75, 100, 50)

produces the result shown in Figure 11.

Figure 11. A Stippled Fill

With the fill attribute "stippled", fills are
done only for those bits in the stipple pattern that
are set to 1. With the fill attribute "opaquestippled",
stipple pattern bits that are one are set in the
foreground color, while those that are zero are set
in the background color.

Drawing Operations

At the pixel level, all drawing operations com-
bine some source bits (bits to be drawn) with some
destination bits (bits presently in the window). By
default, source bits overwrite destination bits.

Other logical combinations of source and des-
tination bits are possible — 16 in all. See Reference
2. These combinations are specified by name as
values of the drawop attribute. The default value
of drawop is "copy", in which case source bits
replace destination bits. Drawing operations other
than "copy" are potentially unportable or even
undefined and should be used only with a clear
understanding of the X color model.

In addition to the standard 16 drawing opera-
tions, there is a special one, "reverse", that allows
reversible drawing. If the drawop attribute is set to
"reverse", drawing changes the pixels that are in
the foreground color to the background color, and
vice-versa. The color drawn on destination pixels
that are neither the foreground or the background
color is undefined, but in any event, drawing a
pixel the second time restores the pixel to its origi-
nal color.

12 / The Icon Analyst

For example,

XAttrib(“drawop=reverse”)

every x := 1 to 100 do {
 XFillRectangle(x, 100, 10, 20)
 XFlush()
 delay(1)
 XFillRectangle(x, 100, 10, 20)
 }

XFillRectangle(x, 100, 10, 20)

moves a small rectangle horizontally across the
screen, leaving an image only at the end.

Argument Lists

Sometimes the number of arguments for a
drawing function is not known when a program is
written. This might happen, for example, when
plotting a sequence of points or drawing a polygon
with an arbitrary number of sides.

Icon’s list-invocation facility can be useful in
this case. For example, instead of using

XFillPolygon(x1, y1, ...)

the arguments could be put onto a list, as in

poly := []
every put(poly, xygen())

and the polygon drawn using

XFillPolygon ! poly

Next Time

The next article on X-Icon will deal with text
— its file model of windows that allows text to be
written to a window as if the window were a
terminal, a few things about fonts, and how you
can write text to a window so that you can erase it
and leave the rest of the window contents un-
changed.

Reference

1. “An Introduction to X-Icon”, The Icon Analyst
13, pp. 5-10.

2. X-Icon: An Icon Window Interface; Version 2, Clinton
L. Jeffery, technical report TR 92-26, Department of
Computer Science, The University of Arizona, 1992.

3. “A Recursive Evaluation Algorithm for a Class
of Catmull-Rom Splines”, Computer Graphics, Vol.
22, No. 4 (August, 1988), pp. 199-204.

Subscription Renewal

For many of you, the next issue is the last in
your present subscription to the Analyst and you’ll
find a subscription renewal form in the center of
this issue.

Renew now so that you won’t miss an issue.
Your prompt renewal also helps us manage our
resources.

Tell your
friends

about the
Analyst!

What’s Coming Up

In the next issue of the Analyst, we’ll have an
article on Rebus, another “lost language” and con-
tinue with the series on X-Icon with the article on
dealing with text that we mentioned earlier.

We’ll also have the first of two articles on the
anatomy of a program for timing expression evalu-
ation in Icon.

