
The Icon Analyst / 1

August 1993
Number 19

In-Depth Coverage of the Icon Programming Language

 In this issue …

Lost Languages — Seque … 1
Handling Events in X-Icon … 4
Anatomy of a Program … 6
Programming Tips … 10
What’s Coming Up … 12

Lost Languages — Seque

As the name suggests, Seque is concerned with
sequences. The road that leads to Seque goes roughly
as follows:

Generators in Icon are capable of producing
sequences of alternative results. Generation
usually is defined in operational terms, as in
“find(s) produces all the positions at which s
occurs as a substring of the subject”. The
results that a generator actually produces de-
pend on the context in which the generator is
evaluated; a generator only produces alterna-
tive results if it is resumed by an outer expres-
sion that needs them. In order to use sequences
as a conceptual tool, it’s useful to think of the
results that a generator is capable of produc-
ing, even if it does not produce all of them in
a given context. This leads to the idea of result
sequences [1] as an abstract characterization of
sequences. An abstract characterization sug-
gests a concrete one. Why not design a pro-
gramming language in which sequences are
actual first-class values?

Thus, Seque was motivated by the idea of sequences
as data objects that could be manipulated by a
program.

Seque cannot be separated from Icon. Seque
builds on Icon and although Seque has it own
syntax and semantics for matters related to se-
quences, it uses Icon control structures and expres-

sions freely. In particular, Seque relies on Icon
generators for constructing sequences.

Streams

In Seque, sequences are called streams. There
is a stream data type and numerous operations on
streams.

There are several ways of creating streams.
The simplest stream-valued operation is analogous
to the creation of an Icon list with specific values.
The expression

{expr1, expr2, … exprn}

creates a stream based on the values that expr1,
expr2, … exprn are capable of producing. For ex-
ample,

Primaries := {"cyan", "magenta", "yellow"}

assigns to Primaries a stream that consists of three
strings, "cyan", "magenta", and "yellow".

In this simple example, each of the three ex-
pressions is capable of producing only a single
value. But generators can be used when creating a
stream, as in

Index := {1 to 3, 6 to 9}

which assigns to Index a string of seven values that
is equivalent to {1, 2, 3, 6, 7, 8, 9}. Similarly, the
stream Primaries could have been created by

{"cyan" | "magenta" | "yellow"}

Any Icon generator can be used in the con-
struction of a stream, as in

Naturals := {seq()}

which creates an infinite stream consisting of the
natural numbers 1, 2, 3, … .

Referencing the Elements of a Stream

An element of a stream can be referenced by its
position in the stream, much like a list is subscripted
by position, although the syntax is different. For

2 / The Icon Analyst

example, the value of

Primaries ! 2

is "magenta".
An element of a stream can be changed by

assignment, as in

Index ! 4 := 5

which changes the stream Index to

{1, 2, 3, 5, 7, 8, 9}

As you’d expect, an out-of-bounds stream
reference fails.

The Dynamic Nature of Streams

At this point you may have lots of questions if
not serious reservations. For example, it’s obvious
that all the values in {seq()} are not computed when
the stream is formed. But it’s possible to reference
any element in this sequence.

The underlying idea is that a stream consists
of two components: a computational component
that is capable of producing values and a storage
component that holds values that have been com-
puted. A newly created stream has a computa-
tional component based on the expressions speci-
fied for it, and its storage component is empty. The
computational component subsequently produces
elements as they are needed and their values are
put in the storage component.

Some consequences of this approach have
serious implications. For example,

Naturals ! 100000

results in the computation and storage of 100,000
integers, provided none have been computed be-
fore. If you need to do something like this in Seque,
you need a platform with lots of memory. In prac-
tice, however, although it’s possible to reference
streams at arbitrarily chosen positions, most refer-
ences are in order from the beginning.

Operations on Streams

Seque provides several operations for creat-
ing streams from existing ones. Most of these op-
erations are based on the mathematical properties
of sequences as ordered series of values.

Concatenation of streams is an obvious ex-
ample, and is represented by

S1 –> S2

which creates a new stream whose elements con-
sist of those of S1 followed by those of S2. An
example is

Nonnegatives := {0} –> Naturals

It’s also possible to form subsequences
(“substreams”) in various ways.

Operations that can be performed on the ele-
ments of a stream also can be performed on the
entire stream, as in

Negatives := –Naturals

Similarly,

 {1, 2, 3} + {10, 100, 1000}

produces the stream {11, 102, 1003}.

Derived Streams

Many sequences can be represented compactly
as values of a operation performed over the posi-
tive integers. For example, the cubes of the positive
integers, 1, 8, 27, … can be represented by

i 3 i = 1, 2, 3, …

Seque supports such derived streams, using
square brackets to enclose the operation, as in

Cubes := [i ^ 3]

which assigns to Cube a stream consisting of the
cubes of the positive integers.

The bound variable i is distinguished in such
contexts and is implicitly associated with the natu-
ral numbers. Seque provides ways of specifying
different underlying streams and other bound vari-
ables.

Other Features

Seque has many other features; too many to
describe in detail here. But we’ll mention a few that
are important.

Streams, like data structures in Icon, can be
heterogeneous and contain values of different types.
Since streams are first-class data values, the ele-
ments of a stream can be other streams. As indi-
cated above, streams can be infinite. Seque also
provides a way to declare recurrence relations that
can be used to create streams.

Seque has several functions that operate on
streams. For example, Copy(S) produces a copy of
the stream S and Simage(S, i) produces a string

The Icon Analyst / 3

image of S limited to i elements. See References 2
and 3 for more information about Seque’s compu-
tational repertoire.

Implementation

Since Seque is a subset of Icon, you might
expect it to be implemented on top of Icon. It is, in
a sense, but not as extension of the implementation
of Icon itself. Instead, a variant translator [4] trans-
lates a Seque program into an Icon program, which
is linked with a library of Icon procedures that
perform run-time operations.

For example, the Seque expression

{1 to 3, 6 to 9}

is translated into

stream([], create (1 to 3) | (6 to 9))

where stream() is a record constructor for the
declaration

record stream(store, compute)

Thus, the storage component is an empty list ini-
tially and the computational component is a co-
expression, which, when activated, produces the
elements of the stream which then are pushed onto
the list.

This makes the implementation sound simple.
In fact, it’s complex and must deal with many
difficult conceptual problems. For example, all
Icon operations can be applied to streams as well as
to the types to which they can be applied in Icon.
The variant translator converts an operation into a
call of a procedure that handles the details.

 To give you an idea of what’s involved, –x is
translated into Unop_("–", x), where Unop_() is a
Seque library procedure that implements unary
operators. The procedure looks roughly like this:

procedure Unop_(op, arg)

 if type(arg) ~== "stream" then
 suspend op(arg)
 else
 return stream(
 [],
 create op(|@^arg.compute)
)

end

If arg is not a stream, op is applied to it using string
invocation, being careful to suspend, since op might
be a generator. Otherwise, a new stream is created

with an empty list. The computational component
of this stream is more complicated. A refreshed
copy of the co-expression from arg is created so
that the two streams will be independent. The
expression op(|@^arg.compute) repeatedly acti-
vates this new co-expression and applies op to the
results. The create constructs a co-expression for
the computational component of this new stream.

If you’re not an expert on co-expressions,
don’t worry about the details. We have an upcom-
ing article for the Analyst that will help illuminate
such arcane matters.

Conclusions

The implementation of Seque is what’s called
a “proof-of-concept” implementation (a term we
detest, since it’s a euphemism that often is used to
make failed work sound credible). The use of a
variant translator in combination with a library of
Icon procedures allowed experimentation with
language design with a manageable amount of
effort.

Although Seque worked, it was only used by
a handful of local persons. We declined outside
requests for Seque, since we lacked the resources to
package, distribute, and maintain such an imple-
mentation.

It’s been some seven years since we used
Seque ourselves. We didn’t know Seque was really
lost until we started to write this article and could
find only traces of it — the procedure library, but
not the variant translator, and only a few small test
programs. It appears that in a combination of
comings and goings of the persons involved, as
well as a coincident change in our local computer
system, most of the original files were lost. It is one
of those “I thought you had it. Gee, no, I thought
you did” situations.

That’s why there are no examples of Seque
programs here. Maybe it’s just as well that Seque is
lost. We’re spared an attempt to rehabilitate old
software. But we not-so-secretly wish we could
run Seque and see if programming with sequences
really is useful.

References

1. "Result Sequences", Icon Analyst 7, pp. 5-8.

2. “Seque: A Programming Language for Manipu-
lating Sequences”, Ralph E. Griswold and Janalee
O’Bagy, Computer Languages, Vol. 13, No. 1 (1988),
pp. 13-22.

4 / The Icon Analyst

3. Reference Manual for the Seque Programming Lan-
guage, Ralph E. Griswold and Janalee O’Bagy, Tech-
nical Report TR 85-4, Department of Computer
Science, The University of Arizona, 1985.

4. “Variant Translators”. Icon Analyst 7, pp. 2-5.

&lpress left mouse press
&ldrag left mouse drag
&lrelease left mouse release
&mpress middle mouse press
&mdrag middle mouse drag
&mrelease middle mouse release
&rpress right mouse press
&rdrag right mouse drag
&rrelease right mouse release
&resize window resizing

Processing Event Queues

A program can process an event queue using
the function XEvent(window), which produces
the next event for window and removes the event.
If there are no events pending, XEvent() waits for
one. As with other X functions, if window is omit-
ted, it defaults to &window. For example, the
following loop might be provided to allow the user
to control the program:

while event := XEvent() do {
 case event of {
 "q"| &lpress: exit()
 "c" | &mpress: break
 "e" | &rpress: XEraseArea()
 }
 }

If the event is a press of the q key or the left button,
the program terminates. If the event is a c or a
middle button press, the program breaks out of the
loop. If the event is an e or a right button press, the
window is erased. All other events are discarded.

When an event is removed from an event
queue, the other two values associated with the
event also are removed and the information con-
tained in them is used to set the value of keywords.
Four keywords relate to the location of the mouse
cursor at the time the event occurred:

&x x coordinate
&y y coordinate
&row text row
&col text column

These keywords might be used to determine, for
example, the location at which text is entered in a
window.

Integer values also can be assigned directly to
these keywords, as in

Handling Events in X-Icon

This is the fourth in a series of articles on X-
Icon. This article deals with user actions that an X-
Icon program can sense.

When the mouse cursor is positioned within
a window, key presses and mouse actions produce
events. Some actions, such as moving a window,
are handled automatically and are not seen by the
X-Icon application that owns the window. Other
kinds of events are reported to the X-Icon program.
Events accumulate in an event queue for the win-
dow. There is a separate event queue for each
window. Event queues are Icon lists that store
events until they are processed.

Events

There are several kinds of events. Key presses
fall into two categories: “standard” keys that are
used for representing text and “special” keys that
are used for manipulating the display or other non-
text purposes. The mouse actions that produce
events are pressing a button, dragging the mouse
while a button is depressed, and releasing a button.
Note that a mouse “click” produces two events: the
press and the release. The standard X mouse has
three buttons, and there are corresponding events
for each. Window resizing is handled automati-
cally, but an event is reported so that the X-Icon
program can rearrange its display if necessary.

When an event occurs, three values are put on
the event queue for the associated window: the
event itself and two integers that contain informa-
tion about the event.

Standard key presses are encoded as strings.
For example, pressing the key a puts the string "a"
on the event queue. Special key presses are en-
coded as integers. See Appendix D of Reference 1
for examples.

Mouse actions and window resizing events
also are encoded as integers. Integer-valued key-
words with corresponding values are provided:

The Icon Analyst / 5

&x := 10

When values are assigned to pixel-coordinate key-
words, the values of the corresponding text-coor-
dinate keywords are changed automatically, and
vice versa. Such assignments can be useful in trans-
lating between pixel and text coordinates.

Three keywords are set corresponding to the
status of “modifier” keys at the time of the event:

&control control key
&meta meta key
&shift shift key

The labelings of these keys depend on the X server
keyboard.

In the case of standard characters, the status
of the shift key also is encoded in the event value.
For example, if the a key is pressed with the shift
key pressed, the event value is "A".

Modifier status keywords return the null value
if the corresponding modifier key was pressed at
the time of the event but fail otherwise. For ex-
ample,

case XEvent of {
 &mrelease: {
 if &control then expr1 else expr2
 }
 …
 }

evaluates expr1 if the control key was pressed at
the time the middle mouse button was released,
but evaluates expr2 if the control key was not
pressed.

When an event is processed, the keyword
&interval also is set. The value is the interval, in
milliseconds, between the time that the event oc-
curred and the time of the previous event.

read(window) and reads(window, i) also pro-
cess events and remove them from the event queue
for window. Standard key presses are echoed to
the window and accumulate to produce the value
for such a function call. All other kinds of events
are discarded when these functions are processing
the event queue. read(window) does not return a
value until the enter (“carriage return”) key is
pressed. reads(window, i) does not return until
there are i characters. &window is not a default for
these functions.

The function XPending(window) produces

the event queue for window. If there are no pend-
ing events, the list is empty. Thus,

∗XPending() > 0

succeeds if events are pending for &window but
fails otherwise. Note that the value of ∗XPending()
is three times the number of pending events, since
there are three values for each event.

Since the event queue is an Icon list, it can be
manipulated directly. For example,

while get(XPending())

removes all events from the event queue for &win-
dow. Similarly, pushing three values onto an event
queue creates an artificial event, which is the next
one to be processed. Since real events can occur at
any time, it is not safe to append values to an event
queue using put(). To append events safely,
XPending() can be supplied with trailing argu-
ments, For example,

XPending(x1, x2, x3)

appends an event corresponding to x1, x2, and x3
to the event queue for &window.

Direct manipulation of event queues requires
considerable care. Not only must three values be
provided for each event, but the second and third
values must correctly encode event information.
See Appendix E of Reference 1. There is a proce-
dure in the Icon program library, qevent(), that
handles the details of placing artificial events on an
event queue. See evqueue.icn.

Multiple Windows

In applications that support multiple win-
dows, it may be useful or necessary to keep track of
activity in different windows. The function
XActive() returns a window in which an event is
pending. If no event is pending in any window,
XActive() waits for one. To find a window with a
pending event, XActive() checks each window in
turn, starting with a different window on each call
to avoid “starvation”. XActive() fails if no window
is open.

Reference

1. X-Icon: An Icon Window Interface; Version 8.10,
Clinton L. Jeffery and Gregg M. Townsend, Tech-
nical Report TR 93-9, Department of Computer
Science, The University of Arizona, 1993.

6 / The Icon Analyst

Anatomy of a Program — Timing
Icon Expressions (continued)

This article is a continuation of a discussion of
the design and implementation of empg, which
started in the last issue of the Analyst. empg
processes specifications for expressions and pro-
duces a program that times these expressions. To
avoid having to say “the program produced by
empg” over and over, we’ll just call it “the timing
program”.

Program Structure

Given the design decisions made earlier, the
basic structure of empg might look something like
this:

write("procedure main()")
…

while line := read() do
 line ? {
 if =":" then evaluate(tab(0))
 else if ="%" then declare(tab(0))
 else if ="#" then next
 else timeloop(tab(0))
 }

…
write("end")

A procedure header and its closing end are written
to surround the other code produced by empg,
since empg writes a complete program. The actual
generation of code is done by the procedures evalu-
ate(), declare(), and timeloop().

We’ve chosen to use procedures rather than
to write the necessary code in line because it makes
the organization of the program easy to under-
stand and modify. Granted, for at least two of the
cases, the code is going to be simple. Nonetheless,
it’s easier to go back and replace procedure calls by
in-line code than it is to add procedures after in-

line code is written. And it’s often the case that
code that starts out simple gets more complicated
as features are added.

The procedure to evaluate an expression only
once is easy enough:

procedure evaluate(exp)

 write(" ", exp)

 return

end

The blanks provide indentation in the code to
make it easier to read, in case that should be neces-
sary.

Declarations require a bit more thought. Since
empg writes expressions to be evaluated within a
main procedure, the declarations cannot be writ-
ten out when they are read in — if they were, they
would appear in the middle of the main procedure
and be syntactically incorrect.

We could, of course, insist that all declara-
tions appear before anything else and not write the
main procedure header until after all declarations
had been processed. But that’s not only unneces-
sarily restrictive on the form of input to empg, it’s
actually harder to implement than to allow decla-
rations to appear anywhere in the input.

Since declarations can occur in any order in a
program, the easy thing for empg to do is to save
all declaration lines until the end of the input and
then write them out at the end of the timing pro-
gram.

The obvious way to save declaration lines is to
put them on a list:

global decls

procedure main()

 decls := []
…

main processing loop
…

 every write(!decls)

end

where declare() is:

procedure declare(line)

 push(decls, line)

 return

end

Downloading Icon Material

Most implementations of Icon are available for
downloading electronically:

RBBS: (602) 621-2283

FTP: cs.arizona.edu (cd /icon)

The Icon Analyst / 7

This leaves only timeloop(), which can be
written as follows:

procedure timeloop(expr)

 write(" write(", image(expr), ")")
 write(" _Itime := &time")
 write(" every 1 to _Limit do {")
 write(" &null & (", expr, ")")
 write(" }")
 write(" write(real(&time – _Itime",
 " –_Delta) / _Limit, \"ms.\")")
 write(" write()")

 return

end

Initial underscores are used for identifiers in the
generated code to minimize the chances of colli-
sions with identifiers in the input expressions. The
first line written provides code to list the expres-
sion when the timing program is run. The value of
_Delta is used to adjust the timings as discussed
earlier. We’ll get to the computation of _Delta
later. The last line of output provides a space
between consecutive timing lines.

To make the generated code more concrete,
consider the input line

1 + 1.0

empg produces the following output, with the
type size reduced so it will fit here:

 write("1 + 1.0")
 _Itime := &time
 every 1 to _Limit do {
 &null & (1 + 1.0)
 }
 write(real(&time – _Itime – _Delta) / _Limit, "ms.")
 write()

We’ve alluded to initialization code empg
needs to produce before the code for timing, namely
assigning appropriate values to _Limit and _Delta.

The appropriate value for _Limit raises inter-
esting design questions. As mentioned in the sec-
tion on measuring execution time, _Limit should
be large enough to avoid problems with low clock
resolution. But _Limit should not be excessively
large, since that slows down timings and uses
unnecessary resources. A value that is appropriate
for one platform may be inappropriate for another.

There are many possibilities. The desired num-
ber of iterations could be specified on the com-
mand line when empg is run. For later binding to

give more flexibility, it could be specified on the
command line of the timing program. For even
greater flexibility in one sense, but less in another,
the desired number of iterations could be given in
the input to empg, and even on a per-line basis.
(This would avoid the need for special syntax for
expressions that are to be evaluated only once.)

There could be a hierarchy of defaults, with
empg having a default limit that could be overrid-
den on its command line to provide a default for
the timing program. This in turn could be overrid-

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

voice: (602) 621-8448

fax: (602) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

…uunet!arizona!icon-project

and

© 1993 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

The Bright Forest Company
 Tucson Arizona

8 / The Icon Analyst

point will help down the line (we had to resort to
hindsight, at some cost).

Writing out the code above from empg is not
a problem in itself; we’ve shown some samples of
code that writes such code already. The point is
that we may decide to make empg more capable —
and programs like this are subject to endless em-
bellishment, as we discussed earlier. Additional
features in empg may (in fact, will) require more
complex initialization in the timing program. Of
course we can add to the code-writing code in
empg when this happens, but there’s an alterna-
tive: Put the initialization code in a separate file
and just link it in the timing program.

The advantage of this approach is that it’s
easier to write, understand, and modify initializa-
tion code than it is to write, understand, and modify
code that writes such code. The disadvantage is
that there’s another file besides empg.icn to worry
about. But Icon supports and encourages separate
program modules and there’s nothing novel about
linking: It’s used extensively in the Icon program
library. In fact, if you get the version of empg we’re
describing here as part of the Icon program library,
you won’t even have to know about a file that is
linked by timing programs.

As we said earlier, we got to this point by
hindsight. If you have an old version of empg,
you’ll see what we mean.

Getting back to the business at hand, empg.icn
now contains code that looks like this:

write("link empgsup")
write("procedure main(args)")
write(" _Limit := integer(args[1]) | 10000")
write(" _Delta := _Initialize(_Limit)")

where _Initialize() is in empgsup.icn. Figures 1
and 2 show empg.icn and empgsup.icn, respec-
tively. An example of input to empg and the
corresponding timing program are shown in Fig-
ures 3 and 4. Finally, the result of running the
timing program is shown in Figure 5.

den on its command line, which then could be
overridden on a per-expression basis by optional
limits specified in the input to empg.

One problem with software design is that
there often are too many possibilities. And soft-
ware that is too capable may be hard to under-
stand, learn, use, and maintain. On the other hand,
software that lacks sufficient capability may not do
what you want. One extreme may occur because of
excessive zeal or “creeping featurism”, while the
other may be the result of laziness or inadequate
consideration of the possibilities.

We won’t include many of the possible fea-
tures here. If we showed a full-fledged program
with lots of bells and whistles, we’d fill up the rest
of this issue of the Analyst. We’ll make enough of
a concession to functionality to have the number of
iterations specifiable on the command line when
the timing program is run but otherwise provide a
default that is suitable for most situations. 10,000
seems reasonable.

Referring back to the discussion of comput-
ing the overhead for the timing loop, the code to
compute it looks like this:

procedure main(args)
…

 _Limit := integer(args[1]) | 10000
 _Itime := &time
 every 1 to _Limit do {
 &null
 }
 _Time1 := (&time – _Itime)
 _Itime := &time
 every 1 to _Limit do {
 &null & &null
 }
 _Time3 := (&time – _Itime)
 _Delta := (_Time1 + _Time3) / 2

…
end

For generality, this code needs to be executed
when the timing program is run. However, if you
are going to run empg and timing programs on the
same platform and the timing there is stable, such
as on your personal Macintosh, computing _Delta
in empg would be reasonable, simpler, and more
efficient.

We’ll assume this code needs to be executed
in the timing program. The obvious thing to do is
to have empg put the code above in every timing
program. But a little insight or foresight at this

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.

The Icon Analyst / 9

Other Possibilities

There’s a lot more that can be done to make
empg a more capable and useful program. Here
are some suggestions:

• Modify empg and the timing programs to
use options() from the Icon program library to
process command-line arguments [1].

• Improve the information content and the
format of the output produced by timing pro-
grams.

• Provide a facility in empg to allow the
specification of a default value for the number of
iterations in timing programs.

• Allow input expressions to be split over
several lines.

• Provide informative information about the
platform when the timing program is run.

• For platforms that support system(), pro-
vide a way to run timing programs from inside
empg.

• Add a capability to compute the average
amount of storage allocation for expressions.

Reference

1. “Programming Corner”, The Icon Newsletter 42,
pp. 4-5.

global decls

procedure main()
 local line

Write program preamble.

 write("link empgsup")
 write("procedure main(args)")
 write(" _Limit := integer(args[1]) | 10000")
 write(" _Delta := _Initialize(_Limit)")

 decls := []

Process the input.

 while line := read() do
 line ? {
 if =":" then evaluate(tab(0))
 else if ="%" then declare(tab(0))
 else if ="#" then next
 else timeloop(tab(0))
 }

Finish up the program.

 write("end")

 every write(!decls)

end

Save a declaration line.

procedure declare(line)

 put(decls, line)

 return

end

Produce code to just evaluate an expression.

procedure evaluate(expr)

 write(" ", expr)

 return

end

Produce code to evaluate an expression
in a loop and time it.

procedure timeloop(expr)

 write(" write(", image(expr), ")")
 write(" _Itime := &time")
 write(" every 1 to _Limit do {")
 write(" &null & (", expr, ")")
 write(" }")
 write(" write(real(&time – _Itime –_Delta)",
 " / _Limit, \"ms.\")")
 write(" write()")

 return

end

Figure 1. empg.icn

10 / The Icon Analyst

procedure _Initialize(limit)
 local itime, t1, t3

 itime := &time

 every 1 to limit do {
 &null
 }

 t1 := (&time – itime)

 itime := &time

 every 1 to limit do {
 &null & &null
 }

 t3 := (&time – itime)

 return (t1 + t3) / 2

end

Figure 2. empgsup.icn

link empgsup
procedure main(args)
 _Limit := integer(args[1]) | 10000
 _Delta := _Initialize(_Limit)
 i := ?1000
 j := ?1000
 write("max(i, j)")
 _Itime := &time
 every 1 to _Limit do {
 &null & (max(i, j))
 }
 write(real(&time – _Itime –_Delta) / _Limit, "ms.")
 write()
end
Compute the maximum of two values

procedure max(i, j)
 return (i < j) | i
end

Figure 4. The timing program

%# Compute the maximum of two values
%
%procedure max(i, j)
% return (i < j) | i
%end
:i := ?1000
:j := ?1000
max(i, j)

Figure 3. Sample input to empg

max(i, j)
0.0566ms.

Figure 5. Result of running the timing
program

Programming
Tips

Scanning Lines of a File

We write a lot of programs that read a line of
input, process the line using string scanning, read
another line, process it the same way, and so on.
Some of the programs are text “filters” that trans-
form a file from one form to another. Other pro-
grams extract information from a file and produce
tabulation, and so on. For these kinds of programs,
we use the iterative model of string scanning [1]
with a while loop. The basic structure of such
programs looks like this:

while line := read() do
 line ? {
 while … do …
 }

We’ve written these lines so many times that
we’ve thought of making a little text template to
paste into new programs. But the template now is
“in our fingers”, so it seems hardly worth another
form of mechanization. Still, every time we start a
program with these lines, we’re bit annoyed. After

The Icon Analyst / 11

all, Icon is supposed to make things easy to do;
there should be some shortcut for these few lines
that appear so often in programs.

If we ever design another programming lan-
guage, we’ll keep this in mind. But in the mean-
time, we’ve asked ourselves if there isn’t some way
to at least reduce the size of the ”wrapper” for this
kind of programming.

One of the problems is that the identifier line
(or whatever name we choose) is excess baggage
and has to be written twice. And, if we’re being
careful to follow our own guidelines, we have to
add a local declaration for it too.

So one question is, can the identifier be
avoided? It’s tempting to try

while read() ? {
 while … do …
 }

This doesn’t work, since loops themselves fail when
they’re done, so the scanning expression fails, the
control expression for the outer while loop fails,
and the next line of input is not read.

There’s another approach. The idea is to use a
different way of producing the lines of input: gen-
erate them.

You may have seen some programs that use
the following kind of loop

every line := !&input do …

instead of

while line := read() do …

In the every loop, !&input generates a line of input
every time it is resumed by the every control struc-
ture, as opposed to read() in the while loop, which
is repeatedly evaluated. To process a file other than
standard input in an every loop, you can use !infile
in place of !&input, where infile is the file you
want to process.

We’ve used both kinds of loops at one time or
another, but in recent years we’ve opted for the
while loop on the grounds that it is more straight-
forward and because it is at least as easy to key-
board as the every loop.

But in doing so, we overlooked a possibility.
Although it is not possible in general to omit the
identifier and the do clause in the while loop, it is
possible to omit the identifier when using an every
loop in combination with string scanning:

every !&input ? {
 while … do …
 }

This loop works just fine. The key is that it doesn’t
matter that the scanning expression fails. When it
fails, !&input is resumed to produce another line
of input. In fact, the every control structure is not
needed. In

!&input ? {
 while … do …
 }

the failure of the while loop causes the scanning
expression to fail, which causes !&input to be
resumed to produce another line of input.

So far we’ve dutifully used braces to enclose
the scanning expression as recommended in Refer-
ence 1. Knowing how scanning expressions and
while-do group, we’ll take the final step toward
brevity and write

!&input ? while … do …

All this works because the scanning expres-
sion fails as the result of the loop in it failing.
Suppose we now take a bolder step and allow
scanning expressions that do not always fail. If we
put the every back to cause the resumption of
!&input regardless of the success or failure of the
scanning expression, we now can use

every !&input ? {
…

 }

for any scanning expression.
Or so it seems. We need to be careful. If a

scanning expression succeeds, it suspends so that
scanning environments can be maintained prop-
erly [2]. Since the scanning expression suspends
after !&input suspends, it is resumed before !&in-
put is. If the scanning expression has no more
results to produce, it fails, and then !&input is
resumed. There is, of course, a bit more overhead
in the whole process. If, however, the scanning
expression has another result, that result is pro-
duced before the next line is read.

This is what you should expect. For example,
in

every !&input ? {
 write(upto(','))
 }

12 / The Icon Analyst

fails. It does if it runs to completion, but if it’s
terminated by break, the outcome of the loop
depends on the argument of break. If the argu-
ment of break is omitted, &null is provided by
default. Consequently, the loop

while … do {
…

 if … then break
 }

does not fail if the break is evaluated; it produces
the null value. So even using every with scanning
expressions that consist of a while loop, it’s pos-
sible to get in trouble with

break next

You’ll have to decide if using the compact
form of scanning with every is worth the risk.

A note in closing: Although this article fo-
cuses on scanning lines from a file, the techniques
can be used with any expression that generates
strings.

References

1. “Writing Scanning Expressions”, Icon Analyst
4, pp. 2-5.

2. “Modeling String Scanning”, Icon Analyst 6,
pp. 1-2.

3. The Icon Programming Language, second edition,
Ralph E. Griswold and Madge T. Griswold, Prentice
Hall, Englewood Cliffs, New Jersey, 1990, p. 20.

the position of every comma in every line is writ-
ten. If you don’t want a string scanning expression
to produce another result, you can, of course limit
it to one result:

every !&input ? {
 write(upto(',') \ 1)
 }

So far, so good. At least things work “as
expected”. We’ve used this technique frequently
for scanning expressions that succeed as well as
ones that fail. We thought it all through and con-
vinced ourselves that our logic was correct. But we
had nagging doubts, and it’s as well we did. There’s
one situation we failed to consider that we might
have argued never would happen in practice if it
hadn’t actually occurred in one of our programs
and produced a baffling bug.

The problem is the next expression. There
always has been some question about what next
does in every loops. In a while loop, the function of
next is clear: It transfers control to the beginning of
the control expression. In an every loop, however,
next causes the resumption of the last suspended
generator. This behavior of next is not documented
anywhere else but here, as far as we know, and the
Icon book misstates it [3].

Consider the following situation:

every !&input ? {
 if ="#" then next # skip comments
 move(1) # else process

…
 }

The intention is to skip lines that begin with a #.
However, next in a scanning expression causes the
scanning expression to suspend as it always does
when it doesn’t fail. Since the scanning expression
is the last expression to suspend, it is immediately
resumed by every and continues with move(1)!

You could argue that this is a bug in the
implementation of Icon. We could argue that it’s a
feature and a necessary consequence of the seman-
tics of expression evaluation. Either way, it’s what
Icon does and even if it’s not what’s wanted, it
surely is not going to be changed. Bug or feature,
we have to live with it.

Because of this problem, we almost decided
not to mention the use of every with string scan-
ning expressions that don’t fail or even not to
publish this article at all. We finally decided to
include it with enough discussion that you’ll be
wary. Be very wary. We’ve blithely said while-do

What’s Coming Up

In the next issue of the Analyst, we’ll have an
article on manipulating windows in X-Icon and an
article on a novel methodology for string scanning.

We’re also planning more programming ex-
ercises so you can test your Icon programming
skills. This time, we’ll provide solutions in the
same issue.

