
The Icon Analyst / 1

October 1993
Number 20

In-Depth Coverage of the Icon Programming Language

5. Write a procedure setlt(set1, set2) that suc-
ceeds if and only if set set1 is “less than” set2 — that
is, if set1 is a proper subset of set2 (all members of
set2 are in set1 but set2 contains additional mem-
bers).

6. Write a procedure tableq(tbl1, tbl2) that
succeeds if and only if tables tbl1 and tbl2 are
“equivalent” — that is, if they have the same keys
and the same corresponding values.

Exercises

It’s been more than a year since we suggested
some Icon programming exercises. Several readers
have asked that we continue this feature of the
Analyst so that they can develop their Icon pro-
gramming skills. We’ve also been asked to include
solutions in the same issue as the exercises. You’ll
find them starting on page 9.

If you’re really interested in developing your
Icon programming skills, do the best you can with
these exercises before looking at the solutions.

If you have better solutions than we do or if
you have comments, please send them to us; we’ll
discuss them in a later issue of the Analyst.

These exercises involve writing procedures
related to Icon structures.

1. Write a procedure revlist(lst) that returns a
list with the elements of the list lst in reverse order.
Do not modify lst.

2. Write a procedure keylist(tbl) that returns a
list of the keys in table tbl in sorted order.

3. Write a procedure valset(tbl) that returns a
set whose members are the values in the table tbl.

4. Write a procedure seteq(set1, set2) that
succeeds if and only if the sets set1 and set2 are
“equivalent” — that is, if they contain the same
members.

 In this issue …

Exercises … 1
Icon Made Difficult … 1
Dealing with Windows in X-Icon … 3
Piped Scanning … 6
Solutions to Exercises … 9
Programming Tips … 11
What’s Coming Up … 12

Icon Made Difficult

Some time ago we came across a delightful
little book titled Mathematics Made Difficult [1]. The
spirit of the book is captured in this remark from its
introduction: “Mathematicians always strive to con-
fuse their audiences; where there is no confusion
there is no prestige”.

Sometimes it seems to us that programmers
often apply the same principle. It is a temptation,
although disorganized thinking and sloppy pro-
gramming practices serve nicely even when there’s
no conscious intent to obfuscate.

2 / The Icon Analyst

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

voice: (602) 621-8448

fax: (602) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

…uunet!arizona!icon-project

and

© 1993 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

We certainly don’t advocate making programs
difficult to read. In fact, we try very hard to make
our own programs easy to understand, although at
times we write unnecessarily clever and obscure
code and pass it off as an idiom. But we thought it
might be fun to show a few examples of “Icon
made difficult”.

Here’s the expression that started us on this
light-hearted if somewhat demented adventure:

&subject := &subject

At first glance, this looks like a “no-op”. What
possible use could there be to assigning the value
of a variable to itself except to make a program
unnecessarily long and slow? But assignment to
&subject sets &pos to 1. So

&subject := &subject

is an obscure way of doing what

&pos := 1

does.
Now we’ve caught the obfuscation bug. How

about

&subject <– &subject

That leads to

every &subject <– &subject

which sets &pos to 1 twice. Well, so does

&subject :=: &subject

or even

&subject <–> &subject

And, of course, there’s

every &subject <–> &subject

which sets &pos to 1 four times!

There are other variations on our mad theme:

&subject ?:= tab(0)

Actually,

&subject ?:= &subject

 does the same thing.
Enough, you say. I didn’t subscribe to the

Analyst to get cheap headaches from joke pro-
gramming! Agreed. But we’ll be good sports. If
you have examples of unnecessarily obscure Icon
code, send them to us. Surely, for example, you can

think of something to beat on other than &subject.
We make no promises about publication, though.
We don’t dare.

Reference

1. Carl E. Linderholm, Mathematics Made Difficult,
World Publishing, 1972.

The Bright Forest Company
 Tucson Arizona

The Icon Analyst / 3

Dealing with Windows in X-Icon

This is the fourth in our series of articles on X-
Icon. Some features of X-Icon changed with the
release of Version 8.10 of Icon, and this and subse-
quent articles refer to the new version. If you need
documentation for X-Icon as of Version 8.10, it’s
available to you free as a benefit of subscribing to
the Analyst. Ask for TR 93-3. Be sure to identify
yourself as an Analyst subscriber.

Windows

X-Icon provides many facilities related to win-
dows: opening and closing them, where they are,
how big they are, their foreground and background
colors, and so forth. Like any function repertoire,
there are things you may rarely or never need. On
the other hand, knowing the facilities that are
available may suggest possibilities that you other-
wise might overlook.

Window Managers

When you run X, there’s a window manager
that allows you to control the location and sizes of
windows on the screen. The window manager also
determines the appearance of some aspects of win-
dows, such as the title bar that appears at the top of
most windows.

Interaction between the user and the window
manager typically occurs via the title bar. For ex-
ample, if you press a specified mouse button when
the mouse cursor is on the appropriate part of the
title bar, your window manager may let you drag
the window to another position on the screen.
Pressing another button at another place may
“iconify” the window, reducing it to a small image
to free up screen space, and so on. Window manag-
ers also service requests from the client program —
that is, your X-Icon program.

There are lots of different window managers
and some of them can be configured in a wide
variety of ways. We usually use twm (formerly
called “Tom’s Window Manager”, but now offi-
cially known as the “Tab Window Manager”). The
windows shown here illustrate the style used by
twm.

Opening Windows

A window is opened by using "x" as the
second argument of open(), as in

&window := open("draw", "x") |
 stop("∗∗∗ cannot open window")

which assigns a value of type window to &win-
dow. As with any use of open(), it’s important to
make provisions for the possibility that it may fail.

The first argument to open() provides a label,
sometimes called a title, that identifies the window
and typically appears on the title bar:

A window has many attributes associated
with it. The defaults for these attributes produce a
window of modest size that’s good enough for
most experiments. However, you’ll generally want
to customize your windows.

The attributes of a window can be specified as
additional arguments to open() or set later on
using XAttrib(). The attributes you’re most likely
to want to set when opening a window are its size,
its location on the screen, and its foreground and
background colors.

Window Size and Position

The size of a window can be specified in two
ways: by width and height in terms of pixels or by
rows and columns in terms of the window’s text
font. For example,

&window := open("draw", "x",
 "width=300",
 "height=150") |
 stop("∗∗∗ cannot open window")

opens a window that is 300 pixels wide and 150
pixels high, while

&window := open("draw", "x",
 "rows=40",
 "columns=80") |
 stop("∗∗∗ cannot open window")

opens a window that can accommodate 40 lines of
80-column text in the default font.

The initial position of the upper-left corner of
a window can be specified in terms of x,y pixel
coordinates. The value of the pos attribute is an

4 / The Icon Analyst

integer pair of x-y coordinates measured relative
to the upper-left corner of the screen. For example,
the open() argument

"pos=100,200"

causes the window to be placed with its upper-left
corner 100 pixels from the left edge of the screen
and 200 pixels from the top of the screen.

The attributes posx and posy can be used to
specify the coordinates individually, or the geom-
etry attribute can be used to specify both the size
and position of the window. The value of geom-
etry has the form

widthxheight+xoff+yoff

where width, height, xoff, and yoff are integers
that specify pixels. As you’d expect, width and
height specify the size of the window and xoff and
yoff specify offsets of the window’s upper-left
corner from the screen’s upper-left corner. For
example,

"geometry=100x200+0+0"

specifies a window that is 100 pixels wide, 200
pixels high, with its upper-left corner at the upper-
left corner of the screen.

If you don’t specify a window’s size and
position when it’s opened, what happens depends
on your window manager and how it’s configured.
For example, positioning a new window may be
left to the user, who may be presented with a
window outline to position and size manually.

Once a window is open, its size and position
can be changed by the user via the window man-
ager or by the program itself. For example,

XAttrib("width=600")

changes the width of the window to 600 pixels.
Attributes also can be queried, as in

height := XAttrib("height")

which assigns to height the height of &window.

Icons and Labels

As mentioned above, the window manager
may allow a window to be iconified, with its con-
tents hidden and reduced to a small box on the
screen that typically shows only the window’s
label, as in

In this sense, a window has two possible
states, “window” or “icon”. The state of a window
can be controlled by the program using the at-
tribute iconic. For example,

XAttrib("iconic=icon")

iconifies &window and

XAttrib("iconic=window")

exposes &window, restoring it to its full size and
showing its contents.

When a window is iconified, its contents still
can be changed, although the change is not visible.
When an iconified window is restored to its non-
iconified form, the changes become apparent.

The attribute iconpos can be used to specify
where the iconic form of a window is located. For
example,

XAttrib("iconpos=0,0")

specifies that the icon for &window is at the upper-
left corner of the screen. If the window already is
iconified, it is moved to the specified position. If
the window is not iconified, it moves to the speci-
fied position when it is iconified. Thus, the position
of an icon can be specified in advance, whether the
window is iconified by the program or by the user
through the window manager.

The labels associated with a window and its
icon can be changed by using the attributes
windowlabel and iconlabel, respectively.

Foreground and Background Colors

When a window is opened, its contents con-
sist entirely of pixels in the background color,
which defaults to white. Drawing and text written
to the window appear in the foreground color,
which defaults to black.

The foreground and background colors can
be changed by XBg() and XFg(), respectively. For
example,

XBg("blue")
XFg("white")

change the background and foreground colors for
&window to blue and white, respectively. These
changes affect future operations but do not change
the appearance of anything already displayed.
Subsequent drawing and text operations are done
in white. In the case of text, the area surrounding

The Icon Analyst / 5

the characters is drawn in the new background
color, blue.

The function XEraseArea(x, y, w, h) clears all
or a portion of a window to the current background
color. The area cleared starts at x and y and extends
for w and h. The arguments x and y default to 0. If
w or h is omitted or 0, the cleared area extends to
the edge of the window in that direction. Thus,

XEraseArea()

clears the entire window.
The function XClearArea() is similar to

XEraseArea(), except that the portion of the win-
dow cleared is set to the background color that
existed when the window was opened. In the
example above, XClearArea() clears the window
to white, while XEraseArea() clears the window to
blue.

The function

XCopyArea(win1, win2, x1, y1, w, h, x2, y2)

copies a rectangular area within win1 specified by
x1, y1, w, and h to win2 at offset x1, y1. &window
is not a default for this function. The coordinates
default to 0, and w and h default to the edge of
win1. win1 and win2 may be the same.

Stacked Windows

When several windows are on the screen at
the same time, they may overlap so that one win-
dow obscures another. In this sense, the obscured
window is behind another window. In some cases,
a window may be completely obscured by another
one.

The user can bring a window to the front
using the window manager. For example, with
some window managers, clicking on an exposed
portion of an obscured window may expose the
entire window, putting it in front of all other win-
dows. If a window is completely obscured, of
course, it may be necessary to move or resize other
windows to make a portion of the obscured win-
dow visible.

A program also can change the order of its
windows using the functions XRaise() and
XLower() without any action on part of the user.
XRaise() brings &window to the front, so that all
other windows are behind it. Conversely, XLower()
puts &window to the back of all other windows,
possibly obscuring all or part of it.

I/O Buffers and Synchronization

Some window systems buffer text and graphic
output. Output to a window is automatically
flushed when the window is waiting for input. The
function XFlush() can be used to force pending
output to be written to the window.

In the X client/server model, the client (that is
the X-Icon program) may send requests to the
server before the server has processed other pend-
ing requests. In this situation the display may lag
behind the program. The function XSync() causes
all output to be flushed and then waits for an
acknowledgment from the server that all pending
requests have been processed.

Closing Windows

The function close(w) closes the window w,
which then disappears from the screen. In the case
of &window, the argument must be given explic-
itly.

All windows are closed automatically when a
program terminates, so it is not necessary to close
windows explicitly before a program terminates.

A Final Word on Window Managers

Actions such as moving a window, resizing a
window, iconifying it, and so forth are done by the
window manager. Not all window managers honor
all such requests from a program.

Future Articles

In the next issue of the Analyst, we’ll dig a
little deeper into what a window is and reveal that
it consists of a binding between a canvas, on which
drawing is done, and a graphic context, which deter-
mines how drawing is done. Following that, we’ll
start on a topic that is both difficult and potentially
rewarding — color. The last article on X-Icon we
have planned is about images: how what appears
in a window can be saved as a file and how an
image can be brought into a window from a file.

Reference

1. X-Icon: An Icon Window Interface; Version 8.10
Clinton L. Jeffery and Gregg M. Townsend, Tech-
nical Report TR 93-9, Department of Computer
Science, The University of Arizona, 1992.

6 / The Icon Analyst

Piped Scanning

As we showed in an earlier article [1], string
scanning expressions can be used in combination
in several ways. One way is nested scanning, in
which a string scanning expression occurs inside
another, as in

s1 ? {
...

 s2 ? {
 ...

 }
...

 }

String scanning expressions also can be used in
conjunction, as in

(s1 ? { ... }) & (s2 ? { ... })

Neither of these kinds of combinations of
string scanning expressions occurs frequently in
practice, although they sometimes occur in ways
that are not obvious, such as

s ? {
...

 p()
...

 }

and

(s ? { ... }) & p()

where p() contains scanning expressions.
Recently we discovered another situation in

which string scanning expressions can be used in
combination:

s ? { ... } ? { ... } ? ... { ... }

Like most infix operators, the string scanning
operator groups to the left, so the expressions
above group as

((((s ? { ... }) ? { ... }) ? { ... }) ? ... { ... })

Parentheses do just as well as braces for grouping
string scanning; we’ve used braces to show the
right operands of the scanning operator in order to
distinguish between these operands and the group-
ing of the scanning operators.

As a consequence of this grouping, the result
of the left-most scanning operation provides the
subject for the next scanning expression, and so on.
The result is akin to a pipe with values “flowing”

from left to right through a sequence of scanning
expressions.

Such an arrangement of scanning expressions
may seem a bit peculiar to you and you may
wonder how such a thing could be useful. We’ll
start with a simple example.

Suppose a file consists of lines with fixed-
width fields and that the first field may begin with
a command. If it does, the command is followed by
a colon (colons may appear in other fields, too, but
at most one colon appears in the first field). Now
suppose you want a list of all the different com-
mands in the file. You might use any of several
different methods. We’ll use string scanning (of
course) and, of the many approaches there, use the
following one:

command:= set()

every !&input ? {
 move(fw1) ? {
 insert(command, tab(upto(':')))
 }
 }

See Reference 2 for the way every is used here.
Notice that none of the braces in the expres-

sion above is needed to group the expressions.
Suppose we remove all the braces:

every !&input ?
move(fw1) ?
insert(command, tab(upto(':')))

Has the removal of the braces changed any-
thing? In one sense it has: The expressions now
group from left to right instead of right to left. But
since the result of

expr1 ? expr2

is the result of expr2, the two forms do the same
thing.

But what is the advantage of the second form,
aside from not having the braces? Braces aren’t the
point. The advantage is conceptual. Instead of
nesting, which is difficult for human beings to
understand and use correctly, the second form can
be thought of as strings passing through a succes-
sion of independent scanning expressions — the
pipe analogy mentioned above. Note that

every !&input

provides a source of subjects for the left-most
scanning expression in the pipe. It “drives” the
pipe.

The Icon Analyst / 7

To emphasize the independence of the com-
ponents of a scanning pipe, a typographical device
that keeps each component at the same “level” is
important. That’s why we didn’t indent the ex-
pressions in the example without braces above.
Since pipes can contain many components, string-
ing them out horizontally produces long lines — in
fact, we can’t do that with the example above
within the limitations of our two-column format.
Furthermore, using braces to enclose the right
operand of string scanning is good practice, since
such operands often are compound expressions.
Therefore, we’ve adopted the following typo-
graphical format for piped scanning:

source ? {
 expr1
 } ? {
 expr2
 } ? {

...
 } ? {
 exprn
 }

where source is an expression that drives the pipe.
In this form, the example above becomes

every !&input ? {
 move(fw1)
 } ? {
 insert(command, tab(upto(':')))
 }

Of course, such a layout is hardly necessary for this
simple example, but as more components are added
to the pipe, the vertical format with braces will be
helpful.

Consider a variation on the example above
where, instead of finding all the distinct com-
mands, we count the number of lines whose first
fields contain a command (as opposed to contain-
ing something else). This just amounts to changing
one of the pipe components in the example above:

count := 0

every !&input ? {
 move(fw1)
 } ? {
 upto(':') & count +:= 1
 }

It’s worth noting in these examples that both
tab() and upto() can fail. When a pipe component
fails, nothing “goes forward”, of course.

This is simple enough, but if we insist on
putting separate functionality in separate pipe com-
ponents, we can do this:

every !&input ? {
 move(fw1)
 } ? {
 upto(':')
 } ? {
 count +:= 1
 }

Do you see anything peculiar about this? The
last pipe component doesn’t do any string scan-
ning. There’s certainly nothing wrong with that;
the right operand of string scanning can be any
expression; there’s no requirement that it even
consider the subject. But there’s something else
here that deserves note. The pipe component
upto(':') produces an integer, not a string. Yet the
subject of string scanning must be a string. In this
case, that’s not a problem, since the integer is
converted to a string that serves as the (ignored)
subject of the last pipe component.

This example points out that the values that
pass through a pipe of scanning expressions must
be strings or convertible to strings. This is a definite
limitation to the use of scanning pipes (and sug-
gests an interesting possibility for a language fea-
ture akin to string scanning but one that does not
require the “subject” to be of any particular type).

The need to pass strings (or values convert-
ible to strings) through scanning pipes suggests
some special programming techniques.

Suppose, for example, you want to write only
those fields that contain commands as well as
counting them. This requires that the field be passed
through if the test succeeds. Adhering to our sepa-
ration of functionality into simple pipe compo-
nents, this means that the component that contains
upto(':') must pass on its subject. For the example
above, this might take the form

every !&input ? {
 move(fw1)
 } ? {
 upto(':') & tab(0)
 } ? {
 write(&subject)
 } ? {
 count +:= 1
 }

8 / The Icon Analyst

 count +:= 1
 }

On the other hand, such generation can be
useful. For example,

count := 0

every !&input ? {
 upto(':')
 } ? {
 count +:= 1
 }

counts the number of colons in the input file.

The other matter that deserves mention is that
pipes also can be driven by suspend and hence
easily can be incorporated into procedures. An
example is:

procedure commands()

 suspend !&input ? {
 move(fw1)
 } ? {
 tab(upto(':'))
 }

end

which generates the commands from the first fields
of lines of input as described above.

Procedures also can be useful as pipe compo-
nents. For example, suppose you want a pipe com-
ponent that generates the words from its subject.
The typical method of finding words in a subject is
to use a loop, as in

while tab(upto(&letters)) do {
 word := tab(many(&letters))
 … # process word
 }

The trouble is that this loop can’t be used as a pipe
component to generate words for the next pipe
component — there’s no way to export the words
out of the loop. This can be done with a procedure,
however:

procedure words()

 while tab(upto(&letters)) do
 suspend tab(many(&letters)) \ 1

end

Here, words() operates on the current subject and
limitation is used to avoid unwanted backtracking
[4].

There is some logic to a pipe component pass-
ing on its subject if it has no other value to pass on.
Note that write(&subject) does the same thing,
although the next pipe component doesn’t use it.

You might think that

upto(":") & &subject

would work just as well as

upto(':') & tab(0)

but it doesn’t and the result may be mysterious.
The cause lies in the restoratation of &subject
when scanning is complete [3]. A good rule is never
to produce &subject (or &pos) as the result of
string scanning.

If you decide to use piped scanning, you may
want to develop some guidelines for writing pipe
components so that they will be “plug-compat-
ible” over a variety of applications. One guideline
might be the one suggested above: If a pipe compo-
nent does not produce any useful value, but only
serves as a “conditional”, it should pass on its
input.

Two other matters related to piped scanning
deserve mention. One is that pipe components can
be generators. In fact, the preceding examples con-
tain generators, although the description of the
data implies that generation will not occur — that
the first field will contain only one colon. If this rule
is violated in

every !&input ? {
 move(fw1)
 } ? {
 upto(':')
 } ? {
 count +:= 1
 }

the expression upto(':') produces a value for every
colon in its subject. As long as it is driven from
above, it will generate these values and they will be
counted, since upto(':') is the last suspended gen-
erator. It will be resumed before, for example,
!&input at the head of the pipe.

Although generation is not expected for the
data in the example above, it might occur unex-
pectedly. Limitation can be used to prevent this:

every !&input ? {
 move(fw1)
 } ? {
 upto(':') \ 1
 } ? {

The Icon Analyst / 9

Such a procedure can be used in a pipe, as in

every !&input ? {
 words()
 } ? {
 # process word
 ...
 }

Conclusions

We won’t blame you if you think piped scan-
ning is a bit rarefied, if not contrived. But before
you dismiss it, think about the value of having
“plug-compatible” pipe components and being
able to connect them together without all the wor-
ries of interactions and nesting that come from
other organizations of string scanning.

Give them a try. Like any other new approach
to programming, it takes a bit of time to get used to
piped scanning. But once you get past that, you
may benefit from “thinking pipes”.

References

1. “String Scanning”, Icon Analyst 3, pp. 5-7.
.

2. “Scanning Lines of a File”, Icon Analyst 19, pp.
10-12.

3. “Modeling String Scanning”, Icon Analyst 6,
pp. 1-2.

4. The Icon Programming Language, second edition,
Ralph E. Griswold and Madge T. Griswold, Prentice
Hall, Englewood Cliffs, New Jersey, 1990, pp 88-
89.

procedure revlist(lst)

 newlist := copy(lst)

 every i := 1 to ∗newlist / 2 do
 newlist[i] :=: newlist[–i]

 return newlist

end

This method is about three times faster than the
first and allocates only about one half the amount
of storage.

2. keylist(tbl)
This one is quite simple. It’s only necessary to

recall that key(tbl), not !tbl, generates the keys in
tbl:

procedure keylist(tbl)

 lst := []

 every put(lst, key(tbl))

 return sort(lst)

end

3. valset(tbl)
This one’s just as simple:

procedure valset(tbl)

 set1 := set()

 every insert(set1, !tbl)

 return set1

end

4. seteq(set1, set2)
One way to tell if two sets have the same

members is to check that the two sets are the same
size and the same size as their intersection:

procedure seteq(set1, set2)

 if ∗set1 = ∗set2 = ∗(set1 ∗∗ set2) then
 return set2 else fail

end

You could also use the union:

 if ∗set1 = ∗set2 = ∗(set1 ++ set2) then
 return set2 else fail

but this has the disadvantage that if the sets are not
the same, the union is larger and takes longer to
construct than the intersection.

Note that if seteq() succeeds, it returns set2.

Solutions to Exercises

1. revlist(lst)
One method that comes to mind for reversing

a list is to create any empty list and push onto it
elements generated from lst:

procedure revlist(lst)

 newlist := []

 every push(newlist, !lst)

 return newlist

end

A better method is to swap elements from
opposite ends of a copy of lst:

10 / The Icon Analyst

That was not specified in the problem, but it fits
nicely with the fact that all comparison operations
in Icon return their left operands if they succeed.

You might considering checking whether the
two sets are identical before doing anything else:

if set1 === set2 then return set2

Of course, it’s probably unlikely that the sets are
identical as opposed to being different but having
the same members. Whether such a test is worth-
while is problematical.

Although the method used above is straight-
forward, it has the disadvantage of constructing a
set, which can be relatively time-consuming op-
eration that allocates a significant amount of stor-
age, albeit collectable. Here’s a method that does
not construct a new set or allocate any storage:

procedure seteq(set1, set2)

 if ∗set1 ~= ∗set2 then fail

 every x := !set1 do
 if not member(set2, x) then fail

 return set2

end

If the two sets are the same size, but there is a
member of set1 that is not in set2, the procedure
fails. Otherwise it succeeds.

5. setlt(set1, set2)
The second method above can be easily

adapted to determine if set1 is a proper subset of
set2:

procedure setlt(set1, set2)

 if ∗set1 >= ∗set2 then fail

 every x := !set1 do
 if not member(set2, x) then fail

 return set2

end

We’ll leave it as a further exercise to do this with
sizes and set operations.

6. tbleq(tbl1, tbl2)
Determining whether two tables are equiva-

lent is a bit more complicated than determining if
two sets are equivalent. Not only are there both
keys and values to worry about, but to be equiva-
lent, two tables should have the same default value.
We deliberately left that out of the problem state-
ment to see if you’d think of it.

Determining the default value for a table is an
interesting little puzzle. Of course, if you subscript
a table with a value that’s not a key (that is, for
which a value has not been assigned), you get the
default value. The problem is how to find such a
value. One solution is to use a newly created value,
such as a list, so that in:

 x := tbl[[]]

x is assigned the default value for tbl. In tbleq(), a
static variable can be used to avoid creating a new
list every time the procedure is called:

procedure tbleq(tbl1, tbl2)
 static prod

 initial prod := []

 if ∗tbl1 ~= ∗tbl2 then fail

 if tbl1[prod] ~=== tbl2[prod] then fail

 else every x := key(tbl1) do
 if not(member(tbl2, x)) |
 (tbl2[x] ~=== tbl1[x]) then fail

 return tbl2

end

Again, a test for identical tables could be added at
the beginning:

if tbl1 === tbl2 then return tbl2

The loop that tests for equivalent values deserves
examination. It might appear that

else every x := key(tbl1) do
 if tbl2[x] ~=== tbl1[x] then fail

would do. After all, the tables are the same size and
if one has a key the other doesn’t, it’s value would
be compared against the default value.

That’s true, but there’s no reason why the
value for a key that’s actually in the table can’t be
the default value. Consider

tbl1 := table(0)
tbl1["a"] := 0
tbl2 := table(0)
tbl2["b"] := 0

Here both tables are the same size and their single
keys have the same value; the value of tbl1["b"] is
0, as is tbl2["a"]. So the membership test is neces-
sary.

Just in case you didn’t notice, value compari-
son is needed to determine if two values are the
same; values can be of any type.

The Icon Analyst / 11

vertices := []

while xy := read(poly1) do
 xy ? {
 put(vertices, tab(upto(','))) # x
 move(1)
 put(vertices, tab(0)) # y
 }

Then

XFillPolygon ! vertices

draws the filled polygon. Similarly,

XDrawCurve ! vertices

draws a smooth curve through the vertices.
Of course this form of call works for declared

procedures as well as for built-in functions and for
procedures and functions that have a fixed number
of arguments.

We’ve mentioned this feature of Icon before.
But we want to go a bit further here. Suppose you
have a procedure that needs to call other proce-
dures but the specific procedures called, as well as
their arguments, are not known when the program
is written.

We’ll continue with our example from graph-
ics because its easy to motivate, but the problem
occurs in other contexts as well. Suppose you have
a procedure layout() that draws a geometrical
figure and perhaps performs some other computa-
tions. The figures it draws may vary — a polygon
one time, a curve another, and so on. The proce-
dure might have this form:

procedure layout(draw, args)
 …
 draw ! args
 …
end

and called as

layout(XFillPolygon, vertices)

or as

Programming Tips

Packaged Calls

The way you organize things when you pro-
gram often makes all the difference in the results.
We’re not thinking of dividing a program into
appropriate modules or designing good proce-
dural abstractions, although both are important.
Instead, we’re thinking about conceptual formula-
tion. This article describes an example of that.

In most programs, function calls and their
arguments are written explicitly, as in

find(word[10], text)

Some functions, however, take an arbitrary
number of arguments. The number may not be
known when the program is written but instead
may not be determined until the program runs. For
example, in X-Icon the function XFillPolygon()
takes an arbitrary number of arguments — the x,y
coordinates of the vertices of the polygon. The
number of vertices, and hence the number of argu-
ments, may depend on run-time computations.

Icon provides a form of call in which the
arguments are contained in an Icon list as opposed
to being written out explicitly in the program. For
example, the coordinates for the vertices of a poly-
gon might be obtained from a file, as in

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.

12 / The Icon Analyst

layout(XDrawCurve, vertices)

Providing the arguments XFillPolygon and
vertices for the formal parameters draw and args
is equivalent to

draw := XFillPolygon
args := vertices

and

draw ! args

is equivalent to

XFillPolygon ! args

Using this approach, the drawing procedures
and their arguments can be specified during pro-
gram execution and the procedure layout() can be
used in very general ways.

But there’s a higher level of abstraction that’s
useful on occasion. The idea is to encapsulate the
call — both the function and its argument list — in
an object. A record provides the natural way of
doing this:

record call(fnc, args)

so that

call(XFillPolygon, vertices)

creates an object for the call that can be assigned to
an identifier, passed to a procedure, stored in a
structure, and so forth. Imagine, for example, a
table of calls corresponding to a library of draw-
ings.

The conceptual value of this approach lies in
being able to deal with a call as a single value rather
than as a pair of values that are related only by
context.

Using this approach, layout() can be recast as

procedure layout(drawing)
 …
 drawing.fnc ! drawing.args

 …
end

and used as

polygon := call(XFillPolygon, vertices)
 …
layout(polygon)

Since calls may be used in a similar fashion in
many places, it’s useful to have a procedure to
invoke them:

procedure invoke(call)

 suspend call.fnc ! call.args

end

Using this procedure, layout() can be recast as

procedure layout(drawing)
 …
 invoke(drawing)
 …
end

Whether or not treating calls as objects is
worth the extra effort associated with creating and
using records depends on the circumstances. This
approach can be very helpful when what you’re
doing is naturally thought of in terms of calls as
values. This approach may even suggest program
features that take advantage of such run-time flex-
ibility.

But you’ll know you’re heading for deep wa-
ter when you find yourself using calls as argu-
ments to other calls:

drawing := call(drawfig, [call(form1, […]), …])

Downloading Icon Material

Most implementations of Icon are available for
downloading electronically:

RBBS: (602) 621-2283

FTP: cs.arizona.edu (cd /icon)

What’s Coming Up

In the next issue of the Analyst, we’ll have an
articles on graphic contexts in X-Icon, procedures
that have memory, and on returning multiple val-
ues from a procedure.

