
The Icon Analyst / 1

December 1994
Number 27

In-Depth Coverage of the Icon Programming Language

 In this issue …

Lindenmayer Systems … 1
Static Analysis of Icon Programs … 5
Programming Tips … 11
What’s Coming Up … 12

Anatomy of a Program —
Lindenmayer Systems (continued)

As we mentioned in the last issue of the
Analyst, various kinds of L-systems have been
developed to describe plants and plant develop-
ment. Most of these L-systems are considerably
more difficult to implement than 0L-systems, and
we won’t attempt them here. There are, however,
generalizations that can be made to 0L-systems.

Generalizations to 0L-systems

Most real plants develop in three dimensions,
not just two. To handle this, roll and pitch can be
added to the directional commands, so that the full
set becomes:

+ turn right by δ
– turn left by δ
& pitch down by δ
^ pitch up by δ
\ roll left by δ
/ roll right by δ
| turn around

where δ is the specified angle for turns:

+ –

^

& /

\

As illustrated in the last article, L-systems can
be used to characterize fractals as well as plants.
Here’s an example of a three-dimensional fractal
that can be described by a 0L-system:

Our program can’t produce such sophisti-
cated renderings even in two dimensions, but it’s
interesting to have an idea of the capability of 0L-
systems.

2 / The Icon Analyst

along, there’s not much we can do about it. (Any
offers?)

Before going on to generalizations that we can
handle, here’s the program from the last article for
reference:
link turtle # turtle graphics package

procedure main()
 local rule, line, sym, new, axiom, gener, angle
 local length, keyword, value, allsyms, replace

 rule := table()
 allsyms := '' # initially empty cset

 while line := read() do
 line ? {
 if sym := tab(find("–>")) then {
 move(2)
 replace := tab(0)
 rule[sym] := replace
 allsyms ++:= replace
 }
 else if keyword := tab(find(":")) then {
 move(1)
 value := tab(0)
 case keyword of {
 "axiom": {
 allsyms ++:= value
 axiom := value
 }
 "gener": gener := value
 "angle": angle := real(value) |
 stop("∗∗∗ invalid angle: ", line)
 "length": length := integer(value) |
 stop("∗∗∗ invalid length: ", line)
 default:
 stop("∗∗∗ invalid keyword: ", line)
 }
 }
 else stop("∗∗∗ invalid specification: ", line)
 }

 if /axiom then stop("∗∗∗ no axiom")
 /length := 5 # defaults
 /gener := 4
 /angle := 90.0

 every sym := !allsyms do
 /rule[sym] := sym

 every sym := lgen(!axiom, rule, gener) do
 case sym of {
 "F": TDraw(length)
 "f": TSkip(length)
 "+": TRight(angle)
 "–": TLeft(angle)
 "[": TSave()
 "]": TRestore()
 }

 Event() # wait to dismiss window

end

procedure lgen(sym, rule, gener)

 if gener = 0 then return sym
 suspend lgen(!rule[sym], rule, gener – 1)

end

Two examples of three-dimensional plant 0L-
systems are:

axiom:A
angle:30
A–>[B/////B///////B]
B–>[&ILA]
I–>FL
F–>F/////I
L–>[^^–F+F+F–|–F+F+F]

axiom:P
angle:18
P–>I+[P+O]––//[––L]I[++L]–[PO]++PO
I–>FS[//&&L][//^^L]FS
S–>SFS
L–>[+f–ff–f+|+f–ff–f]
O–>[&&&D/W////W////W////W////W]
D–>FF
W–>[^F][&&&&–f+f|–f+f]

Since the implementation of 0L-systems in
the last article ignores symbols for which there are
no replacements, we can use it as-is to draw a
projection” of three-dimensional 0L-systems onto
two dimensions, just ignoring turns in the third
dimension. The second 0L-system above produces
the following drawing when done this way:

We can’t do much about three-dimensional
rendering, since the Icon turtle graphics package is
limited to drawing in two dimensions. If it worked
in three dimensions, our program could provide
three-dimensional drawings just by calling appro-
priate turtle graphics procedures. In any event,
this capability lies outside our program, and until
a three-dimensional turtle graphics package comes

The Icon Analyst / 3

There are various extensions to 0L-systems
that can be done within the current framework. An
example is incrementally diminishing the thick-
ness of “branches” as drawing progresses toward
the extremities. All that’s needed is a symbol to
represent decrementing the thickness and adding
the necessary initialization and drawing code.

But some kinds of extensions can’t be made
without a significant change to the notational sys-
tem we’ve been using. For example, if you want to
specify an arbitrary thickness instead of one ob-
tained by decrementing the current thickness,
there’s no way to do it with the single-character
symbols we’ve been using; our syntax is too im-
poverished. There are other problems with using
only single-character symbols. Although we’re not
likely to run out of characters, that’s at least a
possibility. Furthermore, the use of single-charac-
ter symbols makes L-systems difficult to under-
stand and to keyboard correctly. Just being able to
use multi-character symbols for our “place mark-
ers” would be a big help. For example, the first 0L-
system on page 2 is much easier to understand
when written this way:

axiom:apex
angle:30
apex –> [branch / / / / / branch / / / / / / / branch]
branch –> [& internode leaf apex]
internode –> F leaf
F –> F / / / / / internode
leaf –> [^ ^ – F + F + F – | – F + F + F]

We’ve added blanks to separate the symbols now
that they are not all single characters.

Usually when you buy into a notational sys-
tem for its structural simplicity and ease of pro-
cessing, it requires major changes to a program to
go to a more general syntax. It’s actually fairly easy
to go from single-character symbols to multi-char-
acter ones in the programs we’ve given.

There is a simple but important idea in the
conversion. Replacement rules in a 0L-system are
sequences of symbols. So far, we’ve used single-
character symbols in which a replacement is repre-
sented by a string, which is just a sequence of
characters. Suppose now that we generalize the
syntax of symbols to allow more than one charac-
ter. The symbols then become strings. If we repre-
sent replacements by strings, as we will need to do
for writing them down, separators are needed as
shown in the previous example.

We could do this inside the program and

parse the replacements during drawing. But there’s
a better way.

As noted above, a string is a sequence of
characters and hence provides a natural and easily
processed representation for single-character sym-
bols. For multi-character symbols, there also is a
natural representation: a list of strings (symbols).

With this idea in mind, we can look at our
program to see what needs changing.

A bit of insight helps at this stage. Before
getting involved with multi-character symbols, we
can try the new data representation — lists instead
of strings — with our present program. After all, a
single-character symbol is just a special case of a
multi-character symbol.

Consider the simple 0L-system from the last
article:

axiom:X
X–>F–[[X]+X]+F[+FX]–X
F–>FF

Represented internally as a list of strings, the first
replacement looks like this:

["F", "–", "[", "[", "X", "]", "+", "X", "]",
"+", "F", "[", "+", "F", "X", "]", "–", "X"]

That would be a pain to keyboard, but fortunately,
we don’t have to; the program will read in strings
as before and produce lists instead of strings for
replacements.

It’s easy enough to convert a string into a list
of one-character strings:

rep := []
every put(rep, !s)

We can start by making this change to our
earlier program. Instead of putting the code above
in-line, we’ll encapsulate it in a procedure instead,
anticipating that we’ll need something a bit more
complicated when we convert to multi-character
symbols:

procedure parse(s)
 local rep

 rep := []
 every put(rep, !s)

 return rep

end

With this, the line

 rule[sym] := replace

4 / The Icon Analyst

instead of

allsyms ++:= value

That’s it: minor changes to a few lines (some
only to improve the code) and the addition of a
simple procedure for parsing replacements. In sum-
mary, here is the new program. The changed lines
are marked at the left.

link turtle

procedure main()
 local rule, line, sym, new, axiom, gener, angle
 local length, keyword, value, allsyms, replace

 rule := table()
 allsyms := set() # initially empty set

 while line := read() do
 line ? {
 if sym := trim(tab(find("–>"))) then {
 move(2)
 value := parse(tab(0))
 rule[sym] := value
 every insert(allsyms, !value)
 }
 else if keyword := tab(find(":")) then {
 move(1)
 value := tab(0)
 case keyword of {
 "axiom": {
 axiom := parse(value)
 every insert(allsyms, !axiom)
 }
 "gener": gener := value
 "angle": angle := real(value) |
 stop("∗∗∗ invalid angle: ", line)
 "length": length := integer(value) |
 stop("∗∗∗ invalid length: ", line)
 default:
 stop("∗∗∗ invalid keyword: ", line)
 }
 }
 else stop("∗∗∗ invalid specification: ", line)
 }
 if /axiom then stop("∗∗∗ no axiom")

 /length := 5 # defaults
 /gener := 4
 /angle := 90.0

 every sym := !allsyms do
 /rule[sym] := [sym]

 every sym := lgen(!axiom, rule, gener) do
 case sym of {
 "F": TDraw(length)
 "f": TSkip(length)
 "+": TRight(angle)
 "–": TLeft(angle)
 "[": TSave()
 "]": TRestore()
 }

 Event() # wait to dismiss window

end

is replaced by

 rule[sym] := parse(replace)

so that the value of rule[sym] is now a list instead
of a string. Similarly, the axiom needs to be put in
a list:

axiom := [rule]

What else needs to be changed? Not much.
The places in the program that process replace-
ments only expect a data structure that is a se-
quence of symbols. Icon’s element-generation op-
erator, !x, applies to lists as well as to strings. For
strings, it produces one-character substrings. For
lists, it produces the elements (in this case, also
one-character strings).

This is an excellent example of the value of
polymorphism — allowing operations to work in
similar manners on different types of data.

The one-line change above, along with the
simple procedure parse(), is all that’s needed to
test the list representation for replacements. Only
a little more is needed to go to multi-character
symbols.

The procedure parse() needs to be changed
to handle multi-character symbols separated by
blanks:

procedure parse(s)
 local rep

 rep := []

 s ? {
 tab(many(' ')) # leading blanks?
 while put(rep, tab(upto(' ') | 0)) do
 tab(many(' ') | break
 }

 return rep

end

Possible blanks after "–>" also need to be
removed from sym:

 if sym := trim(tab(find("–>"))) then {
...

It’s also necessary to change from csets to sets
for keeping track of symbols:

allsyms := set() # initially empty set

and

insert(allsyms, value)

➸

➸

➸
➸
➸

➸
➸

➸

The Icon Analyst / 5

theless interesting and it might be helpful to other
programming language designers.

There are two approaches to measuring the
use of programming language features: static and
dynamic. Static analysis is concerned with how
often different features appear in the text of pro-
grams, such as how many instances there are of the
function find(). Dynamic analysis is concerned
with how often different features are used during
program execution, like how often find() is called.

In this article we’ll consider static analysis
and leave dynamic analysis to later.

Obtaining Static Information

Static analysis deals only with the text of
programs. You might imagine several ways of
analyzing program text, such as writing a program
that parses Icon programs and tabulates the differ-
ent kinds of syntactic tokens it finds. This is a
daunting task, even in a high-level language with
good string-processing facilities, such as Icon. Icon’s
syntax is complex and extensive; producing a cor-
rect and complete parser for it is difficult and
tedious, even using specialized tools like lex and
yacc. Of course, a parser for Icon already exists in
the implementation of Icon itself. It would be nice
to be able to use it. The Icon translator generates
ucode for the virtual Icon machine [1,2]. Ucode is
much simpler syntactically than Icon itself, so get-
ting static information about Icon programs from
the corresponding ucode is a possibility. There’s a
problem with this, however; some Icon expres-
sions, notably control structures, are translated
into sequences of ucode instructions and it’s by no
means easy to reconstruct the original expressions
in these cases.

The kind of problem we’re considering here
motivated the development of variant translators
[3, 4], which use Icon’s parser to produce various
forms of text corresponding to an Icon program. At
the core of the variant-translator system is an “iden-
tity” translator that translates an Icon program into

procedure lgen(sym, rule, gener)

 if gener = 0 then return sym
 suspend lgen(!rule[sym], rule, gener – 1)

end

procedure parse(s)
 local rep

 rep := []

 s ? {
 tab(many(' '))
 while put(rep, tab(upto(' ') | 0)) do
 tab(many(' ')) | break
 }

 return rep

end

Yet Another Article

We have one more article on L-systems to
finish this series. The final article will show an
entirely different way of implementing 0L-sys-
tems — compiling the specification of a 0L-system
into an Icon program instead of interpreting the
0L-system, as we have done so far.

Downloading Icon Material

Most implementations of Icon are available for
downloading via FTP:

cs.arizona.edu (cd /icon)

Static Analysis of Icon Programs

Introduction

Icon is a large programming language as mea-
sured in terms of its computational repertoire.
Standard Version of 9 Icon has 85 operators, 139
functions, 64 keywords, 17 control structures, and
several other operations. Some of these are essen-
tial to programming and are found in some form in
almost all programming languages. Examples are
arithmetic and simple input and output. Other
features are special to Icon and distinguish it from
other programming languages — features like gen-
erators, goal-directed evaluation, and string scan-
ning. Like most other programming languages,
Icon has some features that aren’t used often but
are nonetheless essential for certain tasks. Ran-
dom-access input and output are examples in this
category. Icon also has some features that aren’t
used very often and aren’t essential either — excess
baggage that seemed good at the time it was added.

We’ve had an interest for some time in ana-
lyzing Icon programs to get a better understanding
of the importance and utilization of Icon’s various
features. At this point in Icon’s development, this
primarily is an exercise in hindsight, but it’s none-

6 / The Icon Analyst

a semantically equivalent one; only the layout
differs between the input program and the output
program. A specification system then allows the
output to be changed to other forms.

Some time ago we wrote a variant translator
to translate an Icon program into another program,
which when executed, tabulated the tokens in the
original program. (If this doesn’t make a lot of
sense, bear with us; we’ll be more specific later.)

We struggled with this variant translator over
a period of time. It was complex and stretched the
capability of the variant-translator system as well
as our own skill. We got this variant translator
working to the point that it produced most of the
information we wanted, but it never was entirely
complete and correct.

When we went to use this variant translator to
get information for this article, we discovered it
didn’t work anymore — recent changes to Icon’s
syntax, like preprocessor directives, were inter-
preted as syntactic errors. The variant translator
was a victim of “progress”.

We thought about trying to bring the old
variant translator up to date, but we decided in-
stead to use the recently developed meta-variant
translator system [5]. We’ve since changed our
terminology and now call these just meta-transla-
tors [6]; the concepts haven’t changed. Using a
meta-translator enabled us to work in Icon, instead
of C.

Producing a meta-translator for the static
analysis of Icon programs turned out to be a snap.
We had something running in less than an hour,
and a complete version — one that did much better
than the original variant translator — wasn’t long
in coming.

A meta-translator reads an Icon program (the
source program and writes a single Icon proce-
dure, Mp(), that contains calls to procedures for
every syntactic token in the source program. The
procedure Mp() thus contains a complete repre-
sentation of the source program.

The procedure Mp() is combined with code-
generation procedures for every kind of Icon to-
ken:

procedure main()

 # initialization code

 Mp()

 # termination code

end

procedure Mp()

 # translation of source program

end

code-generation procedures called by
Mp().

...

 What happens when this program is run depends
on the code-generation procedure used. In an “iden-
tity” translation, these procedures just produce
strings that correspond to the token they represent.

For example, Binop_(op, e2, e2) in the iden-
tity translator is:

Binop_(op, e1, e2)
 return cat("(, e1, " ", op, " , e2, ")"
end

The procedure cat() from the Icon program library
produces the concatenation of an arbitrary number
of strings. It makes writing multiple concatena-
tions easier.

An expression in the source program, such as

i + 10

is translated into

Binop("+", Var("i"), Ilit(10))

in the procedure Mp(). As you might guess, Var()
and Ilit() just return their arguments. Thus, when
Mp() is called with the identity-translation proce-
dures,

Binop("+", Var("i"), Ilit((10))

produces "(i + 10)", which then is written out. The
parentheses are provided to avoid problems with
precedence and associativity in compound expres-
sions.

This is quite a bit of mechanism to do nothing
more than translate a target program into a seman-
tically equivalent one that is laid out somewhat
differently from the target program. What the iden-
tity procedures provide is a model for other, more
interesting translations. For static analysis, for ex-
ample, the procedure Binop() has this form:

procedure Binop_(op)
 binop["e1 " || op || " e2"] +:= 1
 return
end

Thus, every time Binop() is called by Mp(), the
entry in the table binop for that operator is

The Icon Analyst / 7

incremented. For example, i + 10 in the target
program increments the entry in binop for "e1 +
e2". Other instances of addition operations incre-
ment the same entry. The constant strings showing
"e1" and "e2" are provided so that the results are
easy to understand.

There are similar tables and procedures for
the other kinds of syntactic tokens. These tables are
created in the main program of the meta- translator
before Mp() is called, and when Mp() returns, the
contents of the tables are written out. The result of
this translation is not a program at all; instead it’s
a tabulation of the tokens in the source program.

If you’re not quite sure what’s going on, look
at identgen.icn (for identity translation) and
tokgen.icn (for token tabulation) in Version 9 of
the Icon program library.

Selecting Programs for Static Analysis

With the token-tabulation meta-variant trans-
lator, all we have to do for static analysis is to find
some suitable target programs and produce tabu-
lations of their tokens.

The problem is selecting a suitable set of
target programs. Although we have accumulated
thousands of Icon programs written by hundreds
of authors over a period of years, there’s no way to
know that these are programs are in any way
representative of all Icon programs. In fact, the
concept of “representative” is not really well-de-
fined. Static analysis using the token-tabulation
meta-variant translator is relatively fast, but com-
piling data from thousands of programs is time
consuming and tedious even when it’s all done
with programs and scripts. It’s also not clear that
performing static analysis on thousands of pro-
grams would produce more insight than working
with a smaller sample.

For this article, we decided to use the Version
9 Icon program library. We included all the pro-
gram and procedure files, but not the material in
the so-called packages. (The meta-translator works
just as well on collections of procedures as it does
for complete programs.) This sample contains 569
files amounting to about 2.5 MB. These files con-
tain 88,486 lines, of which 47,896 contain execut-
able code. (The rest are blank lines and lines con-
sisting only of comments).

The Icon program library certainly is not rep-
resentative of all Icon programs, whatever we

choose to mean by representative. But it does
include a wide range of applications and is the
work of many authors with widely differing styles.
Just be aware that what follows is a static analysis
of one version of the Icon programming library
and the results should not be interpreted too
broadly.

What to Expect?

All Icon programmers probably have some
preconceived ideas about which features of Icon
are used most frequently. Before going on, write
down your guesses as to the answers to the follow-
ing questions. We’ll give the answers later but
don’t peek.

1. What operator appears most frequently in
 Icon programs?

2. What control structure?
3. What keyword?
4. What function?
5. What string literal? Integer literal? Cset

 literal? Real literal?
6. What variable name?

The Results

Our meta-variant translator for tabulating
tokens produces a great deal of information, in-
cluding a listing of all the string literals in a pro-
gram. Such information is not particularly useful
except as it pertains to a particular program. And,
because of the size of Icon’s computational reper-
toire, it would take a book to list all the information
about every expression for just the Icon program
library. What follows are highlights (and some
“lowlights”), along with some notes about items of
particular interest. We’ll present the results mostly
in terms of “popularity”.

Operators: There are 44,962 instances of operators
in the Icon program library. The “top ten” in terms
of occurrence are listed below. The percentages
given are in terms of all operators.

operator occurrences percentage

e1 := e2 13,013 28.94
e1 . e2 5,107 11.36
e1[e2] 4,890 10.88
e1 + e2 2,578 5.73
e1 || e2 2,402 5.34

8 / The Icon Analyst

e1 – e2 1,671 3.72
∗e 1,489 3.31
\e 1,299 2.89
e1 ∗ e2 1,243 2.76
e1 & e2 1,105 2.48

There’s a fine point of terminology here. An
operator is a special syntactic form. There are
many other operations. An operation is any expres-
sion that evaluates its arguments from left to right
and then performs some computation that does
not interfere with control backtracking. All other
expressions are control structures (by definition).
For example,

if e1 then e2 else e3

is a control structure, not an operation. The control
expression e1 is evaluated first; depending on
whether or not it succeeds, either e2 or e3 is
evaluated (but not both).

Among the operations, operator syntax gen-
erally is provided for frequently used operations
or when there’s a familiar corresponding notation,
such as is used in mathematics. (This isn’t always
the case: It’s hard to explain why there is an opera-
tor for refreshing co-expressions.) Functions, on
the other hand, are used for most of the rest of the
computational repertoire. Function invocation is,
of course, an operation.

If we look at the popularity of operations, not
just operators, the picture is very different. There
are 68,376 instances of operations in the Icon pro-
gram library. Invocation is by far the most popu-
lar, with 20,753 occurrences, amounting to 30.35%
of all operations. No other operation comes out in
the top 10. (A good exercise is to try to list all the
different kinds of operations in Icon from memory.)

Control Structures: As mentioned earlier, any ex-
pression that is not an operation is a control struc-
ture. There are 17,073 instances of control struc-
tures in the Icon program library. The ten most
popular control structures are:

control structure occurrences percentage

e1 | e2 3,240 18.98
return e 2,540 14.88
if e1 then e2 2,417 14.15
if e1 then e2 else e3 1,514 8.87
case selectors 1,359 7.96
every e1 do e2 1,151 6.79

while e1 do e2 668 3.91
e1 ? e2 595 3.49
fail 577 3.38
every e 459 2.69

When we started to tabulate control struc-
tures, we realized we had a problem a problem —
e1; e2 is a control structure (it inhibits backtrack-
ing), but the meta-translator can’t detect the im-
plicit semicolons that are provided by the Icon
translator automatically where an expression ends
at the end of a line and another expression starts on
the next line.

Even the explicit semicolons occur more fre-
quently than any other control structure. Since we
couldn’t count implicit semicolons, we decided to
omit semicolons altogether from the figures above.

As an aside, you might note that the analysis
of Icon programs brings out some fine points in
Icon’s syntax and semantics. You’ll see more of
this, but from a different perspective, when we
publish an article on dynamic analysis.

Keywords: There are 2,153 occurrences of keywords
in the Icon program library. Here are the five most
popular keywords are:

keyword occurrences percentage

&null 323 15.00
&digits 193 8.94
&errout 180 8.36
&window 135 6.27
&pos 100 4.64

Functions: It isn’t possible with static analysis to tell
whether an identifier that’s the name of a function
has a function value when it’s used. As we’ve
pointed out before [7], it’s possible to do something
like

tab := 8

Such uses are relatively rare, as are uses of
functions other than by their names. However, two
identifiers, args and name, are the names of func-
tions but are more commonly used as local identi-
fiers, as in

procedure main(args)

We’ve deleted these two identifiers from the fol-
lowing tabulation of function names, since they
appear frequently but each actually is used as a
function only once.

The Icon Analyst / 9

There are 14,478 occurrences of function
names in the Icon program library, of which 136
are distinct. (There are 139 functions in the version
of Icon we used for comparison. The three func-
tions not used in the library are chdir(), errorclear(),
and loadfunc(), a function available on some UNIX
platforms for dynamically loading C routines.)
The 10 most popular functions are:

function occurrences percentage

write() 1,464 10.11
tab() 1,417 9.79
writes() 697 4.81
stop() 631 4.35
put() 627 4.33
move() 539 3.72
find() 452 3.12
upto() 430 2.97
integer() 406 2.80
many() 378 2.61

Literals: It seems a bit silly to list information about
literals, but as a curiosity (or for some future trivia
quiz), here are the “highlights”. There are 32,469
occurrences of literals in the Icon program library,
of which 7,315 are distinct.

There are 15,780 occurrences of string literals,
of which 6,632 are distinct. The five most popular
string literals are:

literal occurrences percentage

"" 836 5.30
" " 485 3.07
"," 143 0.91
"–" 130 0.82
"\n" 126 0.80

The longest string literal in the library has
17,285 characters. It’s an image string used to draw
playing cards.

There are 15,165 occurrences of integer liter-
als, of which 319 are distinct. The five most popular
integer literals are:

literal occurrences percentage

1 5,414 35.70
0 2,619 17.27
2 1,813 11.96
3 655 4.32
4 523 3.45

 Note that there is much less “diversity” in the use
of integer literals than of string literals.

There are 781 occurrences of cset literals, of
which 203 are distinct. The five most popular cset
literals are:

literal occurrences percentage

'\t ' 128 16.39
' ' 65 8.32
',' 49 6.27
':' 28 3.59
'(' 24 3.07

There are 743 occurrences of real literals, of
which 161 are distinct. The five most popular real
literals are:

literal occurrences percentage

1.0 136 18.30
0.0 101 13.59
0.5 81 10.90
2.0 27 3.63
0.25 25 3.36

There are 69,876 occurrences of variable
names, excluding function names, of which 4,863
are distinct. The five most popular non-function
variable names are

name occurrences percentage

s 2,191 3.14
i 2,085 2.98
self 1,284 1.84
x 1,153 1.65
line 952 1.36

The reason that self ranks so high is that it’s
used extensively in the graphics tool kit, which
originally was written in Idol [1] — a reminder that
the Icon program library is not representative of all
Icon programs.
Declarations: Just to complete the picture, there are
7,777 declarations in all:

declarations occurrences percentage
procedure 4,699 60.42
local 1,825 23.47
link 432 5.55
global 331 4.26
static 300 3.86

10 / The Icon Analyst

winner our guess

operator e1 := e2 e1 := e2
control structure e1 | e2 while e1 do e2
keyword &null &digits
function write() write()
string literal "" " "
integer literal 1 1
cset literal '\t ' ''
real literal 1.0 1.0
variable name s x

We figure we did pretty well, only being
really off on the most popular control structure.
How did you do?

What conclusions can we draw from all this?
There are some things that are as should be ex-
pected, some things that point out how Icon pro-
grams should be viewed, and a few surprises (for
us, at least).

The big question remains: How do the results
of static analysis relate to what actually goes on
when a program is run? As noted earlier, for this
we need dynamic analysis, which we’ll deal with
in a subsequent article.

Now with some trepidation, we’ll make an
offer. If you have an Icon program for which you’d
like a static analysis, send it to us by e-mail or on an
MS-DOS or Macintosh floppy (no printed listings,
please). We’ll return a static analysis of your pro-
gram in a like manner. One program only, please.

If you’re interested in the static analysis of a
file from the Icon program library, send us the file
name and we’ll send you back the information.
Please do not ask for more than one.

Address e-mail related to this offer to

ralph@cs.arizona.edu

not to icon-project and certainly not to icon-group.
This is a limited-time offer, which means that

if we’re inundated with requests, we’ll run up a
white flag.

If you’d like to do your own static analysis
and are running Version 9 of Icon on a UNIX
platform, you can get the necessary meta-transla-
tor by anonymous FTP to cs.arizona.edu; cd /icon/
meta and get the READ.ME there.

We expect to have meta-translators available
for other platforms at some time in the future.

record 171 2.20
invocable 19 0.37

In the case of scope declarations, each identifier
counts as a declaration even if several follow the
reserved word. The same is true of link declara-
tions.
Unpopular Expressions: Listing the least frequently
used expressions in the library isn’t particularly
revealing. Some operators appear only in proto.icn,
a program whose sole purpose is to list all syntactic
forms.

The absence of some operators isn’t really
surprising, since there are augmented assignment
operators for all binary non-assignment operators.
Can you actually imagine using

e1 &:= e2

or

e1 @:= e2

If we ignore augmented assignment opera-
tors, there are a few operators whose unpopularity
surprised us:

operator occurrences percentage

e1 ∗∗ e2 5 0.01
e1 <– e2 37 0.08
~e 38 0.08
e1 ||| e2 40 0.09

The five least popular control structures are:

control structure occurrences percentage

suspend e1 do e2 3 0.02
until e 12 0.07
create e 39 0.23
|e 39 0.23
until e1 do e2 39 0.23

Earlier we saw that string scanning was only
the eighth most popular control structure. String
scanning expressions, however, tend to be more
complicated than those for other control struc-
tures, as is indicated by the popularity of tab() and
move().

Conclusions

By now, you’ve seen the answers to the ques-
tions that we posed earlier. To summarize:

The Icon Analyst / 11

Watch the Icon Newsletter for an announcement.

References

1. “An Imaginary Icon Compiler”, Icon Analyst
8, pp. 2-6.

2. The Implementation of the Icon Programming Lan-

guage, Ralph E. Griswold and Madge T. Griswold,
Princeton University Press, Princeton, New Jersey,
1986, pp. 111-126, 264-278.

3. “Variant Translators”, Icon Analyst 7, pp. 2-5.

4. Variant Translators for Version 9.0 of Icon, Ralph E.
Griswold, IPD245, 1994.

5. “Meta-Variant Translators”, Icon Analyst 23,
pp. 8-10.

6. Building Source-Code Processors for Icon Programs,
Ralph E. Griswold, IPD263, 1994.

7. “Programming Tips”, Icon Analyst 25, pp. 11-
12.

Preprocessor Definitions

This is the third tip in a series on avoiding
bugs. Here we deal with a newer feature of Icon
that some of you may not have used.

Icon’s preprocessor allows a name to be as-
signed to an arbitrarily complicated expression. A
simple example is

$define SIZE width + offset

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

voice: (602) 621-8448

fax: (602) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

…uunet!arizona!icon-project

and

© 1994 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

The Bright Forest Company
 Tucson Arizona

Programming

Tips

12 / The Icon Analyst

What’s Coming Up
By now, you’ve probably read all you want to

read about Lindenmayer systems. We promise to
leave the subject after an article on compiling 0L-
system specifications in the next issue.

We’ll follow up the article on the static analy-
sis of Icon programs in this issue by the first in a
series of articles on the dynamic analysis of Icon
programs — determining what goes on during
program execution. This is an extensive subject
and we expect to have several articles on it in future
issues of the Analyst. We’ll probably start by
explaining how program execution can be moni-
tored in Icon and what kinds of information can be
obtained by this means. We’ll then give some
results and compare them with the results of static
analysis. We probably will get into ways of pre-
senting program activity visually, although not
being able to print in color (or rather, not being able
to afford to print in color) limits what we can do.

In the next issue, we also expect to have an
article on string invocation, which allows Icon’s
functions and operators to be invoked using their
string names.

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.

bug is to use uppercase letters for the names of
defined constants.

Avoiding bugs like these, as well as the ones
discussed in the previous two programming tips,
involves discipline. All good programmers know
that discipline is important, but they don’t always
practice it. The fact that Icon encourages a free-
and-easy style does not help. But it can take a lot of
time and effort to find bugs in a program, espe-
cially the kinds of bugs described in these recent
tips. We don’t know of anyone who prefers debug-
ging to programming; following a few simple rules
faithfully can make the whole programming pro-
cess much more pleasant. Enough preaching; we
just hope that these tips, which come from our
experience, will help.

When SIZE is used subsequently in the pro-
gram, width + offset is substituted for it.

Suppose SIZE is used as follows:

dimension := SIZE ∗ 3

This groups as

dimension := width + (offset ∗ 3)

where the obvious intention was

dimension := (width + offset) ∗ 3

The value assigned to dimension almost cer-
tainly will be incorrect and result in a bug that may
be hard to find — after all

dimension := SIZE ∗ 3

looks correct.
The solution is easy: Use parentheses in the

definition, as in

$define SIZE (width + offset)

Then

dimension := SIZE ∗ 3

is equivalent to

dimension := (width + 3) ∗ 3

as intended.
Before you say that the preprocessor should

supply parentheses for you, recall that preproces-
sor definitions can be used for many things other
than complete expressions. You have to take care
of parentheses yourself.

Another thing to watch out for when using
the preprocessor is using a name that already has
a meaning in Icon. For example,

$define tab 8

results in an instance of the function call like tab(i)
turning into 8(i) — not exactly conducive to correct
program behavior. One way to avoid this kind of

