
The Icon Analyst / 1

February 1995
Number 28

In-Depth Coverage of the Icon Programming Language

write ! values

where values contains the strings to be written. (In
Version 9 of Icon, this form of invocation can be
used with records as well as lists; we’ll just refer to
lists in what follows.)

The main advantage of invocation with an
Icon list is that it allows the number of arguments
to be determined when the program is run. This is
useful primarily for built-in functions like write()
and DrawLine() that accept a variable number of
arguments. A declared procedure also can have a
variable number of arguments.

Although the procedure to be invoked usu-
ally is given explicitly in an invocation expression,
it can be the result of an expression that produces
a procedure, as in

(if \eol then write else writes)(greeting)

in which the if–then–else expression produces
either write or writes. Depending on the value of
eol, the result is either

write(greeting)

or

writes(greeting)

In order to make the description of invocation
general, we’ll use the forms

String Invocation

String invocation allows an operation to be
invoked by its string name. In Icon, the term
operation includes functions like write(), opera-
tors like +, declared procedures, and record con-
structors.

Being able to invoke an operation by its name
allows the operations that are to be performed to
be determined when a program is run. With string
invocation, for example, it is possible for a user to
specify, via input to a program, a particular func-
tion to be evaluated, even if the function does not
occur explicitly in the program.

This article describes string invocation, start-
ing with a review of what’s involved in the invo-
cation process.

Invocation

In Icon terminology, functions are built-in,
while procedures are declared. From the point of
view of invocation, there is no difference between
what’s built in and what’s declared. In this article,
we’ll generally use the term procedure for both,
and only point out the difference in the few cases
where that’s necessary.

There are two ways a procedure can be in-
voked (called): with explicit arguments, as in

write(heading, " ", text)

or with the arguments given in an Icon list, as in

 In this issue …

String Invocation … 1
Random Number Generators … 4
Lindenmayer Systems … 6
Dynamic Analysis of Icon Programs … 9
What’s Coming Up … 12

2 / The Icon Analyst

expr0(expr1, …, exprn)

and

expr0 ! expr1

where expr0, expr1, …, exprn all can be arbitrarily
complicated expressions.

In most invocation expressions, expr0 is a
variable whose value is a procedure. A variable
whose name corresponds to a procedure is global
by default and has that procedure as its initial
value. We’ll refer to this as an explicit reference to
the procedure. It’s important to remember that
procedures are data values in Icon. For example,

type(write)

produces "procedure", the type procedure in-
cluding both built-in functions like write() and
declared procedures like main().

As we’ve said before [1], it’s possible to re-
place the initial value of a variable that corre-
sponds to a procedure by some other value — even
a value that’s not a procedure. This has its uses, but
if it’s done accidentally, the results can be disas-
trous. For this article, we’ll assume that variables
with names that correspond to procedures retain
their initial values.

In the expressions

expr0(expr1, …, exprn)

and

expr0 ! expr1

evaluation is strictly left to right. Although expr0
usually is a variable for which evaluation can’t fail,
if expr0 is an expression that fails, evaluation stops
at that point and the entire invocation expression
fails. That’s logical; there’s nothing to invoke.

If expr0 succeeds, expr1, …, exprn are evalu-
ated before anything else is done. If any of these
expressions fails, control backtracks to the previ-
ous expression for a possible alternative that might
make the subsequent expression succeed [2]. In
any case, all argument expressions must eventu-
ally succeed; otherwise the entire invocation ex-
pression fails because there is not a complete set of
arguments.

Once all of expr0, expr1, …, exprn are evalu-
ated successfully, the type of expr0 is checked,
There are three acceptable possibilities for the value
of expr0:

1. A procedure.
2. An integer or a type that can be converted

to an integer.
3. A string that is the name of an operation.
The first case is the most common. The second

case, called mutual evaluation, doesn’t invoke an
operation. Instead, it produces the result of the
argument in the position given by expr0. For ex-
ample,

2(expr1, expr2, expr3)

produces the result of expr2, assuming all the
argument expressions succeed.

The third case leads us to the main subject of
this article.

Names for Operations

There are string names for all operations in
Icon (with one exception that we’ll mention later).
The string name of an operation can be used to
invoke that operation.

The string name for a procedure is what you’d
expect. For example, the name for write is "write".
This means that you can use

"write"(heading, " ", text)

or

"write" ! values

and get the same results as if you’d used

write(heading, " ", text)

or

write ! values

There’s not much purpose in using string
invocation in the manner above, unless, perhaps,
you want to see if it works. String invocation even
is a little slower than using a procedure-valued
variable, since the string "write" must be looked
up in a table to find the corresponding procedure.

On the other hand, if the procedure to be
invoked is not known when the program is writ-
ten, string invocation can be very useful. We’ll give
some practical examples later, but for now, think
about the possibilities of

read() ! values

Although the string names for functions are
straightforward, the names for operators are not.
The string names for operators are derived from

The Icon Analyst / 3

the characters used to represent them in ordinary
situations. For example, "||" is the name for concat-
enation. Used in string invocation, such an opera-
tor must be cast in one of the invocation forms, as
in

"||"(s1, s2)

or

"||" ! spair

One problem with the string names for opera-
tors is that some operator symbols are used for
both unary (prefix) operations and binary (infix)
operations. For example, ∗ in prefix form produces
the size of its operand, while ∗ in infix form pro-
duces the product of its operands.

This ambiguity is resolved by the number of
arguments given when the operator is used in
string invocation. For example

"∗"(x)

produces the size of x, while

"∗"(i1, i2)

produces the product of i1 and i2.
In retrospect, it probably would have been

better to have the number of arguments included
in the string name of such operators, as in "∗1" and
"∗2". It’s too late now.

The names for operators that do not appear in
prefix or infix form are derived from their syntactic
appearances:

operation name

x[i] "[]"
x[i:j] "[:]"
i to j by k "..."

For example,

"..."(1, 10, 1)

generates the integers 1, 2, …, 10. The third argu-
ment must be given explicitly; otherwise string
invocation looks for a binary operator named "..."
and doesn’t find it.

There are no string names for x[i+:j] and
x[i–:j] — these syntactic forms are shorthand for
x[i:j] that the Icon translator handles; they are not
distinct from x[i:j].

We mentioned earlier that there is one opera-
tion that does not have a string name and hence
cannot be used in string invocation. It’s explicit list

construction, as in

[x1, x2, …, xn]

There is no conceptual problem with string
invocation for list construction, and the obvious
string name is "[...]". The problem, instead, lies in
the implementation of Icon. For technical reasons,
the problem is hard to fix (it has to do with the fact
that list construction is the only operation in Icon
that takes an arbitrary number of arguments). On
the other hand, this exception apparently has gone
unnoticed until this article was written. (Analyst

articles serve several purposes; one of the less
obvious ones is that they illuminate the darkest
corners of Icon.)

There is one problem with using string invo-
cation for operators that needs mentioning. Al-
though there are string names for assignment op-
erators, there’s no way to use them effectively with
the interpreter. The problem is that an invocation
expression deferences all its operands before the
operation is applied. Consequently,

":="(x, 2)

does not assign 2 to x. Instead, x is dereferenced
before the assignment is attempted and a run-time
error results. This also is an implementation prob-
lem in the interpreter that is not easily fixed. The
Icon compiler, however, does handle string invo-
cation of assignment properly.

String Invocation and Linking

Starting with Version 9 of Icon, the linker, by
default, discards declarations that are not explic-
itly referenced in a program. For example, if a
program includes a procedure declaration, but
there is no explicit reference to the procedure in the
program, the procedure declaration is discarded
by the linker. This eliminates unneeded code in the
icode files that the linker produces. This optimiza-
tion is particularly useful when a program links
procedure libraries but does not use all the proce-
dures in them.

This linker optimization is, however, a prob-
lem with the string invocation of declared proce-
dures, since if there is no specific reference to the
procedure in the program, the linker deletes it. If
there is then an attempt to invoke the deleted
procedure by its string name, a run-time error
occurs. The problem may appear mysterious when
an examination of the program shows the declara-
tion of the procedure.

4 / The Icon Analyst

There’s an easy way to avoid this kind of
problem; just add

invocable all

to the program. This declaration prevents the linker
from eliminating declarations that aren’t specifi-
cally referenced. The invocable declaration is only
needed for the string invocation of declared proce-
dure and record constructors when using the Icon
interpreter. When using the Icon compiler, it also is
needed for built-in functions and operators that
are invoked by their string names.

The declaration

invocable all

prevents the elimination of all unreferenced decla-
rations. You can be more specific if you like, as in

invocable print, dump

which only prevents the elimination of declara-
tions for print and dump.

Considering the mysterious effects that may
occur in an attempt to invoke a procedure that’s
been deleted by the linker, it’s generally better to
use

invocable all

in programs that use string invocation.

Next Time

In a follow-up article, we’ll show some ex-
amples of situations in which string invocation is
particularly useful. We’ll also have an article on a
closely related subject — getting actual values for
operations from their string names.

References

1. “Programming Tips”, Icon Analyst 25, pp. 10-
12.

2. The Icon Programming Language, second edition,
Ralph E. Griswold and Madge T. Griswold, Prentice
Hall, Englewood Cliffs, New Jersey, 1990, pp. 81-
83.

Random Number Generators

In Issue 26 of the Analyst, we described the
use of random numbers in Icon. In this article, we’ll
discuss how sequences of random numbers are

generated and, in particular, the method used by
Icon. Much of the material here is based on Don
Knuth’s excellent and entertaining chapter on the
subject in his series The Art Of Computer Program-
ming [1]. If you haven’t read his discussion of
random number generation, we strongly recom-
mend that you do. If you have, but not recently,
you may find, as we did, much to learn on re-
reading.

Background

Until the advent of computers, random selec-
tion was done using various physical methods,
such as flipping coins or drawing balls out of an
urn. Many elaborate and somewhat fanciful ma-
chines have been developed for this purpose. These
machines are still used in lotteries — a spinning
cage and dropping balls are much more impres-
sive that having a computer pick numbers.

Once computers became available, math-
ematical methods of producing ”random” num-
bers became a subject of much study. Of course,
numbers picked by algorithmic means aren’t truly
random, but they can display the statistical proper-
ties of randomness well enough for most purposes.

John von Neumann was a pioneer in the area
of computer generated random sequences. He sug-
gested producing a sequence of numbers with
apparent randomness by squaring the previous
number in the sequence and extracting the middle
digits of the result to produce the next number.
Although this method looks good on the surface,
the results actually aren’t very random. Many other
algorithms for producing random numbers have
been proposed. On the other hand, there has been
a tendency to use “hand-me-down” random num-
ber generators without critical thought, resulting
in a fairly widespread use of defective random-
number generators. The history of these subjects
makes fascinating reading. Again, we refer you to
Reference 1.

There are elaborate (and computationally ex-
pensive) methods of generating random numbers
that are quite good. A simple and computationally
inexpensive method works well enough for most
purposes, however. A common method, and the
one used by Icon, is called the linear conguential
method. In this method, numbers in sequence are
computed by the recurrence

n
i+1

 = (a ∗ n
i
 + c) mod m

The Icon Analyst / 5

where there is an initial integer value, n
0
, called the

seed, and a, c, and m are parameters of the recur-
rence.

Configuring the Linear Congruential
Method

The values of the parameters in the recur-
rence have an important effect on the quality of the
numbers generated. Knuth covers this in some
detail and then summarizes as follows:

1. n0 can be chosen arbitrarily. Different seeds
produce different starting places in the sequence.

2. The modulus m should be large. It typically
is taken as the computer’s word size and hence is a
power of 2.

3. Assuming that m is a power of 2, the multi-
plier a should satisfy the relationship a mod 8 = 5.
It also should be in the range

(m – √m) > a > m/100

Finally, the digits of a should be chosen in a hap-
hazard manner.

4. The additive constant c should be relatively
prime to m (odd if m is a power of 2). Also, c/m
should be approximately

(1/2) – (1/6) √3 ≈ 0.21132486 …

5. When basing a decision on ni , its most
significant digits should be used, since the least
significant ones are not particularly random.

The correct choices for a and c assure that the
random number has period m; that is, that it runs
through all integers from 0 to m – 1 before repeat-
ing.

As mentioned earlier, when a random num-
ber generator is needed, it is typical to borrow a
random number generator from an existing appli-
cation without critical consideration. In the case of
the linear congruential method, the parameters
usually are borrowed as well — without verifying
that they meet the specifications above.

Icon’s Random-Number Generator

Icon’s random number generator was written
long ago and no one remembers the reasons for the
decisions made at the time, except that it was
borrowed from another application and the pa-
rameters were changed somewhat.

For Icon’s random number generator, the
parameters are:

n0 = 0 (the seed is given by &random)
m = 231 (the sign bit is omitted in 32-bit

 words for computational reasons)
a = 1103515245
c = 453816694

These values meet all the specifications listed
above except for c, which should be odd. This is the
reason why an even seed produces a sequence in
which all the values are even, as noted in Issue 26
of the Analyst. Similarly an odd seed produces a
sequence in which all the values are odd. In effect,
this mistake in picking c splits Icon’s random num-
ber generator into two distinct generators, each
with a period of 230.

How serious is this? It probably isn’t very
serious. Each of Icon’s two random number gen-
erator has half the period intended, but the periods
still are very large, and this shouldn’t be a problem
in ordinary applications. In addition, each of the
two sequences satisfies the specifications and each
seems to have good statistical properties, at least
using simple methods of testing. And there are
potential uses for two independent random num-
ber generators.

In any event, it’s too late to “fix” the problem.
A change now would have mysterious effects on
some existing applications and invalidate test data
that depends on the reproducibility of random-
number sequences from run to run.

Evaluating Icon’s Random Number
Generator

We frequently hear complaints that Icon’s
random-number generator doesn’t produce really
random sequences. Any really random sequence is
going to have runs that appear to be non-random.
Are such complaints therefore perception prob-
lems, or is there a real problem?

There are good ways of testing a random
number generators, such as the spectral analysis
test. We don’t have a package to do this and imple-
menting one is more work than we’re willing to
undertake. We’d welcome help from someone with
more knowledge and facilities than we have.

One simple method of testing a random num-
ber generator is to use it to pick points and plot
them within a rectangular area. Here’s a result of
doing this for one of Icon’s random-number gen-
erators (the other one produces similar results):

6 / The Icon Analyst

This is not bad as random-number generators
go — some random number generators display
pronounced bands in which there are no values or
in which the density of values is much higher than
other areas. Of course, you have to take our word
for the fact that such an image develops relatively
uniformly over time.

Rolling Your Own

It’s easy to experiment with different param-
eters by writing a linear congruential random num-
ber generator in Icon. Here’s a procedure that you
can use; it defaults to Icon’s built-in parameters as
shown. The global variable random serves the role
of &random in built-in generation.

global random

procedure rand_num(a_, c_, m_)
 static random_last, a, c, m

 initial {
 /random := 0
 a := \a_ | 1103515245
 c := \c_ | 453816694
 m := \m_ | 2 ^ 31
 }

 return random := (a ∗ random + c) % m

end

Here’s a procedure that does what Icon’s
built-in ?i operation does. It shows how a value in
a range is selected from a number in the random
sequence.

procedure rand_int(i)
 static scale

 initial scale := 1.0 / (2 ^ 31 – 1)

 (i := (0 < integer(i))) | runerr(205, i)

 return integer(i ∗ rand_num() ∗ scale) + 1

end

Reference

1. Donald E. Knuth, Seminumerical Algorithms, The
Art of Computer Programming, Vol. 2, Addison-
Wesley, 1969, pp. 1-160.

Lindenmayer Systems

So far, we’ve looked at implementing L-sys-
tems by drawing while repeatedly processing the
symbols in the replacement rules. This is an inter-
pretive method. Interpretation is natural for L-
Systems, and, as is the case for interpreters in
general, it is easy to implement and modify.

An alternative approach is to compile an L-
system into a program, which when run, produces
the corresponding drawing. The target language
for the compiler could be any language that sup-
ports turtle graphics; Icon is the obvious choice.

It’s worth noting that one of the main motiva-
tions for compiling rather than interpreting is speed.
That’s not a major issue here — drawing L-systems
hardly classifies as a production job for which the
maximum execution speed is essential.

As is generally the case, writing a compiler
involves a level of indirection — writing a program
to write a program. Before starting, it’s necessary
to have a model for the code to be generated. We’ll
look at that first and then go on to the compiler
itself. For simplicity, we’ll use the version of L-
systems that use single-character symbols.

In the code produced by the compiler, each
symbol for which there is a replacement in the L-
system is translated into a procedure, which, when
called, performs the drawing for that symbol.

Consider this L-System, which we’ve used in
previous articles:

X–>F–[[X]+X]+F[+FX]–X
F–>FF
axiom:X
angle:22.5
gener:5

Back Issues

Single back issues of The Icon Analyst are
$5 each. A complete set of back issues for the
first four years (Issues 1-24) is $80. These
prices include shipping in the United States,
Canada, and Mexico. For airmail postage to
other countries, add $2 per order for single
copies and $3 for a complete set of back
issues.

The Icon Analyst / 7

 F(gener – 1) # F
 }
 else TDraw(Length) # F
 return
end

Writing an Icon program to convert an L-
system into a corresponding program is relatively
straightforward:

$define Indent 3 # code indentation

procedure main()
 local line, sym, new, keyword, value
 local axiom, gener, angle, length
 local allsyms, replace, procs

 allsyms := '' # initially empty
 procs := table() # procedure symbols

 gener := 4 # defaults
 length := 5
 angle := 90.0

 while line := read() do
 line ? {
 if sym := tab(find("–>")) then {
 move(2)
 replace := tab(0)
 procs[sym] := replace
 allsyms ++:= replace
 }
 else if keyword := tab(find(":")) then {
 move(1)
 value := tab(0)
 case keyword of {
 "axiom": {
 axiom := value
 allsyms ++:= value
 }
 "gener": gener := integer(value) |
 stop("∗∗∗ invalid generation_
 specification")
 "angle": angle := real(value) |
 stop("∗∗∗ invalid angle: ", line)
 "length": length := integer(value) |
 stop("∗∗∗ invalid length: ", line)
 default: stop("*** invalid keyword: ",
 line)
 }
 }
 else stop("∗∗∗ invalid specification: ", line)
 }

 # Be sure a procedure is produced for all
 # symbols used, even if not defined, except
 # for +, –, [, and].

The procedure for the axiom X illustrates the
code to be produced:

procedure X(gener)
 if gener > 0 then {
 F(gener – 1) # F
 TLeft(Angle) # –
 TSave() # [
 TSave() # [
 X(gener – 1) # X
 TRestore() #]
 TRight(Angle) # +
 X(gener – 1) # X
 TRestore() #]
 TRight(Angle) # +
 F(gener – 1) # F
 TSave() # [
 TRight(Angle) # +
 F(gener – 1) # F
 X(gener – 1) # X
 TRestore() #]
 TLeft(Angle) # –
 X(gener – 1) # X
 }
 return
end

The argument gener is the number of generations
remaining. When the number of remaining gen-
erations reaches 0, the procedure simply returns.
Otherwise, it calls turtle graphics procedures for
drawing or other procedures produced by the
compiler for symbols that have replacement rules.

The treatment of symbols corresponding to
drawing actions illustrates an interesting aspect of
L-systems. There’s an unwritten rule that replace-
ments cannot be specified for +, –, [, and], and they
are not translated into drawing procedures. How-
ever, as illustrated by our example L-system, re-
placements can be specified for F. This may seem
paradoxical, but it’s the essence of L-systems, in
which at every generation but the last, what would
be a line is replaced by a more complicated draw-
ing. The same is true of f (which skips without
drawing), although f does not occur in our ex-
ample.

Handling F and f requires special cases, since
when their procedures reach the last generation, a
line is drawn. For our example L-system, the pro-
cedure for F is:

procedure F(gener)
 if gener > 0 then {
 F(gener – 1) # F

8 / The Icon Analyst

The first part of the compiler, which is similar
to the first part of the interpreter, processes the L-
system. No code is produced until the entire L-
system is processed; this ensures that the output is
in the proper order.

Once the L-system has been processed, code
is produced: first a link declaration, then prepro-
cessor definitions for the L-system parameters, a
main procedure for the axiom, and finally proce-
dures for the rules. The procedure gencode() pro-
duces code for the replacements, while the proce-
dure genproc() produces the rest of the procedure
declarations, including conditional code and the
handling of F and f. That’s all there is to it.

For the example L-system we’ve been using,
the program produced is:

link turtle

$define Generations 5
$define Angle 22.5
$define Length 5

procedure main()
 X(Generations) # X
end

procedure X(gener)
 if gener > 0 then {
 F(gener – 1) # F
 TLeft(Angle) # –
 TSave() # [
 TSave() # [
 X(gener – 1) # X
 TRestore() #]
 TRight(Angle) # +
 X(gener – 1) # X
 TRestore() #]
 TRight(Angle) # +
 F(gener – 1) # F
 TSave() # [
 TRight(Angle) # +
 F(gener – 1) # F
 X(gener – 1) # X
 TRestore() #]
 TLeft(Angle) # –
 X(gener – 1) # X
 }
 return
end

procedure F(gener)
 if gener > 0 then {
 F(gener – 1) # F
 F(gener – 1) # F
 }

 allsyms – –:= '+–[]'

 every sym := !allsyms do
 /procs[sym] := "" # empty replacement

 # Write heading and main procedure.

 write("link turtle")
 write()
 write("$define Generations ", gener)
 write("$define Angle ", angle)
 write("$define Length ", length)
 write()
 write("procedure main()")
 gencode(axiom, "Generations", Indent)
 write("end")
 write()

 # Produce drawing procedures.

 every sym := key(procs) do
 genproc(sym, procs[sym])
end

procedure gencode(replace, arg, indent)
 local sym, pad

 pad := repl(" ", indent)

 every sym := !replace do {
 case sym of {
 "+": write(pad, "TRight(Angle) # +")
 "–": write(pad, "TLeft(Angle) # –")
 "[": write(pad, "TSave() # [")
 "]": write(pad, "TRestore() #]")
 default: write(pad, sym, "(", arg, ") # ",
 sym)
 }
 }

 return

end

procedure genproc(name, replace)

 write("procedure ", name, "(gener)")
 write(" if gener > 0 then {")
 gencode(replace, "gener – 1", 2 ∗ Indent)
 write(" }")
 case name of {
 "F": write(" else TDraw(Length) # F")
 "f": write(" else TSkip(Length) # f")
 }
 write(" return")
 write("end")
 write()

 return

end

The Icon Analyst / 9

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

voice: (602) 621-8448

fax: (602) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

…uunet!arizona!icon-project

 ®

and

Bright Forest Publishers
 Tucson Arizona

© 1995 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

Obtaining this information is by far the hardest
part of dynamic analysis. There are three main
ways by which information about a running pro-
gram can be obtained:

1. Manual instrumentation of the source pro-
gram (SP).

2. Automatic instrumentation of the SP by a
preprocessor.

3. Instrumentation of the implementation of
the language itself.

Manual instrumentation consists of adding
expressions to the program to produce informa-
tion as the program runs. Such instrumentation

 else TDraw(Length) # F
 return
end

An interesting exercise is to convert the com-
piler to handle multi-character symbols as de-
scribed in the last issue of the Analyst.

Acknowledgment

Gregg Townsend suggested the idea of com-
piling L-systems and provided the model used
here for code generation.

Dynamic Analysis of Icon Programs

Introduction

In the last issue of the Analyst, we described
a method for analyzing the static properties of Icon
programs and presented the results of static analy-
sis of the Icon program library.

Static analysis is interesting and provides a
measure of the relative frequency of occurrence of
different features of Icon , but it sheds little light on
how frequently features actually are used. For
example, static analysis cannot tell how many times
an expression is evaluated, if at all.

Static analysis also cannot tell if a function is
what it appears to be — Icon allows values to be
assigned to variables that initially have function
values and allows function values to be assigned to
other variables. With string invocation, as described
in the first article of this issue of the Analyst, a
function or operator can be invoked without ever
appearing in the text of a program. Fortunately,
such things are relatively rare and have little effect
on the static analysis of most programs.

Dynamic analysis, on the other hand, poten-
tially can determine how often any expression in a
program is evaluated and provide many other
kinds of information about program execution,
such as storage allocation and automatic type con-
version.

Obtaining Information During Program
Execution

Unlike static analysis, in which information
can be obtained by examining the text of the source
program, dynamic analysis requires information
about what goes on when a program is running.

10 / The Icon Analyst

can be as simple as write() expressions— some-
thing we all add to our programs from time to time.
An alternative is calling procedures that accumu-
late information that is written out just before the
program terminates.

There are several problems with manual in-
strumentation:

1. It is error prone — it is all too easy even with
something as simple as a write() expression to
mangle a loop and cause a program to malfunc-
tion.

2. Some kinds of information are difficult or
impossible to get with manual instrumentation.
Storage allocation is an example.

3. Extensive manual instrumentation is im-
practicably labor intensive.

4. Manual instrumentation may distort pro-
gram behavior in subtle ways, even if only by
increasing the size of the SP or slowing down its
execution.

5. Manual instrumentation may have to be
modified or redone if the SP is changed.

Using an instrumenting preprocessor avoids
some of the problems with manual instrumenta-
tion. A correct preprocessor will not introduce
errors into the SP and it easily can handle exhaus-
tive instrumentation without modifying the SP
itself. Instrumenting preprocessors cannot solve
the problems of distorting program behavior, how-
ever; in fact, they generally make such problems
worse. It’s also difficult to provide selective instru-
mentation when using a preprocessor. And an
instrumenting preprocessor cannot provide infor-
mation that manual instrumentation cannot.

The variant translator that implements the
instrumentation described in Issue 6 of the Ana-
lyst [1] illustrates the advantages and disadvan-
tages of using a preprocessor. It provides exhaus-
tive instrumentation of expression evaluation, but
it transforms an SP into a much larger program —
typically by a factor of 4 — and the resulting
program runs much more slowly — typically by a
factor of 25.

The third alternative, adding instrumenta-
tion to the implementation of Icon itself, can over-
come all of the problems mentioned above. The SP
need not be modified to produce run-time infor-
mation, information can be provided about inter-
nal operations such as storage allocation, provi-
sions can be made to provide selective informa-
tion, the size of the SP is not affected, and the

degradation in running speed of the SP in terms of
its CPU time is minor.

In the case of an interpreter like Icon, the
instrumentation can be added to the run-time sys-
tem. This was done to obtain the information about
storage management described in Issues 1 and 2 of
the Analyst [2, 3]. Later the implementation was
recast for use in MT Icon [4] and extended to cover
many aspects of program execution [5].

In MT Icon, the SP and a monitoring program
(MP) run in the same execution space, with the MP
requesting the run-time system to provide infor-
mation about the execution of the SP.

When the MP requests information about
events that occur during the execution of the SP,
the Icon run-time system turns control over to the
SP until it detects a requested event. When that
happens, execution in the SP is suspended and the
MP is activated and provided with the requested
information. The MP then performs whatever pro-
cessing it needs to do and then requests informa-
tion about SP execution again. Thus, control passes
back and forth between the MP and the SP, with the
MP in control. The SP is “unaware” that it is being
monitored; the only difference it can detect is slower
passage of wall clock time because it is sharing real
time with the MP. The flow of control is shown in
the following diagram:

MP

SP

information
report

information
request

commence
execution

In this article and ones to follow, this method will
be used for the dynamic analysis of Icon programs.

The information requested about events in
the SP and how this information is used depends

The Icon Analyst / 11

on the MP. An MP can request information about
various kinds of events, write it out as it receives it,
present it visually [6], or accumulate it and pro-
duce a summary report when execution of the SP
terminates. We’ll use summary reports in what
follows, but we plan to have something to say
about the visual presentation of program execu-
tion in a later article.

The structure of MPs that produce summary
reports is described in Reference 5. We’ll review
the techniques here and show examples before
going on the substance of dynamic analysis —
what actually happens during program execution.

Writing Monitoring Programs

Writing an MP to collect and report informa-
tion about aspects of the execution of an SP is not a
difficult task. Most of what’s needed is built into
MT Icon or provided by procedures and defini-
tions in the Icon program library. Here’s the basic
model for an MP:

link evinit # support procedures

$include "evdefs.icn" # event definitions

procedure main(args)

 EvInit(args) # load the SP

 while EvGet() do { # request event in SP
 … # process event
 }

 … # final processing

end

The procedures in evinit are needed to sup-
port loading and activation of the SP. The file
evdefs.icn contains the definitions of various sym-
bols that may be needed by the MP.

When an MP is called, the SP to be monitored
and any arguments for it are given on the com-
mand line, as in

alloc rsg –l 1000 <rsg.dat

in which the MP alloc monitors the SP rsg with the
command line option –l 1000 and standard input
from the file rsg.dat.

The procedure EvInit() loads the SP, at which
point monitoring can begin. The procedure EvGet()
requests an event from the SP. When a event occurs
in the SP, control is returned to the MP.

Two keywords are set for the MP’s use when
an event occurs in the SP: &eventcode, which

identifies the kind of event that occurred, and
&eventvalue, a value associated with the event.
For example, in the case of allocation events, the
event code indicates kind of storage allocated,
such as for a string or a list, and the event value is
the amount of allocation in bytes. Event codes are
one-character strings. Event values depend on the
type of event.

In the case of MPs that produce summary
reports on completion of the SP, the event informa-
tion can be accumulated in a table. When an event
is processed, a request for another event is made.
EvGet() fails when the SP terminates. At that point,
any final processing, such as producing a sum-
mary report, can be done.

If EvGet() is called without an argument, any
event in SP returns control to the MP. There are
over 100 different kinds of events that can be
reported. The most important event categories are:

category number of event types

expression evaluation 16
structure access 29
string scanning 6
assignment 3
type conversion 3
storage allocation 21
garbage collection 4

Most MPs only are interested in certain types
of events, such as storage allocation events. An
argument, called an event mask, can be given in the
call of EvInit() to limit monitoring to the events of
interest.

For example, FncMask, defined in evdefs.icn,
specifies events related to the evaluation of built-in
functions. Thus, EvGet(FncMask) limits monitor-
ing to the evaluation of built-in functions. The
kinds of events associated with the evaluation of
built-in functions are calls, returns, suspensions,
and removal of suspended function calls that can-
not be resumed. An example of removal occurs in

if find(s) then …

If find() suspends, the then clause is evaluated and
the call of find() cannot be resumed.

Figure 1 on the next page shows an MP that
accumulates and summarizes information about
the evaluation of functions in an SP. The library file
evnames contains a procedure that maps event
codes to descriptive phrases. EvInit() fails if the

12 / The Icon Analyst

What’s Coming Up

We expect to have a second article on string
invocation and another in the series of articles on
dynamic analysis in the next issue of the Analyst.

In our occasional feature From the Library,
we’ll depart from our usual focus on the most
useful material in the Icon Program library and
present a drawing application that is more fun
than useful.

of programs. The profile shown
above can be characterized as show-
ing “C-like” use of Icon, at least as
far as functions are concerned. That
is, it does not use functions as gen-
erators at all.

Next Time

What we’ve shown here is just
a start. In subsequent articles on
dynamic analysis, we’ll show both
more complicated kinds of MPs and
lead up to the results of dynamic
analysis on programs in the Icon
program library.

References

1. “Evaluation Sandwiches”, Icon Analyst 6, pp.
8-10.

2. “Memory Monitoring”, Icon Analyst 1, pp. 7-
10.

3. “Memory Monitoring”, Icon Analyst 2, pp. 5-
9.
4. “Multi-Thread Icon”, Icon Analyst 14, pp. 8-
12.

5. “Monitoring Icon Programs”, Icon Analyst 15,
pp. 6-10.

6. “Program Visualization”, Icon Analyst 16, pp.
1-8.

link evinit # monitoring initialization
link evnames # event-name mapping

$include "evdefs.icn" # event definitions

procedure main(args)
 local summary, event

 EvInit(args) | # initialize interface
 stop("∗∗∗ cannot load program")

 summary := table(0) # table to accumulate events

 while EvGet(FncMask) do # get function events
 summary[&eventcode] +:= 1 # tabulate them

 write(left("event", 30), right("count", 8), "\n")
 every event := !FncMask do # list events
 write(left(evnames(event), 30), right(summary[event], 8))

end

Figure 1. A Monitor to Summarize Function Usage

specified program cannot be loaded; the MP termi-
nates with an error message if this happens. The
table summary is used to keep track of how many
times each kind of function event occurs — that is,
how many times a function is called and how many
times the result is a return, suspension, failure, or
removal.

When the SP terminates, the table summary is
subscripted by the event codes in FncMask and the
accumulated results are written out, using
evnames() to map event codes to descriptive
phrases.

An example of a report is:

event count

function call 197393
function failure 441
function return 190679
function suspension 6272
function resumption 0
function suspension removal 6272

What does such a report suggest about the
SP? The small number of failures indicates that
most function calls are used for straightforward
computation. The lack of resumptions of suspended
function calls indicates that the few calls of func-
tions that are generators are used just to get a single
value.

Is this report typical of most programs? No, it
isn’t. In fact, function-evaluation profiles tend to
vary widely, with some showing a large number of
suspensions and resumptions.

What such profiles do show is the “character”

