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form some action, pulling down a menu can be
used to select among operations, and dragging on
a slider can be used to change a numerical value.

This article describes an application with a
visual interface and then goes on to describe the
interface tools that are available. Subsequent ar-
ticles will explain how to build a visual interface
and how it fits into a complete program.

An Example Application

The image below illustrates an application
that displays a multicolored kaleidoscopic image.

The image is produced by drawing circles.
The colors, sizes, and positions of the circles are
chosen at random. Circles are drawn until the
specified density (number of simultaneous circles)
is reached, at which point the oldest circle is erased
and a new one drawn. This continues until the user
intervenes.

The pause button allows the user to suspend
drawing, which is not resumed until the user presses
this button again. The reset button clears the image

and starts the draw-
ing process from
scratch. The sliders
allow the user to
control the speed of
drawing, the den-
sity, and the mini-
mum and maxi-
mum radius for
circles. At the bot-
tom, the user can
choose between
discs (solid circles)
or rings (outlines).
The File menu al-
lows the user to take
a snapshot of the
image or quit the
application.

A Kaleidoscope

Visual Interfaces

Editors’ Note: Most of the material in this article
and ones on similar subjects to follow is adapted from the
forthcoming book on graphics programming in Icon.

In an earlier article [1], we described how a
user can convey information to a program using
mouse and keyboard events. Except for the sim-
plest applications, it is more helpful to organize
interaction between the program and the user by
using interface tools
such as buttons,
menus, and sliders.
Such interface tools
provide a visual in-
terface between the
user and the pro-
gram.

Using such
tools, a wide range
of functionality can
be provided in ways
that are convenient,
familiar, and easily
understood. For ex-
ample, clicking on a
button on the appli-
cation window can
be used to tell the
application to per-
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Interface Tools

Buttons

Buttons are among the most simple and com-
monly used interface tools. Pressing a mouse but-
ton when the mouse cursor is on a button amounts
to “pushing” the button.

Buttons support two kinds of functionality.
An ordinary button only has a momentary effect: It
remains on only as long as it’s held down, then
reverts to its original state. A toggle button stays on
when it is pushed, and it must be pushed a second
time to turn it off. Both kinds of buttons are high-
lighted while on.

There are four basic button styles and outlines
are optional. The button at the right is called an X-
box button; unlike other buttons styles, it has no
text associated with it.

The nature of highlighting depends on the
style of the button. As you see here, there is an X-
box button without an outline; it’s only visible
when it’s highlighted.

X-box buttons and buttons with squares or
circles at the left give the impression that they can
be set. Consequently, they are best used for toggles.

Radio Buttons

Radio buttons are collections of buttons in
which only one button is on at any time. Pushing a
button turns it on and highlights it, and turns off
the previously selected button.

Only one style is provided for radio buttons:

The example here was chosen to emphasize
the origin of the term “radio button”. Radio but-
tons can, of course, have any labels such as the
names of colors available in a particular applica-
tion.

Menus

A menu is a button that conceals a list of
items. When you push the menu button, the list of
items is “pulled down” and the item under the
mouse cursor is highlighted. As you drag over the
items on the list, the item under the mouse cursor
is highlighted:

Releasing the mouse button with the mouse
cursor positioned on an item selects that item. If
you drag off the list and release the mouse button,
the list disappears and no item is selected.
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A menu item can itself be a menu. Such items
are identified by an angle bracket at the right. If you
select one of these items, its menu appears to the
right:

You can then drag onto this submenu and
select an item there:

If you drag off a submenu and select another
item from the main menu, the submenu disap-
pears.

Submenus themselves can have submenus.
There is no limit to this hierarchical structure, but
more than two or three levels is confusing to most
users. Some users do not like submenus at all.

Text-Entry Fields

Text-entry fields allow the user to enter tex-
tual information:

Each field has a label and space for the user to
enter text. The maximum number of characters
allowed can be specified; it determines the width
of the field. A suggested value for a field can be
given, as shown in the last text-entry field.

You can select a text-entry field by clicking on
it, at which point an “I-beam” text cursor appears
and you can enter or edit text. The I-beam cursor
shows the current place in the field where typed
text is inserted. This cursor can be positioned in the
text by clicking with the mouse pointer at the
desired location. Dragging over characters in the
text field selects them for editing and highlights
them (reversing the foreground and background
colors). Characters that are typed then replace the
selected ones. A backspace character deletes all the
selected characters. If no character is selected, a
backspace character deletes the character immedi-
ately to the left of the text cursor, if there is one.

Sliders

A slider specifies a numerical range visually.
Numerical values, which can be integers or real
numbers, are associated with the end points of a
slider. A “thumb” marks the current position in the
range. Dragging the thumb of a slider changes the
value in the range covered by the slider.

Sliders may be vertical or horizontal:
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Sliders may have different sizes as shown in this
figure.

Scroll Bars

Scroll bars are very similar to sliders, although
they have a different visual representation:

Dragging the thumb of a scroll bar has the
same effect as dragging the thumb of a slider. In
addition, clicking on an arrow at the end of a scroll
bar moves the button incrementally in the direc-
tion indicated.

Sliders usually are used for setting values,
while scroll bars typically are used to select a
portion of a larger image for display in a smaller
area.

Regions

A region is a rectangular area that serves to
accept events within its boundary. This figure
shows three regions:

There are four region styles: sunken, grooved,
raised, and invisible (which we can’t show).

Labels

A label consists of text. Labels can be used to
identify tools, indicate values, and so forth:

Lines

Lines can be used to visually delineate areas
of an interface:

Although lines are only “decoration”, they nonetheless
can be very helpful in making an interface visually
understandable.

Next Time

In the next article on visual interfaces, we’ll
show  the connection between interface tools and a
program that uses them. After that we’ll go on to
describe the process of building a program with a
visual interface.

Reference:

1. “Handling Events in X-Icon”, Icon Analyst 19,
pp. 4-5.

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.
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As we discussed in the previous article, con-
versions between large integers and strings, which
are fundamental to the computation of versum
sequences, are expensive, and it’s important to
avoid unnecessary ones.

Here’s the loop that we used to write versum
sequences to a file:

repeat {
   i +:= reverse(i)
   write(i := string(i))
   }

For each step, the loop performs only the two
conversions necessary for the computation itself.

While the loop above is compact, it’s handy to
have a way to stop the program other than by
killing it and to, in general, have more control over
the computation.

Here’s the program we used:

link options

procedure main(args)
   local start, output, input, i, opts, limit, name, max, count

   opts := options(args, "s+t+m+f:")
   start := (0 < \opts["s"]) | 196
   limit := \opts["t"] | –1
   max := opts["m"]
   name := \opts["f"] | (start || ".vsq")

   if input := open(name) then {
      count := 0
      while i := read(input) do {
         count +:= 1
         if count > limit then
           stop("∗∗∗ number of existing terms exceeds limit")
         }
      close(input)
      }

   /i := start # in case file doesn't exist or is empty

   if not integer(i) then stop("∗∗∗ invalid data")

   output := open(name, "a") |
      stop("∗∗∗ cannot open file")

   limit –:= \count

   until (limit –:= 1) = –1 do {
      i +:= reverse(i)
      if i > \max then break
      write(output, i := string(i))
      }

end

The Versum Problem – Continued

In the last issue of the Analyst, we intro-
duced versum sequences — adding a number and
its reversal, continuing the process with the result.

The interest in such sequences comes from
the fact that palindromic numbers typically occur
frequently early on. This phenomenon is not found
in successive additions without reversal – palin-
dromes are found much less frequently without
reversal than with it. The “problem” is that for a
few starting numbers (called seeds), no palindrome
appears even after millions of steps.

In the previous article on this subject, we
posed some questions for which programs could
be used to find answers or at least produce sugges-
tive evidence. In this article, we’ll present some
results of our explorations and say a little more
about what is known about the problem.

For investigating versum sequences, it some-
times is handy to have a file that contains many
terms in a sequence. Such a file then can be pro-
cessed in a variety of ways without having to
regenerate the sequence. (The size of such files can
be a problem, however — the first 20,000 terms in
the versum sequence for 196 amount to more than
82MB.)

Producing Versum Sequences

Computing versum sequences takes time.
Granted, Icon is far from the fastest language for
such work, but it does have the necessary facilities
built in: large-integer arithmetic, automatic con-
version between integers and strings, and string
reversal. And, of course, exploratory program-
ming is faster and easier in a high-level language
than in a lower-level one.

Computing versum sequences is an excellent
example of the tension between speed and ease of
programming. Try writing such a program in C or
assembly language. You might want to do this if
you need a very large number of terms in a versum
sequence, but as we’ll explain later, that’s not
needed or even useful for many purposes. Inciden-
tally, there are utilities and applications that can be
used to obtain versum sequences quickly. But, in
any event, the Analyst is devoted to Icon and even
such a computationally intensive problem gives
insights into programming techniques in Icon that
have applicability to many problems.
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The –s option provides the seed. The –t option
allows the maximum number of terms in the se-
quence to be specified and the –m option allows the
sequence to be limited to a maximum value. Fi-
nally, the –f option allows the file name to be
specified. The program also allows for extending
an existing sequence by picking up the computa-
tion with the last value.

The limit on the number of terms and the
magnitude complicate the loop, and you might
think they would slow down the computation.
They don’t make a measurable difference, because
the conversions between large integers and strings
dominate the computation.

It’s worth noting that different seeds may
produce the same versum sequence. For example,
the reversal of a seed, provided the seed does not
end with the digit 0, has the same versum sequence
as the seed. There are many more equivalences; in
fact, there are only 207 different sequences in the
seeds from 1 to 999. The equivalence of seeds is an
important topic that we’ll discuss later.

Assuming that you have a collection of files
containing versum sequences, you can examine
them in various ways using programs. (You cer-
tainly wouldn’t want to print a file with many
thousands of terms for bedtime reading.)

Palindromes in Versum Sequences

Palindromes are the reason for interest in
versum sequences. Before going on, it’s worth look-
ing at the pattern of palindromes in versum se-
quences for consecutive small seeds. See the plot in
the next column and the close-up view on the next
page.

Two aspects of these plots are noteworthy: the
distinct patterns of palindromes and the lack of any
palindromes after only a few terms. If you think
you see a palindrome in the white space at the right,
it’s a printing or paper flaw or a flyspeck — there
aren’t any and carrying out thousands more steps
on several versum sequences that have many pal-
indromes early on turns up no more.

Here are some pieces of trivia about the palin-
dromes for seeds 1 through 999:

The seed with the most palindromes is 1. It has
10, 8 of which occur in succession starting with step
1.

The largest palindrome is 69567677677676596,
which occurs in the sequence for 166, among oth-
ers.

1
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Palindromes in Versum Sequences
for Seeds from 1 to 999



The Icon Analyst / 7

link wopen

procedure main()
   local i, j, k

   # For a general program, limits should be given
   # on the command line.

   WOpen("canvas=hidden", "size=300,999") |
      stop("∗∗∗ cannot open window")

   every i := 1 to 999 do {
      k := i
      every j := 0 to 299 do {    # 300 steps, but 0-origin
         k +:= reverse(k)
         if k == reverse(k) then DrawPoint(j, i – 1)
            }
         }

   WriteImage("palimage.gif")

end

As we mentioned earlier, it’s more economi-
cal to precompute versum sequences. That’s true
for palindromes also; if you have a versum se-
quence you can get a list of palindromes easily:

procedure main()
   local count, line

   count := 0

   # standard input to standard output

   while line := read() do {
      count +:= 1
      if line === reverse(line) then write(count, " ", line)
      }

end

If the palindromes are in files named n.pal,
where n is the seed, then a plot can be produced in
this way:

link wopen

procedure main()
   local i, x, input, line

   WOpen("canvas=hidden", "size=300,999") |
      stop("∗∗∗ cannot open window")

   every i := 1 to 999 do {
      input := open(i || ".pal") |
         stop("∗∗∗ cannot open file for seed ", i)
      while line := read(input) do {
         line ? {
            x := tab(many(&digits)) – 1
            }
         DrawPoint(x, i – 1)

Close-up View for Seeds from 1 to 150

The palindrome that is farthest out is
1685872332785861 in the 39th term in the sequence
for 739, among others.

The longest number of steps to the first palin-
drome is 24 in the sequence for 89, among others.

Of course, the absence of observed palin-
dromes far out in versum sequences is no proof
that they don’t exist. In the next section, we’ll
present an argument as to why there probably are
no palindromes farther out.

Here’s a brute-force way to produce the plot
on page 6:
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         }
      close(input)
      }

   WriteImage("palimage.gif")

end

We can do better than this, but we need to
lay some groundwork first, which we’ll defer
to another article.

The Versum Sequence for 196

196 has been the primary focus of study
for the versum problem because that is the
smallest seed for which no palindrome has
been found.

Early work on this sequence was done by
hand and, of course, didn’t get very far. This is
responsible for the fact that it was long be-
lieved that a palindrome eventually would
appear in every versum sequence. Now, using
computers, the sequence for 196 has been car-
ried out for millions of steps without finding a
palindrome. It would serve little purpose to
put more resources into extending previous
attempts. But we did carry out the computa-
tion to more that 20,000 terms so that we
would have a substantial amount of data for
study. The 20,000th term is shown on page 10
— we couldn’t resist showing a “specimen”.

If we believe that 196 never produces a
palindrome, how might we approach a proof?
One method would be to show that there is a
repeating pattern that precludes a palindrome.
This is, in fact, the way it was proved that there
are palindrome-free versum sequences in bases
2n [1, 2]. An obvious place to start is to look at
the first and last digits of successive terms —
these match up in successive steps and might
give a clue as to why palindromes don’t occur.

The first few last digits are shown at the
right of this column (it’s easier to see patterns
in a vertical array than in a horizontal one). As
you can see, there are evident regularities —
such as the sequence of repeating 7s and 8s.
However, it’s also clear that if there is a fixed
repeat, it’s large.

You won’t get very far trying to find a
repeat from looking at the digits. The obvious
approach to finding repeats, at least for pro-
grammers, is to write a program. An easier
approach is to view the digits graphically.

That is what the image at the right is —
resembling a beserker barcode.

In this image, the spaces between
horizontal lines correspond to the left-
most digits in the versum sequence for
196. We’ve reduced it so we could show
a significant number of digits — nearly
2,000.

There certainly are obvious pat-
terns, but close examination reveals
there’s no fixed-length repeat in what’s
shown. Of course, the repeat might be
larger or might only show up far out into
the sequence.

We have a program that purports
to find fixed-length repeats in sequences
and it finds nothing in the first 20,000
digits starting at the beginning and then
progressively farther out. We say “pur-
ports” because the program is a little
strange and we don’t have a lot of confi-
dence in its correctness.

Incidentally, other digit positions
show no fixed-length patterns either.

Of course, there might be a pattern
or even an evolving one that is not fixed
in length. But all the evidence we have is
discouraging.

The program that produced the
image at the right is quite simple and
worth showing for that:

$define Width 100
$define Height 2000

procedure main()
   local y, w
   WOpen("canvas=hidden", "size=" ||
      Width || "," || (Height)) |
           stop("∗∗∗ cannot open window")

   DrawLine(0, 0, Width, 0)

   y := 0
   while w := read()[–1] do {      # get last digit
      if y + w > Height then break
      y +:= w
      DrawLine(0, y, Width, y)
      y +:= 1
      }
   WriteImage("196ld.gif")

end

Next, we’ll consider something
more mundane.
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Digit Frequencies

In the article on the versum problem in the last
issue of the Analyst, we mentioned digit frequen-
cies as a possible starting point for investigating
versum sequences. Such information might pro-
vide insight, and it relates to an argument against
the occurrence of palindromes that we’ll describe
later. The results we have to offer are largely nega-
tive, but we’re including them because there are
interesting matters related to programming.

There are many ways to compute the fre-
quency of characters in a file. Because of the amount
of data to process, it’s well worth picking a good
method. And comparisons of performance of vari-
ous methods should be made before investing a lot
of computational time — intuition is notoriously
bad for such things.

Looking at the numbers in versum sequences,
we noticed frequent occurrences of fairly long runs
of the same digit (another subject for further inves-
tigation). Consequently we thought that using
string scanning and counting runs in a single step
might be faster than a more straightforward
method. Here’s the first procedure we tried:

procedure digitcnt(file)
   local result, c, i

   result := list(10, 0)

   every line := !file do {
      line ? {
        while c := move(1) do {
            i := (∗tab(many(c)) + 1) | 1
            result[c + 1] +:= i
            }
         }
      }

   return result

end

We decided to return a list, since that seemed to be
the most convenient form to use. We could have
combined the last two lines in the while loop but

that wouldn’t have made a significant difference in
performance.

Incidentally,

every line := !file do …

produces the same results as the more familiar

while line := read(file) do …

We used the latter originally but changed it for
presentation here to compare with the code in an
alternative procedure.

If we’d just stopped there, we would have
wasted a lot of computational time later. Instead,
we tried writing the most basic but compact method
we could think of:

 procedure digitcnt(file)
      local result

      result := list(10, 0)

      every result[!!file + 1] +:= 1

      return result

   end

It was worth the effort; the second procedure
is more than twice as fast as the first for versum
sequences. (The results might be quite different for
other kinds of data.) The reason for the poorer
performance of the first method is not just the use
of string scanning. It’s mostly because of the extra
steps in the computation.

Having chosen a method for counting digits,
we went on to examine the digits in the first 20,000
terms in the versum sequence for 196. We expected
interesting results because of a remark about this
sequence made by a person who spent some time

Icon on the Web

Information about Icon is available on the World
Wide Web at

http://www.cs.arizona.edu/icon/www/
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sequence vary somewhat — as they must — but
they never stray far from a flat distribution.

The digit frequency for the versum sequence
of 169 — just a reordering of the digits — is quite
similar to the one above. Unlike 196, 169 produces
three palindromes early on:

1130
1441
2882
5764

10439
103840
152141

293392

 …
It would seem that 196 just “got off on the

wrong foot”. Actually, there’s something to that
notion. We’ll explain in the next section.

➸

➸

➸

on the 196 problem: “A small sample of actual
numbers was overabundant in 1s, 5s, 7s, and 8s …”
[3]. Indeed, looking at the sequence, this seems to
be true. An actual count performed on 20,000
terms shows something quite different:

0             8515005 10.380%
1             8067614 9.835%
2             8171275 9.961%
3             8040019 9.801%
4             8218323 10.018%
5             8220543 10.021%
6             8038674  9.799%
7             8173337 9.964%
8             8068533 9.836%
9             8514972 10.380%

total: 82028295

digit average:       4.500

The digit averages for individual terms in the

967996578438755544327973000547469202473771358090080977418361373988891457399510855773184843902513390636068934628944519057412063020754859672390368133042
036260175331130816931983241651632926005790520068792533026402138862216377159539973800131075435817098975910022287078323033428304518954895631395878999518
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912705266599165959599540433772059100833425500804766422698024320799357535793669765336205400251239118795887912444767338287016517502938689558987129360286
661067310749334646486625034554034746461748428050041869362163886231661452201718876989184956360656598754412605332546509118677312353988200972205252049834
675921317571375280389583565708776322623566692419184006464255545727024954475676089312027578981889029643482247186348259385331914722310745120922929557226
254273158648767305688491472039115529000837216097171591938675403080614612614210129069912017597622749044273319115758899103009447247080631675464411849119
963797894044401043033912880130462223515620617486609542650604737617533885020124510011244490913532554926834807183366852773067831141657518369664822786089
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20,000th Value in the Versum Sequence for 196
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Before we go on, here’s a sanity check — a
count of the digits in the first 20,000 terms of a plain
addition sequence for 196 (no reversals):

0             4878175 10.007%
1             4876763 10.004%
2             4878850 10.009%
3             4872249 9.995%
4             4877423 10.006%
5             4872388 9.995%
6             4875460 10.002%
7             4872088 9.995%
8             4876302 10.003%
9             4864261 9.979%

total: 48743959

digit average:      4.498

Notice that without reversal, the length of
terms in the sequence is considerably shorter than
with reversal. There’s a significance to this also.

Why Digits Count

The reason the digits in a number are impor-
tant is that the reversal sum of a n-digit number is
an n-digit palindrome if and only if there are no
carries in the addition. (If there’s a carry that pro-
duces an n+1-digit number, the result can be a
palindrome, as in 605 + 506  = 1111.) Consequently
the probability of a reversal sum producing a pal-
indrome depends in a major way on the average of
the digits — if it’s high, the chance of a carry is large.
When there are many digits, the chances of getting
a palindrome are substantially reduced. The prob-
ability of getting a palindrome also depends on
how the digits are distributed; they must “pair up”
in the right way.

Assuming each different digit occurs about
the same number of times as any other and that the
digits are randomly distributed, the probability of
a n-digit number ever leading to a palindrome has
been estimated to be

10.222 × 0.55(n/2)

For n = 400 (a modest value in the land of versum
sequences), this works out to be 1.2 ×10–51, a mighty
small number [3].

We have some reservations about the argu-
ment that leads to the formula above, since it omits
the derivation of some intermediate results that are
not obvious to us and has some evident errors, such
as overlooking the fact that a palindrome may
result even if there are no carries, as illustrated
earlier. However, the general concept seems to be

correct. Note, however, that it depends on the
assumption of the random distribution of  equally
probable digits — which certainly is not true for
many numbers in versum sequences.

Nonetheless, if you look at large numbers in
versum sequences, it’s easy to see that it’s unlikely
there will be no carries as the result of a reversal
sum, and that the probability of carries in n-digit
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What’s Coming Up

We didn’t have room in this issue of the
Analyst for another article on dynamic analysis.
We’ll give that priority for the next issue.

We also plan to have another article in the
series on visual interfaces and a concluding article
on versum sequences.

Random Numbers Revisited

Carl Sturtivant sent us a long, detailed, and
interesting letter about Icon’s random number gen-
erator and linear congruence generators in gen-
eral. He was motivated by the puzzle we posed in
the Issue 29 of the Analyst [1], but he covered a
number of other topics.

He first noted that we gave the wrong value of
the modulus in an earlier article [2]; it should have
been 231, not 231–1. Our mistake came from having
used logical ANDing rather than remaindering but
changing to remaindering for exposition without
correcting the number.

He then went on to comment about the prop-
erties of Icon’s random number generator and
some of the defects in it.

He concluded with a proof that the kind of
regularity posed in our puzzle was to be expected
and, in fact, is a property of all linear congruence
generators with moduli that are powers of 2.

His letter contains a lot of mathematics, but
his discussion is very lucid and easily understood.
If you’d like a copy of his letter, let us know and
we’ll send you one, free of charge.
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numbers producing n+1-digit palindromes is very
small. Contemplate the number shown on page 10.

If the probability of a palindrome appearing
in a versum sequence drops off quickly as the
number of digits increases (about once every 2.3
steps for the sequence of 196), it’s easy to see why
palindromes might only occur in the early parts of
versum sequences. “Getting off on the wrong foot”
appears to have “doomed” the sequence for 196.

Next Time

We have a few more topics to discuss before
leaving versum sequences. One is how many n-
digit seeds produce identical versum sequences
and how to identify them. Another interesting
topic is the merger of versum sequences that start
out differently but come together at some point.
Last on our agenda is the question of what num-
bers occur in versum sequences. Not all occur,
certainly; 1 and 3 are simple examples. (Recall that
the seed is not part of the versum sequences it
produces; otherwise the issue would be vacuous.)

These topics raise some interesting program-
ming issues, which we’ll discuss along the results
we have.
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A Word of Thanks

Gregg Townsend reads every issue of the
Analyst before it goes to press. He does an excel-
lent job and with amazing quickness. Over the
years he’s caught many errors and saved us much
potential embarrassment. What’s more, he often
makes valuable suggestions for general improve-
ments.

We want to take this opportunity to express
our sincere thanks to Gregg for all his help; help
that benefits not just us but all our readers.


