
The Icon Analyst 34 / 1

In this issue …

Welcome to a New Editor ............ 1
Icon Newsletter Subscriptions ..... 1
Building a Visual Interface ........... 2
Versum Base Seeds ........................ 6
Versum Palindromes ..................... 6
From the Library ............................ 9
What’s Coming Up ...................... 12

Welcome to a New Editor

We’re pleased to welcome Gregg Townsend
as an editor for the Analyst.

From the Analyst’s inception, Gregg has par-
ticipated in its production and has made numer-
ous suggestions as well as providing material.

We are, in fact, simply recognizing the role
Gregg has played. The only problem is that it no
longer will be appropriate to explicitly acknowl-
edge his contributions.

Icon Newsletter Subscriptions

As your read in the last Newsletter, it now is
available on the Web. The Newsletter is sent by
postal mail only to subscribers who pay a one-time
fee. That fee is waived for subscribers to the Ana-
lyst.

We plan to time publication of a Newsletter to
coincide with the publication of an Analyst, and
we’ll mail them together. Since the Analyst is
published twice as often as the Newsletter, expect
to get a Newsletter with every other Analyst.

February 1996
Number 34

In-Depth Coverage of the Icon Programming Language

Icon on the Web
Information about Icon is available on the World
Wide Web at

http://www.cs.arizona.edu/icon/www/

The Icon Analyst

Ralph E. Griswold, Madge T. Griswold,
 and Gregg M. Townsend

Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

e-mail: icon-project@cs.arizona.edu

 ®

and

Bright Forest Publishers
 Tucson Arizona

© 1996 by Ralph E. Griswold, Madge T. Griswold,
 and Gregg M. Townsend

All rights reserved.



2 / The Icon Analyst 34

The VIB application for a new interface is
shown below. The menus at the top provide opera-
tions needed to use VIB. The icons below the VIB
menu bar from left to right represent buttons, radio
buttons, menus, text-entry fields, sliders, scroll bars,
regions, labels, and lines. The inner rectangle rep-

resents the canvas
of the interface be-
ing developed.

It’s gener-
ally a good idea,
before creating any
vidgets, to set the
desired size of the
application canvas.
This can be done
by dragging with
the left mouse but-
ton on the lower-
right corner of the
rectangle repre-
senting the applica-
tion canvas. Alter-
natively, clicking
the right  mouse
button on the
lower-right corner
of the canvas area

brings up a dialog, which is shown at
the left.

To build the interface for the
kaleidoscope, we don’t need the pro-
cedure name field or the dialog win-
dow toggle. We’ll explain these in a
later article.

The window label refers to the
label for the application, which we can
set now. The default width is reason-
able for our design; the critical dimen-
sion is the height, which needs to be
increased to accommodate the display
region and menu bar, with some space
for a visual border around the display
region. The image at the top of the next
page shows the edited canvas dialog.
The new canvas size is reflected in
subsequent images.

The question is what to do next.
There are quite a few vidgets to create,
configure, and position. We can’t be
sure (unless we have a detailed draw-

The VIB Application

Building a Visual Interface

In the last article on building visual interfaces
[1], we sketched the layout of the tools for the
kaleidoscope interface. In this article we’ll start
building the interface using VIB.

Application Canvas Dialog

vidget icons

menu bar

application
canvas



The Icon Analyst 34 / 3

Specifications for the Kaleidoscope Application
ing of the interface and are sure it’s the way we
want it) that the canvas size is correct. A good
approach at this point is to start laying out the
portions of the interface that depend most on the
canvas size. One approach is to start by subdivid-
ing the canvas into its main areas; first the menu
bar that divides the canvas vertically, and then the
display region, which is the most crucial part of the
area below the menu bar.

Lines provide visual cues for
the user (and also for the interface de-
signer). Therefore, the first vidget we’ll
create is a line to separate the menu bar
from the rest of the canvas.

A vidget is created by pressing
the left mouse button on its icon and
dragging it onto the canvas. For a line
vidget, the result is a short horizontal
line as shown at the bottom of this
page.

The end points of the line are
highlighted to indicate that the vidget
is “selected”. Operations are performed
on the currently selected vidget. A
vidget is selected when it is created. A
vidget that is not selected can be se-
lected by clicking on it with the left
mouse button. Only one vidget can be
selected at any one time.

When a vidget is created, it’s
almost always necessary to change its
configuration. Here, the line needs to
be longer and moved up.

There are several ways we can
adjust the length and position of the line. We can
press the left mouse button on the line and drag it
to a new position. And we can press and drag on an
end point to move it, changing the position of that
end point (the other remains anchored) to change
the length and orientation of the line. Alternatively
we can press the right mouse button to bring up a
dialog that allows us to specify the length and
positions of the end points.

A Line Vidget



4 / The Icon Analyst 34

For a long line like we want, it’s usually
easier to start with a dialog, which allows the
length and end points to be specified precisely.
Once the line is the right length and positioned
approximately, its position can be adjusted using
the mouse as described above.

The Menu Bar Line

The dialog for the newly created line vidget
is shown at the left. Different kinds of vidgets have
somewhat different dialogs, but all of them have
an ID field for a string used to identify the vidget.

For a newly created vidget, a suggested ID
is provided. It’s generally a good idea to change

the suggested ID to something more
mnemonic. In this case it might be menu
line.

The x1 coordinate should be set
0 and the x2 coordinate to 599 to fit the
width of the canvas. (If a line is a little
too long to fit on the canvas, that doesn’t
matter, since nothing appears beyond
the edge of the canvas when the appli-
cation is run.) The values of y1 and y2
need to be the same to produce a hori-
zontal line. We chose 35 for the vertical
position, with the results shown at the
bottom of this page.

The canvas now is divided ver-
tically into the menu bar and the part
that will contain the display, buttons,
and sliders. We could add the menu at
this point, but we prefer to continue
with our strategy of dividing areas.
This gives us a view of the canvas that
is not cluttered by interface tools. Con-
sequently, the display region is the next
order of business.

The approach to creating a re-
gion vidget is similar to that for creat-
ing a line vidget, although a region has
more attributes. To save space, we’ll
skip images of the newly created region
vidget and the initial values in its dia-
log and go directly to the situation after
the region vidget has been created and
its dialog edited, which is shown at the
top of the next page.

We’ve set the region’s width and
height to the size of the kaleidoscope
display. The x and y coordinates that
specify the upper-left corner of the re-
gion are only approximate; they are
difficult to specify numerically without
a detailed layout, and one of the advan-
tages of VIB is that you can manipulate
the vidgets directly. We’ll do this after
dismissing the dialog.

Dialog for a Line Vidget



The Icon Analyst 34 / 5

ternatives for the visual appearance of
the region’s border. We decided on
“raised”. If we don’t like the effect of a
raised region, we can change it later. In
fact, we may not know if the effect is
what we want until we are able to run
the kaleidoscope. As we’ll show in a
later article, it’s always possible to go
back to VIB to modify the interface.

The result, after moving the re-
gion to where we wanted it, is shown at
the bottom of this page. Although there
are only two vidgets so far, the inter-
face is beginning to take shape.

Next Time

We’ve run out of space for this
article. It may not seem like we’ve ac-
complished much, but it doesn’t take
much time to do what we’ve described.

We’ll continue with the other vidgets in the
next article.

Reference

1. “Designing a Visual Interface”, Icon Analyst
33, pp. 1-3.

There’s an easy way to move a
selected vidget in small increments:
Pressing an arrow key moves the vidget
one pixel in the direction specified by
the key.

 As indicated by the second
field in the dialog above, a region can
have a callback. Since this region is
only for the display and there’s no
functionality associated with user
events on the region, we don’t need a
callback. The callback can be elimi-
nated by deleting the text in the field,
leaving it empty, as we have done.
When there is no callback for a vidget,
events that occur on it are ignored.

The four radio buttons at the
right of the region dialog provide al-

Region Dialog after Editing

The Configured Region

        Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.



6 / The Icon Analyst 34

Versum Base Seeds

In the last issue of the Analyst, we intro-
duced the concept of a base seed for versum se-
quences — the smallest seed whose sequence does
not merge to another sequence.

In that article, we commented that all ob-
served 1- through 8-digit base seeds  that started
with a digit greater than 1 ended with the digit 9,
and we asked if anyone could prove or disprove
that this is generally true.

Here’s a proof by contradiction:
Suppose axb is a base seed, where

a is a digit > 1
x is some sequence of digits
b is a digit < 9

Then let
a' = a – 1 (still a single digit > 0)
b' = b + 1 (still a single digit ≤ 9)

Because
a' + b' = (a – 1) + (b + 1) = a + b

then rs(axb) = rs(a'xb'), where rs(i) = i + reverse(i);
that is, axb and a'xb' merge.

But, by definition, a base seed is the smallest
seed whose sequence does not merge to another
sequence. Since axb is larger than a'xb', axb cannot
be a base seed if a > 1 and b < 9.

Versum Palinromes

Interest in the versum problem stems from
the high frequency of palindromes in versum se-
quences and the puzzle of whether all versum
sequences contain at least one palindrome [1].

In the last article on versum sequences [2], we
showed a method by which the amount of data
that is needed to study versum sequences can be
reduced dramatically. This makes it practical to
study versum sequences, at least for seeds that
have only a modest number of digits.

In this article we go back to the original issue
of palindromes and look at two subjects: (1) where
palindromes occur in versum sequences and (2)
the nature of versum palindromes.

Versum Palindrome Extremes

In the first article on versum sequences [1],
we showed empirical evidence that at least for

small seeds, the first palindrome in a versum se-
quence occurs after only a few terms and that the
last palindrome apparently is not that far out either.
We also mentioned a probability argument that
supported these observations.

Here’s a table showing where the “farthest
first” palindromes occur for 1- through 8-digit seeds,
going out to 500 terms (these are, of course, conjec-
tures, indicated by † in headings that follow):

farthest first palindromes†

n term primary seed base seed approx. size palindrome

1 2 5 5 1.1×101 P1
2 24 89 7 8.8×1012 P3
3 23 187 7 8.8×1012 P3
4 21 1297 7 8.8×1012 P3
5 55 10911 10137 4.7×1027 P8
6 64 150296 150296 6.8×1032 P11
7 96 9008299 1003346 5.5×1047 P12
8 96 15059593 1003346 5.5×1047 P12

The labels in the last column identify the specific
palindromes, which are listed at the bottom of the
next page.

Here are the “farthest last” palindromes:

farthest last palindromes†

n term primary seed base seed approx. size palindrome

1 35 5 5 6.8×1014 P5
2 34 10 5 6.8×1014 P5
3 39 739 739 1.7×1015 P6
4 39 1792 739 1.7×1015 P6
5 81 10151 10058 1.3×1031 P9
6 79 103946 10058 1.3×1031 P9
7 101 1702190 1003346 5.5×1047 P12
8 98 10300930 1003346 5.5×1047 P12

We were surprised that as the number of digits
in seeds increased that the extremes moved out as
far as they did. This certainly indicates that the
probability argument, which places a vanishingly

Downloading Icon Material

Implementations of Icon are available for down-
loading via FTP:

ftp.cs.arizona.edu (cd /icon)



The Icon Analyst 34 / 7

small value on these, is strained, to say the least.
Clearly versum numbers — numbers that occur in
versum sequences — have characteristics that are
far from those of “ordinary numbers”.

For some more trivia, here are the largest
palindromes found:

largest first palindromes†

n term primary seed base seed approx. size palindrome

1 2 9 9 9.9×101 P2
2 24 89 7 8.8×1012 P3
3 23 187 7 8.8×1012 P3
4 20 6999 6999 1.7×1013 P4
5 55 10911 10137 4.7×1027 P8
6 64 150296 150296 6.8×1032 P11
7 96 9008299 1003346 5.5×1047 P12
8 95 10309988 1003346 5.5×1047 P12

largest last palindromes†

n term primary seed base seed approx. size palindrome

1 35 5 5 6.8×1014 P5
2 34 10 5 6.8×1014 P5
3 36 166 166 6.9×1016 P7
4 71 1052 166 6.9×1016 P7
5 64 10911 10137 1.5×1031 P10
6 64 150296 150296 6.8×1032 P11
7 99 9008299 1003346 5.5×1047 P12
8 95 10000748 1003346 5.5×1047 P12

We find it interesting that there are only 12 differ-
ent palindromes in all these tabulations.

Incidentally, all of there palindromes were
found by simple Icon programs. For example, the
“farthest first” palindromes were found using this

program, which takes n as a command-line argu-
ment:

link pvseeds
link vsterm

procedure main(args)
   local i, ndist, idist, term, iterm, pterm

   ndist := 0

   every i := pvseeds(args[1]) do {
      idist := 0
      every term := vsterm(i) do {
         idist +:= 1
         if term == reverse(term) then {
            if ndist <:= idist then {
               iterm := i
               pterm := term
               }
            break
            }
         }
      }

   write("seed=", iterm, " term=", ndist,
      " palindrome=", pterm)

end

In our journeys through versum sequences,
we found that the seeds whose sequences have the
most palindromes follow a simple pattern:

sequences with most palindromes†

n seed number

1 1 10
2 10 9

Rogue’s Gallery of Palindromes

P1 11
P2 99
P3 8813200023188
P4 16668488486661
P5 678736545637876
P6 1685872332785861
P6 69567677677676596
P8 4668731596684224866951378664
P9 13378652542289211298224525687331
P10 14758724578598888889587542785741
P11 682049569465550121055564965940286
P12 555458774083726674580862268085476627380477854555



8 / The Icon Analyst 34

3 100 8
4 1000 9
5 10000 12
6 100000 10
7 1000000 11
8 10000000 11

It’s easy to show that for n > 6, the seed 10n–1

has at least 11 palindromes. Empirical evidence
strongly suggests that there are no more palin-
dromes in the sequences for such seeds, but a proof,
like a proof for the 196 conjecture, is unlikely to be
found.

This again brings up the question of how
many versum sequences have no palindromes.
Here are empirical results for n-digit primary seeds:

sequences with no palindromes†

n number

1 0
2 0
3 3
4 12
5 248
6 939
7 14405
8 43160

The Nature of Versum Palindromes

Leaving the question of where palindromes
occur in versum sequences, a more basic question
is the nature of versum palindromes.

Do all numeric palindromes (palindromes
composed of digits but without a leading 0) occur
in versum sequences? Clearly not: 131 is an ex-
ample of a numeric palindrome that does not occur
in a versum sequence.

If we look at versum palindromes, there’s an
evident regularity. Here are the ones for the first
few values of n.

n=1: n=2: n=3:
11 101 121 141 161 181

2 22 202 222 242 262 282

33 303 323 343 363 383

4 44 404 424 444 464 484

55 505 525 545 565 585

6 66 606 626 646 666 686

77 707 727 747 767 787

8 88 808 828 848 868 888

99 909 929 949 969 989

n=4:
1001 1111 1221 1331 1441 1551 1661 1771 1881 1991

2002 2112 2222 2332 2442 2552 2662 2772 2882 2992

3003 3113 3223 3333 3443 3553 3663 3773 3883 3993

4004 4114 4224 4334 4444 4554 4664 4774 4884 4994

5005 5115 5225 5335 5445 5555 5665 5775 5885 5995

6006 6116 6226 6336 6446 6556 6666 6776 6886 6996

7007 7117 7227 7337 7447 7557 7667 7777 7887 7997

8008 8118 8228 8338 8448 8558 8668 8778 8888 8998

9009 9119 9229 9339 9449 9559 9669 9779 9889 9999

From the patterns in these listings, we can
derive a recursive procedure that generates n-digit
versum palindromes:

procedure vspalins(n)
   local i, lpart, rpart, h

   if n = 1 then suspend 2 to 8 by 2
   else if n = 2 then {
      every i := 1 to 9 do
         suspend i || i
      }
   else if n % 2 = 0 then { # even
      h := (n – 2) / 2
      every i := vspalins(n – 2) do {
         i ? {
            lpart := move(h)
            rpart := tab(0)
            }
         suspend lpart || ("00" | vspalins(2)) || rpart
         }
      }
   else { # odd
      h := (n – 1) / 2
      every i := vspals(n – 1) do {
         i ? {
            lpart := move(h)
            rpart := tab(0)
            }
         suspend lpart || ("0" | vspalins(1)) || rpart
         }
      }

end

By construction, the numbers that this proce-
dure generates are versum palindromes. It remains
to be shown that there are no others.

One way to approach this is see what kinds of
palindromic numbers are not versum palindromes.
Here’s a procedure to generate all the n-character
palindromes for a specified set of characters:



The Icon Analyst 34 / 9

From the Library

Encoding Icon
Values

Many pro-
grams start with an
initialization phase
in which data struc-
tures such as lists
and tables are built.
Sometimes these
structures are large,
complicated, and

time-consuming to build but are the same from
run to run.

For example, the Icon program we use to
process orders for Icon material builds a database
for all the items that can be ordered, all the mate-
rial that needs to be assembled to fill an order, and
so on. Several structures are involved and some
are quite large. The information that this program
uses changes only occasionally; for the most part,
it’s the same from run to run.

In such situations, it is useful to have a way
by which the structures can be built and saved to

For what it’s worth, there are 90 × 10n–2

numeric n-digit palindromes. The number of
versum palindromes with an odd number of dig-
its is 4 for n = 1 and 45 × 10 n–2 for n > 1.

Next Time

We’re not  finished with versum numbers. In
the next article on the subject, we’ll explore the
question of what numbers are versum numbers
— what “versumness” is.

This turns out to be a much more difficult
problem than characterizing versum palindromes.
The problem has to do with carries on addition;
something about which you may have painful
memories of childhood learning experiences. We
do.

References

1. “The Versum Problem”, Icon Analyst 30, pp.
1-4.

2. “Versum Sequence Mergers”, Icon Analyst
33, pp. 6-12.

procedure palins(c, n)
   local s, lpart, mpart, rpart, h, p

   s := string(c)

   if n = 1 then suspend !s
   else if n = 2 then
      every c := !s do suspend c || c
   else if n % 2 = 0 then { # even
      h := (n – 2) / 2
      every p := palins(s, n – 2) do {
         p ? {
            lpart := move(h)
            rpart := tab(0)
            }
         every c := !s do {
            mpart := c || c
            suspend lpart || mpart || rpart
            }
         }
      }
   else { # odd
      h := (n – 1) / 2
      every p := palins(s, n – 1) do {
         p ? {
            lpart := move(h)
            rpart := tab(0)
            }
         every suspend lpart || !s || rpart
         }
      }

end

A simple filter produces the numerical palin-
dromes:

procedure npalins(n)
   local i

   every i := palins(&digits, n) do
      if i[1] ~== "0" then suspend i

end

If we compare the results of vspalins() and
npalins(), we find a simple answer to the question of
versum palindromes: All numeric palindromes are
versum palindromes, except those that have an odd
number of digits and an odd middle digit. For
example, 12421 is a versum palindrome, but 12321
is not.

It’s easy to prove that a numeric palindrome
with an odd middle digit cannot be a versum num-
ber. To start with, the middle digit of the reverse
sum of an n-digit number can be odd only if there is
a carry into it. We’ll leave you to work out the rest.



10 / The Icon Analyst 34

a file once and then reconstructed from the file
whenever they are needed. Such a scheme offers
not only the potential for less initialization time,
but it also may move a large block of code out of the
program.

Another situation in which being able to save
program data to a file and use it later occurs in
interactive applications, in which a user constructs
complex data during a run and wants to be able to
reuse it in the application at a later time.

There are several difficult issues in encoding
Icon values as strings so they can be saved in a file:

• The encoding should be able to handle any
kind of value, although there are limitations on
what is possible, as we’ll discuss later.

• Pointers to structures, and in particular,
loops, should be handled properly.

• The encoding should be reasonably com-
pact.

• The encoding should be portable across
different platforms.

The Icon program library contains several
procedure packages that encode Icon values as
strings that can be written to a file and later de-
coded to restore the values. The best of these pack-
ages is xcode.icn, which is the subject of this article.

Encoding and Decoding Procedures

The file xcode.icn contains two procedures,

xencode(x, f)

which encodes an arbitrary Icon value x and writes
it to file f, and

xdecode(f)

which reads an encoded value from the file f and
reconstructs it.

Using xencode() and xdecode() is simple. In a
program that encodes a value, it might amount to
something like this:

output := open("store.xcd", "w") | …
xencode(x, output)
close(output)

which saves the encoded representation of x in file
store.xcd.

To reconstruct an encoded value, something
like this is all that’s needed:

input := open("store.xcd") | …

x := xdecode(input)
close(input)

It is important to understand that x can be an
arbitrarily complex value, such as a table, list, or set
that itself points to other structures.

If you want to save several values in one
encoding, you can put them in a record or list, as in

xencode(
   [
      color_table,
      attrib_set,
      name_list
      ],
   output
   )

In the case of encoding a list of structures, the
decoding might be

value := xdecode(input)
color_table := value[1]
attrib_set := value[2]
name_list := value[3]

Multiple encodings also can be written to the
same file by calling xencode() several times and
then decoded by successive calls of xdecode(), as in

xencode(color_table, output)
xencode(attrib_set, output)
xencode(name_list, output)

…
color_table := xdecode(input)
attrib_set := xdecode(input)
name_list := xdecode(input)

Encoding and Decoding Details

Suppose x is a value that has been encoded
and y is the result of decoding it. The relationship
between x and y depends on the type.

For “scalar” types — the null value, integers,
real numbers, csets, and strings — x and y are
identical. In Icon terms, this means that

x === y

succeeds.
The encoding of strings and csets handles all

characters in a way that they are correct when
decoded.

For structured types — records, lists, sets, and
tables — x and y are, of course, not identical, but



The Icon Analyst 34 / 11

they have the same shape and their elements bear
the same relationship to each other. In other words,
x and y are indistinguishable. In Icon terms,

equiv(x, y)

succeeds, where equiv() is a library procedure in
structs.icn. Studying this procedure may help in
understanding the meaning of equivalence for
structures. (The Icon program library currently is
being reorganized; you may find equiv() in a dif-
ferent file in the future.)

There is no way to encode files, co-expres-
sions, and windows so that they are identical
when decoded. Values of these types are encoded
as empty lists so that when they are decoded they
are (a) unique, and (b) likely to produce run-time
errors if they are used (probably erroneously). The
special files &input, &output, and &errout are, how-
ever, preserved in the encoding/decoding pro-
cess. Notice that if these types occur in structures,
the structure and its decoding may not be equiva-
lent.

There isn’t much that can be done with func-
tion and procedure values, but their type and
identification are preserved. If a record is declared
differently in the encoding and decoding pro-
grams, the results of using the decoded record
may be incorrect.

xdecode() fails if given a file in the wrong
format or if the file encodes a record or procedure
for which there is no declaration in the decoding
program.

Complete Calling Sequences

 xencode(x, f, p) returns f where

• x is the value to encode.

• f is the file to write (default &output).

• p is an optional procedure that writes a
line to f using the same interface as write(). The first
argument of p is f. The remaining arguments of p
are string encodings. The default for p is write.

xdecode(f, p) returns the restored value where
• f is the file to read (default &input).
• p is an optional procedure that reads a

line from f using the same interface as read(). The
argument of p is f. The default for p is read.

The parameter p normally is not used for

storage in files, but it provides the flexibility to
store the data in other ways, such as a string in
memory. If p is provided, f need not be a file.

 For example, the encoding of x can be “writ-
ten” to an Icon string by

 code_string :=
   xencode(x, [""], encode_string)[1]

using

procedure encode_string(lstr, s[ ])

   every lstr[1] ||:= !s
   lstr[1] ||:= "\n"

   return

end

Notice that a list containing an initially empty
string is used to capture the encoding. Since
xencode() returns its second argument, the de-
sired string is obtained by subscripting the re-
turned list.

Similarly, the string can be decoded by

y := xdecode(code_string, decode_string)

using

procedure decode_string(lstr)
   local line
   static last_arg, code_string

   if lstr ~=== last_arg then {
      last_arg := lstr
      code_string := lstr[1]
      }

   code_string ?:= {
      if line := tab(upto('\n')) then {
         move(1)
         tab(0)
         }
      else fail
      }

   return line

end

The reason for passing the string as an ele-
ment of a list is to allow decode_string() to detect
different calls of xdecode(), since decode_string()
may be called several times by one call of xdecode().
xencode() must be used in the expected way, of
course.



12 / The Icon Analyst 34

Analyst 35

What’s Coming Up

In the next issue of the Analyst, we’ll con-
tinue the series on building visual interfaces and
the series on the versum problem.

We have a number of other things in the
works, including an article on loading C functions
dynamically in Icon and a glossary of Icon terms.

What actually appears in the next issue will
depend in large part on how things fit — the
images related to visual interfaces make layout
tricky.

Notes on the Encoding

Values are encoded as a sequence of one or
more lines written to a plain text file. The first or
only line of a value begins with a single character
that unambiguously indicates its type. For some
types, the remainder of the line contains additional
value information. Then, for some types, there are
additional lines of encoding. The null value is a
special case consisting of an empty line.

All values except the null value are assigned
an integer tag as they are encoded. The tag is not,
however, written to the output file. On input, tags
are assigned in the same order as values are de-
coded, so each restored value is associated with the
same integer tag as it was when being written. In
encoding, any recurrence of a value is represented
by the original value’s tag. Tag references are rep-
resented as integers, and are easily recognized
since no value’s representation begins with a digit.

The encodings of a structure’s elements fol-
low the structure’s specification on subsequent
lines. The form of the encoding contains the infor-
mation needed to separate consecutive elements.

Here are some examples of values and their
encodings:

      x xencode(x)
______________________________________________________________________________________

      1 N1
      2.0 N2.0
      &null
      "abc" "abc"
      "\000\001" "\x00\x01"
      'abc' 'abc'
      main p

"main"
      [ ] L

N0
      set() S

N0
      table("") T

N0
""

      ["hi", "there"] L
N2
"hi"
"there"

______________________________________________________________________________________

A loop is illustrated by

      L := [ ]
      put(L, L)

for which the encoding is

      x xencode(x)
______________________________________________________________________________________

      L2 L
N1
2

______________________________________________________________________________________

 The 2 on the third line is a tag referring to the
list L2. The tag ordering specifies that a value is
tagged “after” its describing values. Thus, the list
L2 has the tag 2 (the integer 1, the size of L, has tag
1).

 Of course, you don’t need to know all this to
use xencode() and xdecode().

Getting xcode.icn

xcode.icn is included in the Icon program
library. The most recent version, with corrrections
and enhancements, is available by anonymous
FTP to ftp.cs.arizona.edu; cd /icon/library and get
xcode.icn.

Acknowledgment

Bob Alexander designed and implemented
xencode() and xdecode(). Some of the material in
this article comes from his documentation.


