
The Icon Analyst 36 / 1

June 1996
Number 36

In this issue …

Building a Visual Interface ........ 1
Subscription Renewal ................ 4
Quiz .............................................  5
Loading C Functions .................. 5
Icon Glossary ............................... 9
Answers to Quiz ....................... 12
What’s Coming Up ................... 12

In-Depth Coverage of the Icon Programming Language

Building a Visual Interface

This is the fourth article in the
series describing how visual interfaces
are built using VIB. We hope you are
still with us.

In the last article on this subject,
we added a menu and two buttons to
the interface for the kaleidoscope application.
The four sliders are next.

The image above shows a newly created slider
for controlling the speed of this display and its
dialog box after editing. Since the dialog has not
yet been dismissed, the newly created slider is
shown in its original size and orientation.

We’ve changed the default vertical orienta-
tion to horizontal and set the range from 500 to 0,
anticipating that the left end of the slider will

The Edited Slider Dialog

Icon on the Web

Information about Icon is available on the World
Wide Web at

http://www.cs.arizona.edu/icon/



2 / The Icon Analyst 36

correspond to “slow” and the right
end to “fast”.

We set the filter toggle so that
intermediate events are filtered out.
Thus, the program gets a callback only
when the mouse button is released to
“let go” of the slider. If the intermedi-
ate events are not filtered out, there
are callbacks for every movement of
the slider.

This deserves some discussion.
Since most of the values associated
with the kaleidoscope sliders require
the display to be restarted, callbacks
for intermediate slider positions are
not useful and would provide no vi-
sual feedback for the user. In fact, if
events are not filtered out, there is no
way for the application to know which
event is the last one when the user is
manipulating the slider.

On the other hand, in an application that
allows viewing a portion of a large image through
a small pane, intermediate slider events to position
the image should not be filtered out — instead,
each movement of the slider can be used to reposi-
tion the portion of the image being viewed so that
the user can see what’s going on and when to
release the slider.

Of course, you may not know whether filter-
ing is appropriate or not until you get into the
details of writing the application code. As with
other aspects of a visual interface, it’s easy to go
back and change the attributes of a slider.

The image above shows the slider after it has
been positioned. Getting the size and position of

the slider just right may take some
experimentation.

Three more sliders are needed.
We could repeat the process we used
for the first slider, but we can save
some work by making copies of the
first slider. Entering @C when a vidget
is selected makes a copy of the selected
vidget. @C stands for entering c with
the meta key held down. This is a com-
mon convention for interfaces built with
VIB.

The new vidget won’t be where
we want it, and we’ll have to change
some of its attributes, but it will be the
same size as the vidget from which we
made the copy, which is what we want
in our layout.

The image at the left shows the
four sliders in place. The interface is
taking shape; at this point the results
should be satisfying.

One Slider in Place

All Sliders in Place



The Icon Analyst 36 / 3

            Configuring the Radio Buttons

Configuring the Radio Buttons

The radio buttons are next. As is
the case for menus, three radio buttons
are provided by default. Adding and
deleting radio buttons and changing
their names is similar to the process for
menu items.

The image at the right shows a
newly created set of radio buttons and
the dialog after it has been edited. The
results are shown in the next image.

We’ve saved the labels until last
for a good reason: We couldn’t be sure
the sliders were where we wanted them
until the radio buttons were in place.
Twelve labels are needed and moving
labels around after creating them is a
lot of work — we want to be sure that
all the buttons and sliders to be labeled
are just where we want them. This is
one of several things you’re likely to
“learn the hard way”, as we did.

As we mentioned in an earlier
article, labels are vidgets that don’t
accept events and produce no callbacks.
Other than that, they are created and
manipulated like any other vidgets.

The image at the top of the next
page shows a newly created label
vidget and its dialog box before edit-
ing. We’ll use this label to identify the
speed slider and need to change its text
(label) accordingly. The result is shown
on the next page.

We won’t bore you with all the
details, but once one label is created,
others can be made by copying and
editing as we did for sliders.

It’s a good idea to think about this
before starting. Four of the labels iden-
tify sliders and might be created and
positioned first.

After that’s complete, the labels
for the ends of the sliders can be done,

noting the fact that two sets of three have the same
text.

We’ve created all the vidgets and they are at
least approximately where we want them. That
doesn’t mean the interface will never change; as
the application develops, new functionality may
require additions or changes to the interface. With

The Radio Buttons in Place

Back Issues

Back issues of The Icon Analyst are available
for $5 each. This price includes shipping in the
United States, Canada, and Mexico. Add $2
per order for airmail postage to other coun-
tries.



4 / The Icon Analyst 36

a good foundation, though, future
changes will not be so hard.

The completed interface is shown
at the top of the next page.

Next Time

The interface in VIB looks like it
will look when the application is run.
It’s possible, however, to see the appli-
cation “in action” without leaving VIB
— what user actions on different vidgets
do, when callbacks occur, what they
are, and so on.

We’ll cover these matters in the
next issue of the Analyst and then
finish up with VIB by describing its
menus (which we’ve not needed yet)
and the kind of code it produces.

     Subscription Renewal

For many of you, this issue is the last in your
present subscription to the Analyst. If so, you’ll
find a renewal form in the center of this issue.
Renew now so that you won’t miss an issue.

Your prompt renewal also helps us by reduc-
ing the number of follow-up notices we have to
send. Knowing where we stand on subscriptions
also lets us plan our budget for the next fiscal year.

A Label Dialog

One Label in Place

Downloading Icon Material

Most implementations of Icon are available for
downloading via FTP:

ftp.cs.arizona.edu (cd /icon)



The Icon Analyst 36 / 5

The Complete Kaleidoscope Interface

Quiz

Several Icon functions provide default values
for omitted or null-valued arguments. This little
quiz is designed to test your knowledge of these
defaults. The answers are on page 12.

Suppose that

word := "Casablanca"

1. What are the results produced by the fol-
lowing expressions? If an expression fails or causes
a run-time error, note that.

left(word)
right(word)
center(word)
map(word)
repl(word)

2. What is the default for s2 in open(s1, s2)?
3. What is the default for i in sort(X, i)?
4. What does stop() (with no arguments) write?

Loading C Functions Dynamically

 Dynamic loading provides a way to use func-
tions coded in C in an Icon program without modi-
fying the Icon system itself. The C code is compiled

and placed in a library, then loaded
from the library when the Icon pro-
gram runs.

 Version 9.0 of Icon introduced
dynamic loading. It is supported on
UNIX systems that provide the System
V loader interface specified by the C
header file <dlsym.h>, including sys-
tems from Sun, Digital, and SGI.

 We will start by showing differ-
ent ways to load a C function from the
Icon program library. After that, we’ll
discuss how to write a new function
and we’ll go through the steps that are
needed to make use of it.

Program Library Functions

 The Icon program library [1] in-
cludes an assortment of loadable UNIX
interfaces and special-purpose func-
tions. Here is a sampling:

bitcount(i) count the bits set in an integer
chmod(s, i) change the permissions of a file
fpoll(f, i) poll a file for input, with timeout
getpid() return the process identification

number
kill(i1, i2) send a signal to a process
lgconv(i) convert a large integer to a string
tconnect(s, i) connect a file to a TCP port
umask(i) change the process permission

mask

 The full set of functions can be found in the
library’s cfuncs directory. Documentation and code
are also available on-line on the Web [2]. We’ll use
the bitcount() function in our first examples.

 Prebuilt C libraries are included with the
binary distributions of Icon for SunOS, Solaris,
Digital UNIX, and SGI Irix. We’ll assume that a
binary distribution has been unpacked into a direc-
tory named /icon, and so the function library file is
named /icon/bin/libcfunc.so.

Loading a Function

 The built-in Icon function loadfunc(libname,
funcname) loads the C function funcname() from
the library file libname and returns a procedure
value. If the function cannot be loaded, the pro-
gram is terminated.

 If loadfunc(libname, "myfunc") produces p,
then



6 / The Icon Analyst 36

p(arguments) calls myfunc() with a list
of arguments

type(p) returns "procedure"
image(p) returns "function myfunc"
proc("myfunc") returns p
proc("myfunc", 0) fails

 The following program loads the function
bitcount() and assigns it to a global variable of the
same name. Assigning it to a global variable makes
it available to other procedures, although that’s not
needed here. The bitcount() function returns the
number of bits that are set in the binary represen-
tation of an integer.

$define Library "/icon/bin/libcfunc.so"

global bitcount

procedure main()
   local i

   bitcount := loadfunc(Library, "bitcount")
   every i := 250 to 260 do
      write(i, " ", bitcount(i))

end

 When this program is run, it lists the integers
from 250 to 260 along with their bit counts:

250  6
251  7
252  6
253  7
254  7
255  8
256  1
257  2
258  2
259  3
260  2

Loading from a Path

 Embedding a file name such as /icon/bin/
libcfunc.so in the program is undesirable. An alter-
native is for the program to find the library file
using information from the program environment.

 The Icon library procedure pathload(libname,
funcname) searches the set of directories given by
the FPATH environment variable to find libname
and load funcname. As is usual in Icon path search-
ing, the current directory is searched first. If the
function cannot be loaded, the program is termi-
nated.

 The pathload() procedure is included by link-
ing pathfind from the Icon program library. Using
pathload(), the example program becomes:

$define Library "libcfunc.so"

link pathfind
global bitcount

procedure main()
   local i

   bitcount := pathload(Library, "bitcount")
   every i := 250 to 260 do
      write(i, " ", bitcount(i))

end

 FPATH must be set before the program is
run. A suggested value for FPATH is given by the
Setup script that is run when installing UNIX
binaries of Icon. For our hypothetical configura-
tion, FPATH could be set by

setenv FPATH "/icon/bin/"

Implicit Function Loading

 It is possible to encapsulate the loading pro-
cess so that the body of an Icon program is unaware
that it is calling a C function. Consider this ex-
ample:

$define Library "libcfunc.so"

link pathfind

procedure main()
   local i

   every i := 250 to 260 do
      write(i, " ", bitcount(i))

end

procedure bitcount(n)

   bitcount := pathload(Library, "bitcount")
   return bitcount(n)

end

 First of all, notice that there is no longer a
global declaration for bitcount, and that the main
procedure no longer calls pathload(). As far as the
main procedure is concerned, bitcount() is just
another procedure to call, with no special require-
ments. This is a nice simplification.

 The new bitcount() procedure is a bit tricky,
though. To understand it, you must know that an
Icon procedure declaration creates a global vari-
able with an initial value of that procedure. A



The Icon Analyst 36 / 7

global variable is subject to assignment.
 When main() calls bitcount() for the first time,

the bitcount() procedure loads the bitcount() C func-
tion from the library. The result is assigned to the
global variable bitcount, replacing the current pro-
cedure value. Consequently, all subsequent calls
to bitcount() use the loaded function.

 The first call to bitcount() remains incomplete
after loading the function; the bits of n still must be
counted. So, following loading, the procedure calls
bitcount(n). Although this looks like a recursive
call, it isn’t — the call uses the current value of the
global variable bitcount, and so it calls the loaded C
function. The bits of n are counted and returned,
completing the first call.

 After the first time, calls to bitcount() go di-
rectly to the loaded code. The Icon procedure
bitcount() is no longer accessible.

Implicit Library Loading

 The Icon program library provides an im-
plicit loading procedure for each of the C functions
in the library. Small procedures like the bitcount()
procedure shown above are included by linking
cfunc. Using the library interface procedure, our
example now can be simplified to this:

link cfunc

procedure main()
   local i

   every i := 250 to 260 do
      write(i, " ", bitcount(i))

end

 The link cfunc declaration is the only hint that
bitcount() is written in C. Of course, FPATH must
still be set to run this program.

Making Connections

 The bit counting example doesn’t really illus-
trate the full potential of using C functions in an
Icon program. Bit counting, after all, can be done in
Icon. Here’s something that can’t.

 The library function tconnect(host, port) es-
tablishes a TCP connection to a specified port
number on an Internet host. TCP is a communica-
tion protocol used by telnet programs, news serv-
ers, Web servers, and many other network ser-
vices.

 The following program makes a connection

to the Icon Web server and writes the contents of
the Icon home page — in its original HTML markup
language, of course.

link cfunc

procedure main()
   local f

   f := tconnect("www.cs.arizona.edu", 80)
   writes(f, "GET /icon/ HTTP/1.0\n\n")
   flush(f)
   seek(f, 1)
   while write(read(f))

end

 The tconnect() call establishes the connection
and returns a file that is open for both input and
output. The internet host www.cs.arizona.edu is
our department’s Web server. Port 80 is used by
most Web servers, including ours.

The program then transmits a request for the
/icon/ Web page. The details of the request string
are specified by the “Hypertext Transfer Protocol”
[3], which we won’t discuss here.

 The flush() call ensures that all the data is
actually sent, and then the seek() call resets the file
in preparation for a switch from output to input. In
this situation seek() does not actually reposition
the file, but it’s required when switching modes.

 Finally, lines are read and echoed until an
end-of-file is received.

Writing Loadable C Functions

 We’ve seen how functions can be loaded
from the library; now let’s consider how to write
them.

 Because the Icon system expects C functions
to implement a certain interface, dynamic loading
usually requires specially written C functions. In
general, it is not possible to use an existing C
function without writing an intermediate “glue”
function.

 C functions must deal with the data types
used by the Icon run-time system, notably the
“descriptors” that represent all Icon values. While
an understanding of the Icon run-time system [4, 5]
is helpful, it is possible to create useful functions by
modeling them after existing library functions.
Integer and string values are most easily handled.

 A loadable C function has the prototype

int funcname(int argc, descriptor ∗argv)



8 / The Icon Analyst 36

where argc is the number of arguments and argv is
an array of argument descriptors. The first ele-
ment, argv[0], is used to return an Icon value, and
is initialized to a descriptor for the null value. This
element is not included in the count argc. The
actual arguments begin with argv[1].

 If the C function returns zero, the call from
Icon succeeds. A negative value indicates failure. If
a positive value is returned, it is interpreted as an
error number and a fatal error with that number is
signalled. In this case, if argv[0] is non-null, it is
reported as the “offending value”. There is no way
for a C function to suspend, and no way to indicate
a null value as an offending value in the case of an
error.

Interface Macros

 The C file icall.h contains a set of macros for
use in writing loadable functions. Documentation
is included as comments. This file is not included in
binary distributions of Icon but can be found in the
cfuncs directory in the source code of the Icon
program library. Alternatively, it can be loaded
from the Web [2]. Macros are provided for:

• inspecting the type of an Icon value
• validating the type of an argument
• converting an Icon value into a C value
• returning a C value in Icon form
• failing or signaling an error

 Most macros deal with integers or strings.
Some support also is provided for handling real
and file values.

Counting Bits, Again

 For a concrete example of a C function, we
will revisit the bitcount() function used earlier and
look at its source code:

#include "icall.h"

int bitcount(int argc, descriptor ∗argv)
{
   unsigned long v;
   int n;

   ArgInteger(1);

   v = IntegerVal(argv[1]);
   n = 0;
   while (v != 0) {
      n += v & 1;
      v >>= 1;

      }

   RetInteger(n);
}

 Like all loadable functions, bitcount() is an
integer function with two parameters, argc and
argv.

 The ArgInteger macro call verifies that argu-
ment 1 is a simple integer. (Large integers are
typically rejected by C functions because of the
extra work involved.) If argument 1 is missing or
has the wrong type, ArgInteger makes the function
return error code 101 (integer expected or out of
range).

 The IntegerVal macro call extracts the value
of the first argument.

 In each pass through the while loop, the low-
order bit of v is extracted (v & 1), added to n, and
shifted off (v >>= 1). When no more nonzero bits
are left, the loop exits. Note that v is declared
unsigned to ensure that only zero bits are inserted
by the shift operation.

 The RetInteger macro call returns the value
of n as an Icon integer.

Preparing a Library

 To be used in an Icon program, a C function
must be built and installed in a library. Compila-
tion comes first, usually involving a command
such as

cc –c bitcount.c

to produce an object file bitcount.o. We’re assum-
ing that icall.h has been copied to the current
directory, although other methods are also pos-
sible. The –c option causes a relocatable object file
to be produced instead of a stand-alone executable
program. Other options, such as optimization op-
tions, also could be specified.

 A C function can be loaded only from a
“shared library”. Even if there is just one function,
it must be placed in a library. Library names con-
ventionally end with a .so suffix.

 It seems that every system has a different
way to create libraries, usually involving special
flags to cc or ld. The program library file mklib.sh
is a shell script that embodies our understanding of
shared library creation. It takes one argument nam-
ing the library to be created and one or more
additional arguments listing object file names. For
example, the command



The Icon Analyst 36 / 9

The Icon Analyst

Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon–project@cs.arizona.edu

 ®

and

Bright Forest Publishers
 Tucson Arizona

© 1996 by Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

All rights reserved.

mklib.sh mylib.so bitcount.o

creates a file mylib.so containing the functions read
from bitcount.o. Like icall.h, mklib.sh is available in
the program library source code or from the Web.

Conclusion

 We will close with a review of the key points:

• Icon can load C functions on many UNIX sys-
tems.

• The C functions must be tailored to Icon’s re-
quirements.

• Each function must be loaded before it can be
called.

• A simple Icon procedure can be used to hide the
loading details.

• pathload() searches FPATH to find a function
library.

• Some useful functions are provided in the Icon
program library.

 We’d be pleased to hear of any interesting
applications you find for dynamic function load-
ing, and additional contributions to the Icon pro-
gram library always are welcome.

References

1. R. E. Griswold and G. M. Townsend, The Icon
Program Library; Version 9.2 , Department of Com-
puter Science, The University of Arizona, Icon
Project Document IPD272, 1996.

2. The Icon Project, “Program Library Index:
Loadable C Functions”, Department of Computer
Science, The University of Arizona, WWW http://
www.cs.arizona.edu/icon/library/ccfuncs.html.

3. T. Berners-Lee, R. Fielding, and H. Frystyk,
“Hypertext Transfer Protocol — HTTP/1.0”, work
in progress, Internet Engineering Task Force, Feb-
ruary 19, 1996, WWW http://www.ics.uci.edu/pub/
ietf/http/draft-ietf-http-v10-spec-05.html.

4. R. E. Griswold and M. T. Griswold,The Imple-
mentation of the Icon Programming Language, Prince-
ton University Press, Princeton, New Jersey, 1986.

5. R. E. Griswold, Supplementary Information for the
Implementation of Version 9 of Icon, Department of
Computer Science, The University of Arizona, Icon
Project Document IPD239, 1995.

Icon Glossary

This is second part of a glossary of Icon terms.
There will be one or two more parts, depending on
how much space we have in upcoming Analysts.
When the glossary is complete, we’ll provide a
copy as a supplement to the Analyst.

If you have questions or suggestions about
material in the glossary, please let us know.
activation: evaluation of a co-expression.
allocation: the process of providing space in

memory for values created during program
execution. See also: garbage collection.



10 / The Icon Analyst 36

conjunction: a binary operation that evaluates its
operands but performs no computation on
them; used to test if two expressions both
succeed. Conjunction has the effect of logical
and. See also: mutual evaluation and disjunc-
tion.

control character: a character that has special inter-
pretation in an input/output context. For ex-
ample, linefeed or newline.

control structure: an expression whose evaluation
may alter the otherwise sequential order of
evaluation of expressions.

data type: a designation that identifies values that
share common properties and operations. Icon
has 12 data types: co-expression, cset, file,
integer, list, null, procedure, real, set, string,
table, and window. In addition, each record
declaration defines a data type. The term data
type often is shortened to type.

declaration: a component of a program that speci-
fies its properties and structure. There are seven
kinds of declarations: global, local, static, pro-
cedure, record, link, and invocable.

default case clause: a component of a case expres-
sion that contains an expression that is evalu-
ated if no other expression is selected in a case
expression. A default case clause is indicated
by the reserved word default.

default value: a value that is provided in place of
an omitted or null-valued argument of a func-
tion.

default table value: a value specified when a table
is created that serves as the value correspond-
ing to keys that are not in the table.

define directive: a preprocessor directive that as-
sociates a symbol (name) with a string so that
the string is substituted for subsequent uses of
the symbol in the program.

disjunction: logical or; used to describe the effect
of alternation. See also conjunction.

environment variable: a named attribute of the
system environment under which a program
runs. Environment variables can be used to
specify the size of Icon’s memory regions, the
locations of libraries, and so forth.

error: a condition or situation that is invalid. Errors
may occur during translation, linking, com-
piling, or execution. An error in translation
prevents linking. An error in linking prevents
the production of an icode file. An error that

alternation: a control structure that generates the
results of its first operand followed by the
results of its second operand. See also disjunc-
tion.

argument: an expression that provides a value for
a function or procedure call; sometimes used
to mean operand.

associativity: the order in which like operators are
evaluated in the absence of parentheses. Asso-
ciativity can be left-to-right, in which case the
first (left-most) operator is evaluated first or
right-to-left, in which case the last (right-most)
operator is evaluated first.

augmented assignment: assignment combined
with a binary operation. The binary operation
is performed on the value of the left-operand
variable and the value of the right operand,
and then the result is assigned to the left-
operand variable.

built-in: a feature that is part of the Icon pro-
gramming language, as opposed to a feature
written in Icon.

case expression: a control structure in which an
expression to evaluate is selected depending
on a value.

co-expression: an expression coupled with an en-
vironment for its execution. If the expression is
a generator, its results can be obtained one at a
time by activation.

character: the elementary unit from which strings
and csets are composed. Characters are used to
represent letters, digits, punctuation marks,
and so forth. Characters are represented inter-
nally by small nonnegative integers (typically
8 bits). Some characters have associated glyphs.
Icon has no character data type.

collating sequence: the sorting order for strings
imposed by the internal representation of char-
acters.

command-line argument: a string given after the
program name when Icon is invoked from a
command line. Command-line arguments are
passed to the main procedure as a list of strings
in its first argument.

comparison operation: a binary operation that
compares two values according to a specified
criterion. A comparison operation succeeds
and returns the value of its right operand if the
criterion is satisfied. Otherwise it fails. See also
numerical comparison, lexical comparison,
and value comparison.



The Icon Analyst 36 / 11

occurs during execution is called a run-time
error. See also error conversion.

error conversion: changing run-time errors to ex-
pression failure rather than program termina-
tion. This is accomplished by setting a pro-
gram state using a keyword.

escape sequence: a sequence of characters in a
string or cset literal that encodes a single char-
acter. Escape sequences usually are used for
characters that cannot be given literally.

function: a built-in procedure.

garbage collection: the process of reclaiming space
in memory that has been allocated but no
longer needed. Garbage collection occurs auto-
matically when insufficient space remains for
allocation. Garbage collection can be forced by
collect().

global variable: a variable whose value is acces-
sible throughout the entire program and from
the beginning of execution to the end.

glyph: a symbol such as a letter, digit, or punctua-
tion mark.

heterogeneous structure: a structure whose ele-
ments have different types.

homogeneous structure: a structure all of whose
elements have the same type.

initial clause: an optional component of a proce-
dure that contains expressions that are evalu-
ated only on the first invocation of the proce-
dure.

invocable declaration: a declaration that specifies
that procedures are to be included when a
program is linked, even if there is no explicit
reference to them in the program. Such proce-
dures may be called using string invocation.

invocation: the evaluation of a procedure or func-
tion. Invocation and call are sometimes used
synonymously.

keyword: An ampersand (&) followed by a string
of letters that has a special meaning. Some
keywords are variables.

lexical comparison: comparison of strings “al-
phabetically” according to the numerical val-
ues used to represent characters. Also called
string comparison. See also collating sequence.

library module: a file consisting of one or more
procedures or other declarations that have been
translated into ucode so that they may be
incorporated in a program by linking.

limitation: restricting the number of times a gen-
erator is resumed. Limitation can be specified
by a control structure or because of the syntac-
tic context in which the generator appears. See
also bounded expression.

line terminator: a character or pair of characters
that is used by convention to mark the end a
line of text in a file. In UNIX, the line terminator
is a linefeed character; on the Macintosh, it is
the return character; in DOS, it is a linefeed
character followed by a return character. Other
platforms generally use one of these conven-
tions. See also: newline character.

link declaration: a declaration that causes a li-
brary module to be included in a program
during linking.

literal: a sequence of characters in a source pro-
gram that directly represents a value, as the
integer 1 and the string "hello".

local variable: a variable that is accessible only to
the procedure in which it is declared and dur-
ing a single invocation of the procedure. Local
variables are created when a procedure is in-
voked and are destroyed when the procedure
returns or fails, but not when the procedure
suspends. See also: global variable and static
variable.

matching function: a function that returns a por-
tion of the subject in string scanning. The term
can be extended to include matching proce-
dures.

memory: the space in which a program and the
objects it creates are stored. Memory is imple-
mented in RAM. Also called storage.

memory region: a portion of memory used for
storing Icon values. There are separate memory
regions for strings and for other objects. Also
called storage region.

mixed-mode arithmetic: arithmetic on a combina-
tion of integers and real numbers to produce a
real number. Any arithmetic operation that
has a real operand produces a real value.

mutual evaluation: an expression consisting of
an argument list, but with no function or
procedure. A mutual evaluation expression
succeeds only if all the expressions in the
argument list succeed. The result of a spe-
cific argument can be selected by an integer
preceding the argument list.

newline character: the single character used to



12 / The Icon Analyst 36

map(word) "casablanca"

The next one may surprise you; there is no
default for the number of times to replicate a string,
so repl(word) causes a run-time error. This seems to
us like an inconsistency in language design; a
default of 1 would have been better.

2. The default for s2 in open(s1, s2) is "rt". The
"r" should be familiar. The "t" enables the translated
mode for input, so that line terminators automati-
cally are converted to newline characters. This is
only an issue for platforms such as MS-DOS and
the Macintosh, where line terminators are not
newline characters. The converse operation is per-
formed on output. The result is to make line termi-
nators transparent.

3. The default for i in sort(X, i) is 1. For tables,
the result is a list of two-element key/value lists.
For other types, the second argument is not used.

4. stop() is tricky. Except for the fact that stop()
terminates program execution and writes to stan-
dard error output instead of standard output by
default, stop() treats its arguments in the same way
write() does — it writes them in succession and
adds a line terminator. With no arguments, write()
writes a a blank (empty) line, and stop() does too.
Such a blank line usually causes no harm, but it
may be disconcerting when output is to the screen.

What’s Coming Up

We have lots of things on deck. There’s an-
other article in the series on building visual inter-
faces, another article on versum numbers, an ar-
ticle on dynamic analysis that takes a different
approach from past ones, and more of the glossary.

represent a line terminator in Icon regardless
of the actual representation used in the under-
lying system.

object: in the most general sense, any value. More
specifically, a value that is represented by a
pointer to memory. These are strings, csets,
files, real numbers, large integers, co-expres-
sions, procedures, windows, and data struc-
tures. Sometimes the term object is used for just
data structures.

operand: an expression that provides a value for
an operation. See also argument.

operation: an expression that is part of the built-in
computational repertoire of Icon and cast in
the form of an operator and operands. Some-
times used in a broader sense to include func-
tion and procedure calls to characterize ex-
pressions that are not control structures.

operator: a symbol consisting of one or more char-
acters that designates an operation.

parameter: an identifier in a procedure declara-
tion that provides a variable to which a value
is passed when the procedure is called. Param-
eters are local variables.

passing arguments: the assignment of argument
values in a procedure call to the parameters of
the procedure.

Answers to the Quiz

1. The second argument of left(), right(), and
center(), which determines the length of the result,
defaults to 1, so the answers for these are:

left(word) "C"
right(word) "a"
center(word) "l"

In the case of center(word), if word has an even
number of characters, as it does here, the result is
the character to the right of center.

While 1 may seem like a useless default for
field length, it actually can be useful. For example,
left(s) can be thought of as producing the left-most
character of s. Programs written using these func-
tions in this way may be difficult for others to
understand, however.

The second and third arguments of map()
default to upper- and lowercase letters, respec-
tively, so the answer is


