
The Icon Analyst 38 / 1

October 1996
Number 38

In this issue …

Random Numbers Revisited 1
Visualizing Concatenation 6
The Kaleidoscope 8
From the Library 13
What’s Coming Up 16

In-Depth Coverage of the Icon Programming Language

Random Numbers Revisited

Editors’ note: The article that follows is taken from a
letter from Carl Sturtivant.

This letter is in response to your articles on the
Icon random number generator in Issues 28 and 29
of the Analyst and in particular, to your request
for an explanation of the regularities shown in
Issue 29.

A Glitch

When I first saw the “Rolling Your Own”
section of the article in Analyst 28 [1], I was struck
by the fact that the procedure rand_int(i) has been
given a scale factor of 1/(231– 1).

When &random is equal to its maximum value
of 231– 1, its scaled value will be 1.0 (provided
floating point arithmetic is conducted to sufficient
accuracy). Thus the value returned by rand_int(i)
will be integer(i ∗ 1.0) + 1 which is i + 1. Thus ?2
could evaluate to 3, for example. To test this hy-
pothesis, I ran the following program.

procedure main()

 &random := 1276559117 # Seed before 2^31 – 1
 writes(?2, "/")
 write(&random – (2 ^ 31 – 1))

end

The output of this program was not 3/0 as I
expected, but 2/0. The zero means that &random
was 231–1 at the point where scaling occurred, and
yet the overflow did not occur as predicted. Per-
haps the scaling algorithm in Icon was not the same
as rand_int(i)? To test this hypothesis, I ran the
following program.

link analyst # from "Rolling Your Own"

procedure main()

 &random := random := 1276559117

 writes(?2, "/")
 writes(&random – (2 ^ 31 – 1), ",")
 writes(rand_int(2), "/")
 writes(random – (2 ^ 31 – 1))

end

The output of this program was 2/0,3/0 as
expected. Thus, rand_int(2) can return 3. The fol-
lowing program detects the source of the trouble in
the true Icon random number generator.

procedure main()

 &random := 1276559117
 write(?0)

end

This program should write 1.0 if scaling is
occurring as stated, but in fact the output for my
implementation of Icon is less than one —
0.99999999672599.

Examination of the Icon source file rmacros.h
shows that RandScale is defined to be 4.65661286e–
10 with a comment that this is equal to 1/(231– 1).
However, this is not correct! It is more like 1/(231+
6). The last digit should be an 8 at the accuracy
given. Furthermore, in order that RandScale give
1.0 or more when multiplied by 231– 1, but not when
multiplied by 231– 2, more decimal places need to
be specified. On my implementation of Icon, it is
necessary to specify RandScale to eleven places
for this to be true.

2 / The Icon Analyst 38

What the above shows, however, is that 1/
(231– 1) is not the correct scale factor anyway, as it
can lead to ?i evaluating to i + 1, albeit with very
small probability. A better scale factor is 2–31.

Changing the scale factor slightly does not
make a great deal of difference for practical pur-
poses. (The sequence of values that &random takes
on remains unchanged.) Examination of the algo-
rithm for computing ?i reveals why.

The algorithm computes ?i by placing equally
spaced boundaries in the real interval [0,1) giving
i sub–intervals that we can number in order from 1
to i. These sub–intervals are closed on the left and
open on the right (because of the way that the Icon
integer function works). Then a new value of &ran-
dom is computed, and scaled to the interval [0,1).
The number of the sub–interval this new value falls
into is the result of evaluating ?i.

Most of the time the scaled value of &random
does not fall near an interval boundary, provided
that i is much smaller than the number of different
values that &random can take on. Thus, a small
change in the scale factor will not move the scaled
value across a sub–interval boundary most of the
time.

This intuitive argument can easily be quanti-
fied. Consider changing RandScale from its present
value in the Icon source to an accurate representa-
tion of 2–31. (The decimal expansion of 2–31 is exactly
4.656612873077392578125×10–10.) For i < 32, the
probability of choosing &random so that ?i would
have a different value were RandScale changed is
less than 10–7.

“Curiosity or Problem?”

Hereafter, we assume that the scale factor is
exactly 2–31. The modulus m = 231, so this means the
scale factor is exactly 1/m. This is important for the
following construction to work properly.

The random number algorithm is more intu-
itively stated by using a circle rather than the
interval [0,1), because a circle reflects the modular
arithmetic naturally in its geometry.

Informally, we regard the sequence of values
taken on by &random as scaled into the interval
[0,1), which is stretched in length by a factor of 2π,
and bent nose to tail to become the unit circle. (Yet
another reason why the value 1.0 should not be
present.)

This transformation is properly done using
complex exponentials. If r is a possible value of

&random, then the corresponding point P(r) on the
unit circle in the complex plane is e2πir/m . Here θ(r)
= 2πr/m is the angle (in radians) illustrated in the
following diagram.

x

y

P(r)

(r)θ

This is the same as taking the unit circle, and
placing 231 equally spaced points around its cir-
cumference beginning on the positive x axis, corre-
sponding in order to the values 0 … 231 – 1 for
&random.

Addition is naturally modulo m = 231, and
corresponds to adding the angles of the two num-
bers, that is, θ((r

1
 + r

2
) mod m) = θ(r

1
) + θ(r

2
). (This

also is the same as multiplying the corresponding
complex numbers, that is P((r

1
 + r

2
) mod m) = P(r

1
)

⋅ P(r
2
).)
Now let’s take a geometrical view of the “Cu-

riosity or Problem?”. We know that the values of
&random are iterated using the following relation:

 rk+1 = (ark + c) mod m

where a = 1103515245 and c = 453816694.

Interpreting these values as angles as above
(and converting to degrees), we have θ(a) ≈ 185°
(and θ(c) ≈ 76° ≈ 75°). This value interlocks with
360° in a coincidental way that we will show leads
to the pattern in the first column of the output of the
“Curiosity or Problem” program. (The conversion
factor from integer values to angles is now 360°/m
rather than 2π/m.)

Now to convert the recurrence relation to
operations on angles, we apply the function θ to
both sides, and use the rule for applying θ to a sum
(given above):

θ(rk+1) = θ((ark + c) mod m) = θ(ark mod m) + θ(c)

The Icon Analyst 38 / 3

It remains to simplify the term involving the
application of θ to a product, modulo m. Since θ(x)
= (360°/m)x (modulo 360°) we have θ(ar

k
 mod m) =

θ(a)r
k
 (modulo 360°). This just says that you add

the angle θ(a) around the circle r
k
 times — its

repeated addition for angles. So here’s the out-
come:

θ(rk+1) = θ(a)rk + θ(c) ≈ rk 185° + 75°

Now, what happens if we start with &random
= r0 = 0, 2, 4, … as in the given program? Some of the
importance of r0 being even is now apparent. It
means that r0185° is just a little over a multiple of
360°, that is, r0185° is a “smallish” angle. In fact
r0185° increases by about 10° each time r0 is in-
creased by 2. Thus θ(r1) takes on roughly the values
75°, 85°, 95°, 105°, 115°, … . Note that θ(c) is unim-
portant here: it just moves the regularity around so
that it starts in a different place.

These numbers are somewhat similar:
(“nearly” constant), so we might informally refer
to them as having “approximate period 1”. Simi-
larly, the numbers in column 8 of the output of the
given program have “approximate period 4”.

The program computes ?20, so that the unit
circle is partitioned like a dart board into 20 equal
segments of 18°, numbered (unlike a dart board) in
order 1 through 20. Thus the first column of the
output is “explained” by the observation that θ(a)
is very close to 180°.

The above argument relies upon there being
one application of a linear congruential function to
a sequence of seed values with constant small
differences. (The seed values themselves may be
large.) After the first iteration, the new seed se-
quence is no longer of this form, and the argument
cannot be repeated.

However, the composition of a linear
congruential function with another linear
congruential function is once again a linear
congruential function. Thus, for example, column
8 of the output can be computed from the seeds r0
= 0, 2, 4, 6, … as follows: r8

= (a8r0 + c8) mod m, for
some constants a8 and c8. (This function is the linear
congruential function corresponding to the usual
linear congruential function composed with itself
eight times.)

As the output in column 8 has “approximate
period 4”, no doubt we will find that θ(a8) is near to
45°, so that increasing r0 by 2 moves the result
through near to 90°; increasing r0 by 2 four times

moves the result approximately to the same value.
The relations (if any) between the columns in

the output of the “Curiosity or Problem?” program
remain unexplained at this point. We need a more
global view to understand this feature.

Regularities in General

Suppose we choose a general linear
congruential random number generator, given by
the recurrence rk+1 = (ark + c) mod m, where random
numbers in the range 1 to n are extracted by the
function h(n, rk) = n rk/m + 1, and m = 2j. (That is,
until further notice, a, c, m = 2j are perfectly gen-
eral.)

It is not difficult to see that the solution to this
recurrence is rk =ak r0 + ck where:

ck = c al

l=0

k−1∑()
(all using modulo m arithmetic). Therefore, col-
umn k of the output of an analog of the “Curiosity
or Problem” program using the above general
random number generator would be determined
from the initial seeds r

0
 = 0, 1, 2, 3, … by multiplying

by ak mod m, adding c
k
 and applying h(n, …).

So to understand column k in general, we
need to know what possible values θ(ak mod m) can
take on. (Once again, as in the previous section, the
value of θ(c

k
) is unimportant, since it merely rotates

any regularities.)
To understand ak mod m, where m = 2j, we

need a little number theory. We will assume that j
≥ 3, and that a satisfies the criterion a mod 8 = 5
(which is criterion 3 in Icon Analyst 28). We need
the following fact about modulo 2j arithmetic:

if S mod 4 = 1 then S = 5l mod 2j

for some 0 ≤ l < 2j–2

What this amounts to is that exactly half of the
odd numbers (S = 1, 5, 9, 13, 17, …, 2j – 3), have a
discrete logarithm l in the base 5. These logarithms
will add modulo 2j–2 when the corresponding num-
bers are multiplied modulo 2j. Furthermore, a mod
8 = 5 implies that a mod 4 = 1, so that any valid
choice of a will have such a logarithm.

To compute this logarithm, I constructed the
following procedures. The procedure power(x, k,
m) computes xk mod m by “repeated squaring”. It
is called by the procedure log5(S, j) which com-
putes the unique value 0 ≤ l < 2j–2 such that S = 5l

mod 2j.

4 / The Icon Analyst 38

procedure power(x, k, m)

 if k = 0 then return 1
 if k % 2 = 0 then return power(x, k / 2, m) ^ 2 % m
 else return x ∗ power(x, k – 1, m) % m

end

procedure log5(S, j)

 if S % 4 ~= 1 | j < 3 then fail

 L := 0
 m := 4
 every 1 to j – 2 do {
 m ∗:= 2
 if power(5, L, m) ~= S % m
 then L +:= m / 8
 }

 return L

end

The procedure log5(S, j) computes the loga-
rithm bit by bit. At each step, the modulus is
doubled, and the old value of the logarithm is
tested to see if it is correct with the new modulus.
If so then the new uppermost bit of the logarithm
must be a zero. If not then it must be a one, and an
appropriate power of two is added on to correct the
logarithm for the new modulus.

If a mod 8 = 5 then the bottom bit of the
logarithm of a will be a one, that is, the logarithm
will be odd. Consequently, it will always have a
multiplicative inverse modulo 2j–2.

Let α be this inverse. We have a = 5l mod 2j,
where l is the logarithm, and is odd, and 1 = lα mod
2j–2. Raising both sides of a = 5l mod 2j to the power
α gives aα mod 2j = 5, and since 5 can be expressed
as a power of a, then any number S satisfying S = 4
mod 1 can be expressed as a power of a. In other
words, a is a legitimate base for logarithms, just like
5.

Let S satisfy S = 4 mod 1 and let σ = log
5
(S, j).

Then S = 5σ mod 2j. But aα mod 2j = 5, so S = aασ mod
2j. In other words, log

a
(S, j) = αlog

5
(S, j) mod 2j–2

where α = (log
5
(a))–1 mod 2j–2.

A concrete calculation will illustrate the me-
chanics for a = 1103515245, the usual Icon random
number generator constant. A call of
log5(1103515245, 31) returns 290333047, show-
ing that a = 1103515245 is in fact 529033047 mod 231. A
calculation with the extended Euclidean algorithm
shows that (290333047)–1 mod 229 = 17190347. This
may easily be verified because 171903047 ×

290333047 mod 229 = 1. So, 5 = 110351524517190347

mod 231, and log
1103515245

 (S, 31) = 171903047 log
5
(S,

31) mod 229.
What we’ve shown above is that any a satisfy-

ing a mod 8 = 5 will suffice as a base for logarithms
(and we’ve given a means of calculating loga(S, j)
for any S satisfying S mod 4 = 1). This means that ak
mod 2j may take on any value S satisfying S mod 4 =
1, simply by varying k.

Specifically, we can choose a value S (satisfy-
ing S mod 4 = 1) that has θ(S) very close to a
“coincidental” angle (for example, 180°, 45°, or
60°). Then there always exists k = loga(S, j) such that
a

k
 mod 2

j
 = S. Thus, the kth column of output of

programs like the one in “Curiosity or Problem?”
would then (in principle) exhibit striking near pe-
riodicity of almost any kind desired.

Of course k could be rather large. But what we
have established is that the kinds of columns out-
put by the “Curiosity or Problem?” program are by
no means untypical, and are not specific to the
choice of constants made by the Icon random num-
ber generator, but are inherent whenever the modu-
lus is a power of 2.

As an example, let’s choose θ(S) ≈ 90° with the
standard Icon random number generator. Then S =
229 + 1 is very close, and satisfies S mod 4 = 1. A call
of log5(2 ^ 29 + 1, 31) gives 402653184. From four
paragraphs back, we have log1103515245(S, 31) =
171903047 log5(S, 31) mod 229, and substituting, we
have log1103515245(S, 31) = 134217728. Thus, in column
134217728 we should have approximate periodic-
ity 4 (with minuscule drift from exact periodicity),
as in the following program

procedure main()

 k := 134217728
 i := 1000

 every &random := 0 to 19 do {
 every 1 to k – 1 do ?1
 write(?i)
 }

end

The output from this program on my system
is as follows. (It took an overnight run to collect
these numbers.)

125
375
625
875
126

The Icon Analyst 38 / 5

376
626
876
126
376
626
876
126
376
626
876
126
376
626

876

Conclusion

We have shown that the regularities in the
columns of output from the “Curiosity or Prob-
lem?” program are an instance of a general phe-
nomenon of column regularity. There is an enor-
mous amount of regularity in the output of the Icon
random number generator, so it’s not surprising
that some of it wound up in the first few columns.
One may choose any period, with smaller or larger
amounts of “drift”, and by the procedure exempli-
fied above, find a column exhibiting that behavior.
Furthermore, this is inherent to all linear
congruential random number generators using a
modulus that is a power of two.

One possibility that you might wish to con-
sider is having two random number generators in
Icon with a keyword variable as a switch. Then you
could keep the original generator (the default), and
provide a more sophisticated source if required.
(Perhaps the sophisticated source could also be
seeded by the clock at the point it was switched to?
If this feature was not required, it could always be

avoided by assigning to &random.)
Of course the problem of finding a “good”

source of pseudo-random numbers is notorious
for its apparent trade-off between “goodness” and
computational effort. An aggressive definition of
“good” is roughly that no polynomial-time algo-
rithm can distinguish the source from a truly ran-
dom source.

This statement can be made precise, and is the
standard of randomness used in theoretical stud-
ies of cryptography. We do not need such a drastic
definition, but it’s worth looking at the conse-
quences intuitively, to see that the idea of “high
degree” (see below) is important.

The existence of such a source is an open
question, and is equivalent to the existence of (a
natural class of) one-way functions. In fact it is one
these one-way functions that would be used in
place of the linear congruential function in such a
pseudo–random source. An existence proof would
imply P ≠ NP and much more.

One–way functions (if they exist) are func-
tions of “high degree” (this has a proper definition,
but take it intuitively), and consequently are much
more painful to compute than a linear congruential
function.

However, a “high-degree” function (chosen
carefully) is likely not to possess any simple (or
“simple-ish”) algebraic properties (unlike low–
degree functions) that give rise to patterns when
iterated. And if there is a proof that iterating such
a function eventually cycles through all the values
in range, then it may well suffice for practical
purposes provided that there is a reasonably effi-
cient way to compute it.

Editors’ note: When working with “random” num-
bers, it’s well to keep in mind the following remark
by John von Neumann:

Anyone who considers arithmetical methods
of producing random digits is, of course, in a
state of sin.

Icon on the Web

Information about Icon is available on the World
Wide Web at

http://www.cs.arizona.edu/icon/

6 / The Icon Analyst 38

deal

link interact
…

 while ∗Pending() > 0 then
 case Event() of {
 "p": until Event() == "c"
 "s": snapshot()
 "q": exit()
 }

 return

If the user enters p, the visualization pauses
until the user enters a c to continue it. An s pro-
duces a snapshot of the window, saved in an image
file. The procedure snapshot() is part of the library
module interact. It provides a dialog in which the
user can specify the name of the image file. Finally,
if the user enters q, the visualization terminates.

Snapshots from using this visualization tech-
nique for the eight test programs that do a signifi-
cant amount of concatenation follow.

csgen

fileprnt

Visualizing Concatenation

In the last issue of the Analyst, we looked at
collecting information for dynamic analysis and
visualization. The problem is not just how to get
the information — we’ve already done that for
concatenation — but how to display it. Just writing
a stream of numbers to a user’s monitor is likely to
be worse than useless.

For concatenation, a start would be to display
the size of strings produced as successive bars
whose heights correspond to size. For most pro-
grams, and especially for those of the greatest
interest, there are far too many concatenations in
most programs to display them all on the largest of
monitors, even if the bars are reduced to one-pixel
width.

This problem can be overcome by scrolling, so
that the display shows only the most recent portion
of the data.

Such a display is quite easy to create. Here’s a
procedure that takes a number as its argument and
displays a vertical line of the corresponding height.
For successive calls, new lines appear at the right
and previous lines are scrolled to the left, eventu-
ally disappearing:

link graphics

$define Width 500
$define Height 200

procedure scroll_strip(n)

 initial {
 WOpen("size=" || Width || "," || Height,
 "bg=dark gray") |
 stop("∗∗∗ cannot open window")

 CopyArea(1, 0, Width – 1, Height, 0, 0)
 EraseArea(Width – 1, 0, Width, Height)
 DrawLine(Width – 1, Height – n, Width – 1, Height)

 return

end

It takes only a little more to check for user
events before returning:

Downloading Icon Material

Most implementations of Icon are available for
downloading via FTP:

ftp.cs.arizona.edu (cd /icon)

The Icon Analyst 38 / 7

turing

kwic

press

Some aspects of these images are worth not-
ing. The image for genqueen shows that all concat-
enations are of the same length and hints at the
problem we described in the last article on dy-
namic analysis. The monotonous pattern produced
by turing also suggests how it was tested.

The tooth/sail/fin motif that appears in ipxref,
press, and turing most likely is due to building up
strings in a loop as described in the last article on
dynamic analysis.

Scaling is an obvious problem, which we’ll
address later.

Another thing we can do in obtaining infor-
mation about concatenation is to distinguish con-
catenation itself (||) from augmented concatena-
tion (||:=).

Different monitoring procedures could be
used for the translation of these two operators, but
an easier approach is to use the same procedure
with an additional argument that’s different for
the two cases.

We chose "a" to indicate augmented concat-
enation and the null value for regular concatena-
tion:

procedure Asgnop(op, e1, e2) # e1 op e2

 if op == "||:=" then
 return cat(e1, " := cat__(", e1, ",", e2,
 ", \"a\")")
 else return cat("(", e1, " ", op, " ", e2, ")")

end

By putting the differentiating argument in the
trailing position, a version of concat__() that doesn't
distinguish the two can ignore the argument.

One way to distinguish the two concatenation
operations in visualization is to assign different
colors to them, say black for regular concatenation
and gray for augmented concatenation. For the
two test programs that use augmented concatena-
tion, snapshots look like this:

ipxref

ipxref

genqueen

8 / The Icon Analyst 38

The Kaleidoscope

In previous articles, we’ve described how to
build the visual interface for the kaleidoscope ap-
plication. Now it’s time to look at the rest the
application.

There are two main parts to the job: writing
the code for the kaleidoscopic display and han-
dling user events.

We could, of course, have started with a pro-
gram that displayed kaleidoscopic images without
any interface at all. In fact, that is how the program

started. It’s not unusual to take an
existing program and add a visual
interface; in some cases this may be
the best path to follow.

The kaleidoscope application
can be viewed as having four main
sections:

event loop

display code

callbacks

VIB code

We’ll leave the display portion to last, since
it’s largely independent of the rest of the applica-

Incidentally, inspection of the other test pro-
grams shows that only these two could have used
augmented concatenation, although others could
have used a form of augmented concatenation that
prepended rather than appended to the evolving
string.

Additional functionality could be added to
our simple visualization tool by using command-
line arguments, but a better and more flexible
approach is to provide a visual interface that al-
lows the user to interact with the running visual-
ization. The application shown below was created
using VIB.

The pause button is a toggle that can be used
to stop the display temporarily. The reset button
clears the display region. The File menu provides
for taking a snapshot and quitting the application.
The Configure menu provides for scaling the dis-
play. In the image shown at the right, the scaling
factor is 5.5. And, of course, there are keyboard
shortcuts.

Since we’ve not yet finished the series of
articles on building visual interfaces, we won’t
show the code for this application, but there’s not

turing

much to it — only 114 lines for the program itself
and 19 lines for VIB interface code.

Next Time

There are many things related to dynamic
analysis and program visualization that we could
do next. Before going on in this area, however,
we’ll have an article describing a framework for
dynamic analysis.

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.

The Icon Analyst 38 / 9

A typical event-processing loop for a pro-
gram that does background work looks like this:

repeat {
 while ∗Pending() > 0 do
 ProcessEvent(root)
 # do a little background work
 }

where root is the root vidget. We’ll show how to get
this vidget later.

The expression

∗Pending > 0

checks to see if any events are queued. If there are,
they are processed. Control only goes to back-
ground work (in our case, the kaleidoscopic dis-
play) if there are no events pending.

For an entirely event-driven application, there
is an alternative procedure, GetEvents(), which
takes over control and just processes user events.

At this point we can add two sections to our
program layout:

header

initialization

event loop

display code

callbacks

VIB code

The header section consists of link and global
declarations.

Programs with visual interfaces need to share
values between callback procedures and other parts
of the program. For this reason, such programs
tend to have many global variables. Here are the
ones for the kaleidoscope application:

link interact # to take snapshots
link random # to randomize display
link vsetup # VIB support and graphics

Interface globals

global vidgets # table of vidgets
global root # the root vidget

tion, and first focus on the event loop and call-
backs.

Understanding the logic of control flow in
such a program is important. It can be viewed in
this way:

process

pending

events

run

display

briefly

Processing user events is the priority. Only
when there are no pending user events does con-
trol pass to running the display. The “briefly”
aspect of running the display is important; if con-
trol is not returned quickly to processing user
events, the interface may be unresponsive and
annoying.

It’s worth noting that there are different kinds
of applications with visual interfaces. Some, like
the kaleidoscopic display, work “in the back-
ground” when the user is not producing events.
Other applications are entirely “event driven” and
only perform computations in response to user
events. Editors are typical event-driven applica-
tions.

Of course, the phrase “process user events” is
deceptively simple; this part of the program may
be complex, there may be many things to handle,
and the logic may be intricate.

When dealing with a visual interface pro-
duced by VIB, events are not handled by Event()
but rather by a higher-level procedure
ProcessEvent(). This procedure knows about
vidget callbacks.

10 / The Icon Analyst 38

global size # size of view area
global half # half size of view area
global pane # graphics context for viewing

Parameters that can be set from the interface

global delayval # delay between
global density # number of circles
global draw_proc # drawing procedure
global max_off # maximum offset of circle
global min_off # minimum offset of circle
global max_radius # maximum radius of circle
global min_radius # minimum radius of circle

State information

global draw_list # pending drawing parameters
global reset # view area needs resetting
global state # null when display is running

We’ll have more to say about the global variables
as we describe other parts of the program.

The main procedure is simple; it just calls a
procedure to initialize the program and then a
procedure to run the display:

procedure main(args)

 init()

 kaleidoscope()

end

Here’s the initialization code:

procedure init()

 vidgets := ui()

 root := vidgets["root"]
 size := vidgets["region"].uw
 if vidgets["region"].uh ~= size then
 stop("∗∗∗ improper interface layout")

Produce different display on every execution.

 randomize()

Set initial values.

 delayval := 0
 density := 30
 max_radius := size / 4
 min_radius := 1
 draw_proc := FillCircle

 state := &null

Initialize vidget values.

 VSetState(vidgets["sld_speed"], delayval)

 VSetState(vidgets["sld_density"], density)
 VSetState(vidgets["sld_min_radius"], min_radius)
 VSetState(vidgets["sld_max_radius"], max_radius)
 VSetState(vidgets["sld_shape"], "discs")

Get graphics context for drawing.

 half := size / 2

 pane := Clone("bg=black", "dx=" ||
 (vidgets["region"].ux + half),
 "dy=" || (vidgets["region"].uy + half),
 "drawop=reverse")

end

The call of ui(), which is in the VIB section of
the program, opens a window for the interface,
draws the vidgets, initializes them, and returns a
table of the vidgets, which are keyed by their IDs as
given in VIB. The root vidget, which encloses and
controls all others, has the ID "root". It is needed for
processing events, as shown earlier.

The ID for the display region is "region", as
shown when the interface was constructed. Its uw
field gives the usable width of the region. A check
is made against the usable height to be sure they are
the same (the display requires a square region).

Next, randomize() is called to assure different
displays for different runs. Then the initial param-
eters for the display are set: no delay, at most 30
circles at one time, a maximum circle radius that is
one-fourth the size of the display region, a mini-
mum that is one pixel, and filled circles (note that
FillCircle is a procedure in Icon’s graphics reper-
toire).

The state is set to null, corresponding to run-
ning as opposed to paused. Since state is initially
null by default, it is not necessary to set it explicitly;
doing so simply provides documentation.

The next section of code uses VSetVidget() to
set the initial states of the vidgets. Note that the
program must know the vidget IDs.

Establishing a graphics context for the display
region finishes the initialization. (The fields ux and
uy specify the upper-left corner of the usable part of
the display region.) Because of the symmetrical
geometry of the display, it’s easiest to draw with
the origin in the center, as shown. The
drawop=reverse mode is used so that circles can be
erased by redrawing them.

Here’s the procedure that displays the kalei-
doscope and handles user events:

The Icon Analyst 38 / 11

procedure kaleidoscope()

 # Each time through this loop, the display is
 # cleared and a new drawing is started.

 repeat {

 EraseArea(pane, –half, –half, size, size)
 draw_list := []
 reset := &null

 # In this loop a new circle is drawn and an old
 # one erased, once the specified density has
 # been reached. This maintains a steady state.

 repeat {
 while (∗Pending() > 0) | \state do {
 ProcessEvent(root, , shortcuts)
 if \reset then break break next
 }
 putcircle()
 WDelay(delayval)

 # Don't start clearing circles until the
 # specified density has reached. (The
 # drawing list has 4 elements for each circle.)

 if ∗draw_list > (4 ∗ density) then clrcircle()
 }
 }

end

This procedure requires some explanation,
because it depends both on the way the display is
handled and on the way events are handled.

The procedure consists of a main repeat loop
from which there is no direct exit — that’s handled
by the quit item in the File menu, which terminates
program exeution. This loop initializes the display
and is executed once again for each time the display
is reset.

 An empty list for drawing information is
created, and reset is set to null, indicating that the
display is initialized.

The inner repeat loop processes events and
draws circles. The event processing loop is a bit
more complicated than the one shown earlier:

while (∗Pending() > 0) | \state do {
 ProcessEvent(root, , shortcuts)
 if \reset then break break next
 }

If there is a pending event, or if the display is
paused, indicated by a nonnull value of state,
ProcessEvent() is called. If an event is pending, it
is processed. Otherwise, ProcessEvent() waits for

one. (When the display is paused, there is nothing
to do but to wait for an event.) The argument
shortcuts is a procedure that handles keyboard
shortcuts as opposed to vidget events.

Next reset is checked; if it is nonnull, some-
thing has happened that requires the display to be
reinitialized. You need to look at the code to see
that there are two loops to break out of: an inner
while loop and its enclosing repeat loop. The next
is not needed, since the end of the inner repeat loop
also is the end of the outer repeat loop, but it helps
clarify the control flow.

Once out of this loop, we’re finally able to
draw a circle: no events are pending, the state is set
for a running display, and the display has been
reinitialized if necessary. Here, again, is the draw-
ing code:

putcircle()
WDelay(delayval)
if ∗draw_list > (4 ∗ density) then clrcircle()

The delay is provided to allow the user to
slow the display; on a fast platform, the display
may just be a blur unless there are delays.

The procedure putcircle() “puts” one circle;
drawing it in symmetric positions and adding
four elements to draw_list for its description so
that it can be redrawn later to erase it. If the size of
the drawing list indicates the maximum density
has been reached, clrcircle() is called to erase the
oldest circle and remove its specifications from
draw_list.

Here is the procedure putcircle():

procedure putcircle()
 local off1, off2, radius, color
 static colors

 initial colors := PaletteChars("c1")

 # get a random center point and radius

 off1 := ?size % half
 off2 := ?size % half
 radius := ((max_radius – min_radius) ∗
 ?0 + min_radius) % (half – ((off1 < off2) | off1))

 color := PaletteColor("c1", ?colors)

 put(draw_list, off1, off2, radius, color)

 outcircle(off1, off2, radius, color)

 return

end

12 / The Icon Analyst 38

The static variable colors is assigned a string of
characters from palette c1, which has 90 colors.
This provides an easy way to get colors that can be
selected at random. We chose c1 after trying vari-
ous other palettes.

The offsets for the centers of the circles are
picked with an element of randomness, as are the
radii and colors. The four values that characterize
a circle are put on the end of draw_list, and
outcircles() is called to do the actual drawing:

procedure outcircle(off1, off2, radius, color)

 Fg(pane, color)

 # Draw in symmetric positions.

 draw_proc(pane, off1, off2, radius)
 draw_proc(pane, off1, –off2, radius)
 draw_proc(pane, –off1, off2, radius)
 draw_proc(pane, –off1,–off2, radius)
 draw_proc(pane, off2, off1, radius)
 draw_proc(pane, off2, –off1, radius)
 draw_proc(pane, –off2, off1, radius)
 draw_proc(pane, –off2, –off1, radius)

 return

end

The procedure clrcircles() also draws circles,
but it gets the specification of the oldest circle from
draw_list and removes it in the process:

procedure clrcircle()

 outcircle(
 get(draw_list), # off1
 get(draw_list), # off2
 get(draw_list), # radius
 get(draw_list) # color
)

 return

end

That takes care of the functionality of the
application proper. Now we can move on to the
callbacks.

The callback for the pause button is quite
simple: It just sets state to the vidget value. (Of
course, we designed the handling of the state for
this.)

procedure pause_cb(vidget, value)

 state := value

 return

end

The callback for the reset button is even sim-
pler:

procedure reset_cb(vidget, value)

 reset := 1

 return

end

The callback to change the speed of the dis-
play also is simple. It just sets the global variable
delayval:

procedure speed_cb(vidget, value)

 delayval := sqrt(value)

 return

end

The square root of the value produced by the slider
vidget is used to provide a more intuitive result for
the user.

Setting the density of the display (the maxi-
mum number of circles displayed simultaneously,
also involves setting a global variable. When this
global variable is changed, however, the display
must be re-initialized, so reset is set to a nonnull
value:

procedure density_cb(vidget, value)

 density := value

 reset := 1

end

The callback to change the shape used for the
display also just amounts to setting a variable. The
callback value is the name of the button chosen
from the radio-button vidget, and the value as-
signed to draw_proc is the corresponding proce-
dure. The display must be re-initialized for this
change also:

procedure shape_cb(vidget, value)

 draw_proc := case value of {
 "discs": FillCircle
 "rings": DrawCircle
 }

 reset := 1

The Icon Analyst 38 / 13

From the Library

We’ve been asked how large the programs in
the Icon program library are. When asked why this
was a concern, the response was “obviously, big
programs have more functionality than small ones.”

That’s generally true in some sense, assuming
you include the size of linked procedures, but it’s
often the small programs that are the most useful.
It also does not follow that all small programs are
simple or easy to design and write.

The program ifilter for the Icon program li-
brary is an example of a small but very useful
program. We described this program in an earlier
Analyst article on string invocation [1]. We’ll
present the program here from a somewhat differ-
ent perspective, but recapitulate the earlier mate-
rial in case you didn’t read that article or have
forgotten it.

Here’s the program as it appears in Version
9.2 of the Icon program library:

procedure main(args)
 local op

 op := proc(args[1], 2 | 1 | 3) |
 stop("∗∗∗ invalid or missing operation")

 while args[1] := read() do
 every write(op ! args)

end

Just glancing at the code, it may not be at all
obvious what this program does. Given what it
does, it may not be obvious how useful it is.

What ifilter Does

The command line with which ifilter is called
is all-important. The first command-line argument,
which is required, is taken to be the string name of
an Icon function or operator. The remaining argu-
ments, which are optional, are taken as trailing
arguments to which the function or operator is
applied. These arguments are fixed and serve as
parameters for any one use of ifilter.

The first argument for the function or opera-
tor, on the other hand, is obtained from standard
input. So, for example,

ifilter map aeiou AEIOU

results in the evaluation of

map(read(), "aeiou", "AEIOU")

and the result is written out. This continues for all
lines of input, “filtering” from standard input to
standard output, replacing all instances of a, e, i, o,
and u by their uppercase versions.

Of course, the function used need not require
parameters:

ifilter trim

filters standard input, removing trailing blanks.
(The second argument of trim() is effectively omit-
ted and defaults to ' '.)

As suggested above, operators can be used in
filtering also:

ifilter "%" 11

produces the residue modulo 11 of integers given
in standard input — something we’ve found use-
ful in working with versum sequences.

As written, ifilter always puts lines from stan-
dard input in the first argument position. This
generally works well for functions, since Icon is
designed so that in most cases the first argument of
functions vary, while the rest of the arguments

 return

end

Next Time

That’s all the space we have. In the next
article, we’ll show the rest of the callbacks and the
VIB interface code.

14 / The Icon Analyst 38

often are constants that serve as parameters. This is
not always the way functions are used and opera-
tors generally don’t have this property. We’ll come
back to this point later.

How Does ifilter Work?

ifilter first uses proc() to check that the first
command-line argument is indeed the name of a
function or operator and, if so, to convert it to the
function or operator so that string invocation is not
needed in the processing loop.

The second argument to proc() is not used for
functions, but for operators it distinguishes among
unary and binary operators with the same string
name and is necessary for ternary operators. (i to j
by k is a ternary operator whose string name is "...";
can you think of any other ternary operators?) The
order of alternation for the second argument of
proc() selects binary operators instead of unary
operators when there is a choice. For example, "∗"
is taken as the multiplication operator, not the size
operator (more on this later).

If the first argument passes muster, it is called
in the form

op ! args

There’s a little trickery here; args consists of a
list whose elements are the command-line argu-
ments. For example, in

ifilter map aeiou AEIOU

args is

["map", "aeiou", "AEIOU"]

to get the list for invoking map(), we need only
replace the first argument of args by the result of
reading. The effect is

op ! [read(), "aeiou", "AEIOU"]

Finally

every write(op ! args))

is used to produce all the results of op in case it is
a generator.

Procedures can be linked with ifilter to add
them to the program, as in

icont –o sifilter ifilter strings.u

which produces a program sifilter that includes the
procedures in the program library module

strings.icn. To use these procedures, however,

invocable all

must be added to ifilter.icn. Otherwise the proce-
dures in strings.icn would be deleted by the linker,
since they are not referenced in the program itself.

Embellishments

As we’ve gone through the discussion of ifilter,
we’ve mentioned some limitations and problems:

• The strings to be processed only can ap-
pear in the first-argument position.
• For unary and binary operators that have
the same string name, only the binary one is
available.
• All the results of a generator are produced
even if all are not wanted. Think about

ifilter seq

We can take care of all of these limitations by
adding command-line options to ifilter and rewrit-
ing parts of the program to make it more general.

The first question is design: How should these
facilities be cast and what should the defaults be?
In particular, are the ways these issues presently
are handled by ifilter the best ones if more control is
provided to the user?

We would argue that the first argument posi-
tion is the best default for the reasons explained
already. We also would argue that the choice of a
binary operator over a unary one with the same
string name is the best default. The string names in
question are:

name unary operator binary operator

"+" numeric value addition
"–" negative subtraction
"=" tab(match()) equality
"@" activation transmission
"∗" size multiplication
"/" null test division

It seems to us that the only questionable case is "∗".
Consistency demands a binary interpretation as
the default for all.

The situation on generation is different. In the
absence of being able to control generation, it seems
the best choice is not to limit it; otherwise there is
no way to get more than the first result of a genera-

The Icon Analyst 38 / 15

tor. Given an ability to control generation, it might
be better to limit it to one result as the default. The
trade-off is between having to specify an extra
command-line option to get generation as opposed
to unexpected or runaway output. Our choice is to
limit generators to one result in the absence of a
command-line option to get more results.

To the user, the command-line interface looks
like this:

–a i argument position i for input strings;
default 1

–o i interpret ambiguous operator string
name: i = 1 or 2; default 2

–l i limit generation to i results with non-
positive value indicating unlimited
generation; default 1

Using options(), which we advocate in situa-
tions like this, does most of the work needed in
processing the command line. Note that options()
removes command-line options and their values
from the list of command-line arguments but leaves
anything else intact — specifically the operator or
function name and any arguments. Thus, the be-
ginning of the program might look like this:

link options
…

 opts := options(args, "a+o+l+")
 i := \opts["a"] | 1
 limit := \opts["l"] | 1
 if limit < 1 then limit := 2 ^ 31

 if opts["o"] === (&null | 2) then {
 op := proc(pop(args), 2 | 1 | 3) |
 stop("∗∗∗ invalid or missing operation")
 }
 else if opts["o"] = 1 then {
 op := proc(pop(args), 1 | 2 | 3) |
 stop("∗∗∗ invalid or missing operation")
 }
 else stop("∗∗∗ invalid –o option")

…

The way of specifying unlimited generation is a bit
awkward, but it works and saves a special case
later.

The handling of ambiguous operator string
names now looks like this:

 op := proc(pop(args), first | second | 3) |
 stop("∗∗∗ invalid or missing operation")

and limiting generation is easy:

 every write(op ! args) \ limit

Placing the strings being read in the right
place is a bit more difficult:

 lextend(args, i – 1)
 args := args[1:i] ||| [&null] ||| args[i:0]

The procedure lextend(), which is from the Icon
program library module lists, assures args is long
enough. Then a list is created with a place holder
for the strings to be read. The rest is easy:

 while args[i] := read() do
 every write(op ! args) \ limit

The Icon Analyst

Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

Editors

The Icon Analyst is published six times a
year. A one-year subscription is $25 in the United
States, Canada, and Mexico and $35 elsewhere.
To subscribe, contact

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

 ®

and

Bright Forest Publishers
 Tucson Arizona

© 1996 by Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

All rights reserved.

16 / The Icon Analyst 38

What’sWhat’sWhat’sWhat’sWhat’s
ComingComingComingComingComing
UpUpUpUpUp

For reference, here is the complete program:

invocable all

link lists
link options

procedure main(args)
 local op, opts, i, interp, limit, first, second

 opts := options(args, "a+o+l+")
 i := \opts["a"] | 1

 case opts["o"] of {
 &null | 2: {
 first := 2
 second := 1
 }
 1: {
 first := 1
 second := 2
 }
 default: stop("∗∗∗ invalid value for –o")
 }

 limit := \opts["l"] | 1
 if limit < 1 then limit := 2 ^ 31

 op := proc(pop(args), first | second | 3) |
 stop("∗∗∗ invalid or missing operation")

 lextend(args, i – 1, "")
 args := args[1:i] ||| [&null] ||| args[i:0]

 while args[i] := read() do
 every write(op ! args) \ limit

end

Comments

Granted, the embellished program itself is
nearly four times the size of the original one. If you
add in the procedures that it links, which gives the
true size of the program, it’s more than 13 times the
size of the original program: 95 lines of source code
altogether. And the final program certainly has
more functionality. It’s not clear that it’s more than
three times as useful as the original program, that
the additional features will be used often, or that
anyone will remember they’re there when they are
needed.

These are common aspects of additional pro-
gram functionality. Extra features increase pro-
gram size and often are rarely used, but when they
are needed, they can be very useful indeed.

One question is knowing when to stop —
knowing whether additional features are worth-

while or just contributing to creeping featurism
that weighs down the program and eventually
may render it difficult to use. (If you’re familiar
with the evolution of commercial word processors,
you know exactly what we mean.)

Good design and (especially) good defaults,
are important. Ideally, a user who does not need
extra features should not have to know about
them.

Finally, an admission. ifilter has been around
in one form or another for a long time. We’ve
reinvented it more than once, having forgotten it
already existed. And the new features here came
about only as a result of writing this article and
being forced, by the exposition, to address its defi-
ciencies.

Reference

1 . “Applications of String Invocation”, Icon Ana-
lyst 29, pp. 3-6.

We’ll finally finish the kaleidoscope applica-
tion in the next issue of the Analyst, but that’s not
the end of the series on visual interfaces: We have
custom dialogs to cover also.

We have articles on versum sequences backed
up, and we’ll try to get one into the next issue.

We’ll shift direction in our series of articles on
dynamic program analysis and describe a frame-
work within which various kinds of analyses can
be cast in a consistent fashion.

We have other articles for From the Library
and several candidates for Programming Tips. As
usual, we have to see how everything fits together.

