
The Icon Analyst 40 / 1

February 1997
Number 40

In this issue …

Dialogs.. 1

Debugging: Error Messages 5

Versum Factors 9

Programming Tips.................... 14

Analyst on Disk? 16

What’s Coming Up 16

In-Depth Coverage of the Icon Programming Language

Dialogs

Dialogs are temporary windows that provide
a way for an application to notify its user of situa-
tions that require attention or action. They also
provide a way to request information from its user,
such as the name for a file in which to save data.

Icon provides two kinds of dialogs: standard
ones, which handle common situations, and cus-
tom dialogs built by VIB, which can be tailored for
specific uses. In this article, we’ll cover the stan-
dard dialogs, which are produced by calling proce-
dures in Icon’s graphics repertoire.

Notification Dialogs

Situations often occur in which a user needs to
be alerted to a condition before a program contin-
ues.

The procedure

Notice(line1, line2, …)

produces a dialog with the strings line1, line2 ,… .
For example,

Notice("The file you specified does not exist.")

produces the following dialog:

The application then waits for the user to
respond. When the user clicks on the Okay button
to dismiss the dialog, it disappears, and program
execution continues. Typing a return character also
dismisses the dialog.

File Name Dialogs

Opening files and saving data are such com-
mon operations that dialog procedures are pro-
vided for querying for file names. The procedure

OpenDialog(caption, filename, length)

produces a dialog that allows the user to specify the
name of a file to be opened. The argument caption,
which defaults to "Open:" if not given, appears at
the top of the dialog. A text-entry field appears
below where the user can enter the name of the file
to open. The argument filename provides the string
used to initialize the text-entry field. It defaults to
the empty string for the common case where there
is no meaningful file name. The argument length
specifies the the number of characters that the text-
entry field can accomodate and has a default value
of 50. For example,

OpenDialog()

produces the following dialog:

2 / The Icon Analyst 40

The user can type in the text-entry field. An
“I-beam” text cursor shows the current location in
the field where typed text is inserted. This cursor
can be positioned in the text by clicking with the
mouse pointer at the desired location. Dragging
over the characters in the text field selects them for
editing and highlights them (reversing the fore-
ground and background colors). Characters that
are typed then replace the selected ones. A back-
space character deletes the character immediately
to the left of the text cursor, if there is one. All this
sounds complicated, but as in many interactive
operations, it becomes natural in practice, and it is
easier to do than it is to describe.

The following window shows the dialog
after a file name has been entered in the text-entry
field.

The procedure OpenDialog(), like all dialog
procedures, returns the string name of the button
selected. Before returning, it assigns the string in
the text-entry field to the global variable
dialog_value. A typical use of OpenDialog() is

repeat {
 case OpenDialog() of {
 "Okay": {
 if input := open(dialog_value) then {
 current_file := dialog_value # save name
 data_list := []
 while put(data_list, read(input)) # get data
 close(input)
 return data_list
 }
 else Notice("Cannot open file.")
 }
 "Cancel": fail
 }
 }

If the user selects Okay (or types a return
character), the specified file is opened and the data
in it is read into a list. If the file cannot be opened,
however, the user is notified and a new dialog is
presented for the user to try again. The procedure

fails without trying to open a file if the user selects
Cancel.

The procedure

SaveDialog(caption, filename)

 is used to provide a dialog for saving data to a file.
The argument caption, if omitted, defaults to
"Save:". Providing a file name often saves typing
when the user has opened a file, modified data
within the application, and wants to update the file
with the modified information. An example is

SaveDialog(, current_file)

which might produce the dialog shown below.

One use of SaveDialog() is to check whether
the user wants to save modified data before quit-
ting an application. Typical code to do this is

repeat {
 case SaveDialog("Save before quitting?",
 current_file) of {
 "Yes": {
 if output := open(dialog_value, "w") then {
 every write(output, !data_list)
 exit()
 }
 else Notice("Cannot open file for writing")
 }
 "No": exit()
 "Cancel": fail
 }
 }

If the user elects to save the current data, it is
written to the specified file and program execution
is terminated. If the file cannot be opened for
writing, however, the user is notified and the pro-
cess is repeated with a new dialog box. If the user
selects No, program execution is terminated with-
out saving any data. If the user selects Cancel,
perhaps because of second thoughts about quit-
ting the application, the procedure fails and pro-
gram execution continues.

The Icon Analyst 40 / 3

Text Dialogs

Notice(), OpenDialog(), and SaveDialog() are
special cases of a more general procedure,
TextDialog(), which allows customized dialogs for
text entry. TextDialog(), in its most general usage,
is rather complicated because dialogs can be com-
plicated. Defaults are provided, however, to make
TextDialog() easy to use if all its generality is not
needed. The general form is:

TextDialog(captions, labels, defaults, widths,
 buttons, index)

The argument captions is a list of caption
lines that serve the same purpose as the multiple
arguments in Notice(). The arguments labels, de-
faults, and widths are lists that give the details of a
sequence of text-entry fields. The argument but-
tons is a list of buttons and index is the index in
buttons of the default button.

TextDialog() returns the name of the button
that was selected to dismiss the dialog. The global
variable dialog_value is assigned a list containing
the values of the text fields at the time the dialog
was dismissed.

Unlike the dialogs that were described previ-
ously, TextDialog() provides for labels that appear
before text-entry fields to identify them. Each field
can have a default value and a width to accommo-
date a specified number of characters.

Here’s an example of the most general kind of
usage:

 TextDialog(
 ["To open a window, fill in the values",
 "and click on the Okay button:"],
 ["xpos", "ypos", "width", "height"],
 [10, 10, 500, 300], [4, 4, 4, 4], ["Okay", "No"], 1
)

The dialog produced by this call is shown below.

If there is only one caption line, it can be given
as a string instead of a list. If there is only one text-
entry field, the specifications for it also can be given
as single values instead of lists. In the case where
there are several fields that all have the same value,
a single value can be given for that argument in
place of a list. If there are no labels or defaults for
fields, these arguments can be omitted altogether.
The default field width, if its argument is omitted,
is 10.

If the buttons argument is omitted, Okay and
Cancel buttons are provided. If no button index is
given, the first button is the default button. An
index of 0 indicates that there is no default button.

An example of the use of defaults is:

 TextDialog("Open window:", ["x", "y", "w", "h"])

which produces the dialog shown below.

In a dialog that has more than one text-entry
field, the text cursor indicates the field in which
text can be entered and edited. The text cursor
initially is in the first field. Typing a tab moves the
text cursor to the next field. From the last field, it
moves to the first. A specific field also can be
selected by clicking on it. Pressing return or click-
ing on a button dismisses the dialog.

Selection Dialogs

The procedure SelectDialog() allows the user
to pick one of several choices. Its general form is

SelectDialog(captions, choices, dflt, buttons, index)

The arguments captions, buttons, and index serve
the same purpose that they do in TextDialog(). The
argument choices is a list of choices from which the
user can select. The argument dflt is the default
choice, which is highlighted in the dialog. The
defaults for omitted arguments follow the same
rules as the defaults for TextDialog(). The user’s
choice is returned as a string in dialog_value.

4 / The Icon Analyst 40

The following procedure call illustrates the
use of SelectDialog().

SelectDialog(
 "Pick a suit:",
 ["spades", "hearts", "diamonds", "clubs"],
 "hearts"
)

The dialog produced by this call is shown below.

Toggle Dialogs

The procedure ToggleDialog() allows the user
to set several toggles (on/off states) at the same
time in one dialog. Its general form is

ToggleDialog(captions, toggles, states, buttons,
 index)

The arguments captions, buttons, and index
serve the same purpose as they do in TextDialog()
and SelectDialog(). The argument toggles is a list
of toggle names and the argument states is a list of
their respective states: 1 for on, null for off. The
defaults for omitted arguments follow the same
rules as for TextDialog() and SelectDialog(). A list
of the states of the toggles that the user chooses is
returned in dialog_value.

The following procedure call illustrates the
use of ToggleDialog().

ToggleDialog(
 "Controls:",
 ["generate report", "stop on bad data", "trace"],
 [, , 1]
)

The dialog produced by this call is shown below.

Color Dialogs

The procedure ColorDialog() allows the user
pick a color interactively using either the RGB or
HSV color model. Its general form is

ColorDialog(captions, color, callback, value)

The argument captions serves the same pur-
pose as it does in preceding dialog procedures. The
optional argument color is a reference color that is
displayed at the bottom of a rectangular area where
color is displayed. The initial color for the rest of
the rectangle is color, if provided, otherwise the
current foreground color. The optional argument
callback is a procedure that is called whenever the
user adjusts the color setting. The procedure is
called as

callback(value, setting)

where setting is the current color setting and value
is the final argument, otherwise unused, from the
ColorValue() call. Thus, an application can track
changes in the color setting, and value can be used
to pass along an arbitrary value to the caller of
ColorValue(). The final setting is returned as a
string in dialog_value.

The following procedure call illustrates the
use of ColorDialog().

ColorDialog("Pick a color, any color", "black")

The dialog produced by this call is shown on the
next page.

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.

The Icon Analyst 40 / 5

Debugging: Error Messages

Most programmers find debugging to be un-
pleasant. It is frustrating, it’s generally not a cre-
ative activity, and often the only reward comes at
the end in the form of relief. But unlike other
important but unpleasant aspects of programming,
such as documentation and thorough testing, de-
bugging can’t be ignored.

In looking over past issues of the Analyst, we
found a few articles that touched on debugging,
but only one short article directly related to debug-
ging [1]. And it appeared in the first year of publi-
cation. Well, we don’t enjoy debugging either. It is,
however, important, so we’re starting a series of
articles on debugging in Icon.

Our plan is to discuss error messages first,
then the built-in diagnostic facilities Icon provides,
followed by debugging support available in the
Icon program library, and ending with a descrip-
tion of itweak, Håkan Söderström’s interactive Icon
debugger. Of course, other things may come up in
the meantime.

Errors can be divided into two classes: those
that Icon detects (something “illegal”) and those
that Icon doesn’t (“legal” but wrong). The latter
kind of error usually is more difficult to deal with,
since the only symptom may be incorrect results.

In this article, we’ll start with the errors Icon
detects: the messages, how to interpret them, and
some suggestions for avoiding and correcting mis-
takes detected by Icon.

General Rule: Believe an error detected by
Icon, even if the source of the problem is not
obvious. Don’t jump to the conclusion that the
error is the result of a bug in Icon. Although there
certainly are bugs in Icon, Icon has been used for
many years by many programmers, and the bugs
likely to produce error messages have been sys-
tematically eliminated. (It’s the bugs that don’t
produce error messages that cause the most
trouble.) Possible exceptions are noted in the dis-
cussion that follows.

Icon detects four kinds of errors, correspond-
ing to the phases in processing an Icon program:

errors in preprocessor directives
syntax errors
linking errors
run-time errors

All error messages are written to standard
error output.

Preprocessor Error Messages

When the preprocessor detects an error in a
preprocessor directive, it produces a message giv-
ing the file name, the line number in that file, and
then a # followed by a message describing the
error. An error in a preprocessor directive does not
terminate preprocessing, but it prevents compila-
tion.

The error messages produced by the prepro-
cessor generally are self-explanatory:

"string": cannot open
"string": circular include
"string": explicit $error
"string": extraneous arguments on $else/$endif
"string": invalid preprocessing directive
"string": value redefined
$define: "(" after name requires preceding space
$define: missing name
$define: unterminated literal
$ifdef/$ifndef: missing name
$ifdef/$ifndef: too many arguments
$include: invalid file name
$include: too many arguments
$line: invalid file name
$line: no line number
$line: too many arguments

Next Time

In the next article on dailogs, we’ll describe
how to build dialogs that contain other vidgets
and that can be arranged to suit your needs.

6 / The Icon Analyst 40

$undef: missing name
$undef: too many arguments
unexpected $else
unexpected $endif
unterminated $if

In the first six messages, string denotes the offend-
ing string.

Two items deserve note:

• It is possible to produce a syntax error using
a valid symbol definition in a way that otherwise
would be syntactically correct. An example is

$define J j+

procedure main()
…

 write(J)
…

It is, of course, generally bad practice to define
incomplete expressions.

• File names must be enclosed in quotation
marks unless they satisfy the syntax for Icon iden-
tifiers. Thus,

$include symbols

is legal, but

$include symbols.icn

is not. The latter directive produces the somewhat
confusing error message

$include: too many arguments

but the source of the problem should be clear.

It is good practice to enclose all file names in
quotation marks even if they are not necessary.

Messages for Syntactic Errors

When the compiler detects a syntactic error, it
produces a message in the same form as the pre-
processor. A syntactic error does not terminate
compilation, but it prevents linking.

Icon has a rich syntax and there are many
possible ways to make syntactic errors in a pro-
gram. Some messages are self-explanatory, but
others may not be. There are two main reasons why
the messages for syntactic errors may confusing:

• The error messages reflect the grammar of
Icon, not necessarily the way Icon programmers
think.

• A mistake may not produce an actual syntax
error until considerably farther on. Syntax errors
are detected by the end of the procedure (or other
declaration) in which they occur, but the distance
from the mistake and the actual error may be
significant.

The messages for syntax errors are:

end of file expected
global, record, or procedure declaration expected
invalid argument list
invalid by clause
invalid case clause
invalid case control expression
invalid create expression
invalid declaration
invalid default clause
invalid do clause
invalid else clause
invalid every control expression
invalid field name
invalid global declaration
invalid if control expression
invalid initial expression
invalid keyword construction
invalid local declaration
invalid argument
invalid argument for unary operator
invalid argument in alternation
invalid argument in assignment
invalid argument in augmented assignment
invalid repeat expression
invalid section

The Icon Analyst 40 / 7

invalid then clause
invalid to clause
invalid until control expression
invalid while control expression
link list expected
missing colon
missing colon or ampersand
missing end
missing field list in record declaration
missing identifier
missing left brace
missing link file name
missing of
missing parameter list in procedure declaration
missing procedure name
missing record name
missing right brace
missing right brace or semicolon
missing right bracket
missing right bracket or ampersand
missing right parenthesis
missing semicolon
missing semicolon or operator
missing then
syntax error

One of the most common syntactic errors
results from a missing left (opening) brace or pa-
renthesis. Consider the following procedure:

procedure parse() # 1
 every 1 to count do # 2
 s := goal # 3
 repeat { # 4
 if not upto(&ucase,s) then break # 5
 if not(s ? replace(!xlist)) then break next # 6
 until s ?:= replace(?xlist) # 7
 } # 8
 write(s) # 9
 } # 10
end # 11

Here the error is a missing left (opening) brace
following the do on line 2. The subsequent code is
syntatically correct until the end of the procedure
is reached. At that point, the message is

… Line 10 # "}": missing semicolon or operator

This certainly isn’t the most informative mes-
sage you can imagine for this situation, but there
often is not a good choice for an error that can occur
for a variety of reasons. Nonetheless, with a little
experience you will recognize the likely cause by

looking at line 10 and realizing an earlier left brace
is missing.

A missing right (closing) brace may not be
evident until the end of the procedure either. Here
a right brace should appear after line 7:

procedure parse() # 1
 every 1 to count do { # 2
 s := goal # 3
 repeat { # 4
 if not upto(&ucase,s) then break # 5
 if not(s ? replace(!xlist)) then break next # 6
 until s ?:= replace(?xlist) # 7
 write(s) # 8
 } # 9
end # 10

As in the previous example, a syntax error
does not occur until the end of the procedure,
although the message is different:

… Line 10 # "}": "end": invalid expression

Again, the message might be phrased better,
but the cause of the error, if not its exact location,
should be clear. Using a consistent indentation
style makes this kind of error easier to locate.

Error Message during Linking

There is only one kind of error that can occur
during linking:

inconsistent redeclaration

Such an error is the result of more than one
procedure or record declaration with the same
name (duplicate global declarations are allowed).
The source of such an error usually is easy to find
and fix, but note that the problem may occur be-
cause a declaration name in a linked library mod-
ule duplicates one in the program that links the
module.

Run-Time Error Messages

Errors occur during program execution gen-
erally are the most difficult to diagnose and cor-
rect.

An error during program execution produces
an error message, a traceback of the procedure calls
leading to the place of the error, and the offending
expression. Run-time error messages are num-
bered and divided into categories, depending on
the nature of the error:

8 / The Icon Analyst 40

Category 1: Invalid Type or Form

101 integer expected or out of range
102 numeric expected
103 string expected
104 cset expected
105 file expected
106 procedure or integer expected
107 record expected
108 list expected
109 string or file expected
110 string or list expected
111 variable expected
112 invalid type to size operation
113 invalid type to random operation
114 invalid type to subscript operation
115 structure expected
116 invalid type to element generator
117 missing main procedure
118 co-expression expected
119 set expected
120 two csets or two sets expected
121 function not supported
122 set or table expected
123 invalid type
124 table expected
125 list, record, or set expected
126 list or record expected
140 window expected
141 program terminated by window manager
142 attempt to read/write on closed window
143 malformed event queue
144 window system error
145 bad window attribute
146 incorrect number of arguments to drawing

 function

Category 2: Invalid Value or Computation

201 division by zero
202 remaindering by zero
203 integer overflow
204 real overflow, underflow, or division by zero
205 invalid value
206 negative first argument to real exponentiation
207 invalid field name
208 second and third arguments to map of

 unequal length
209 invalid second argument to open
210 non-ascending arguments to detab/entab
211 by value equal to zero
212 attempt to read file not open for reading
213 attempt to write file not open for writing
214 input/output error

215 attempt to refresh &main
216 external function not found

Category 3: Capacity Exceeded

301 evaluation stack overflow
302 memory violation
303 inadequate space for evaluation stack
304 inadequate space in qualifier list
305 inadequate space for static allocation
306 inadequate space in string region
307 inadequate space in block region
308 system stack overflow in co-expression
316 interpreter stack too large
318 co–expression stack too large

Category 4: Feature Not Implemented

401 co–expressions not implemented

Category 5: Programmer-Specified Error

500 program malfunction

Errors 140 through 146 relate to Icon’s graph-
ics facilities. While the rule “believe the error mes-
sage” still applies, graphics facilities are the latest
addition to Icon and are the most likely to have
bugs that could manifest themselves as spurious
run-time errors. But start by believing.

Most of the run-time error messages accu-
rately describe the corresponding errors, but in
some cases you may need to have more than a
superficial knowledge of Icon to interpret them.

The following error messages deserve note:

• 301 evaluation stack overflow

Evaluation stack overflow usually occurs
because of runaway recursion.

• 302 memory violation

Although this message accurately reflects
what happened, the cause is not at all
obvious. It sounds like Icon tried to access
memory illegally, but the most probable
cause is system (C) stack overflow. When
this happens, an attempt is made to write
an error message, which causes a memory
violation because the stack already had
overflowed. The text of this message has
been left as it is, in case there really is a
situation in which Icon itself accesses
memory illegally. Incidentally, system
stack overflow is most likely to occur dur-
ing garbage collection when the routine

The Icon Analyst 40 / 9

Factors of Versum Numbers

Oh no! Not another article on versum numbers!

It probably seems like this series of articles
will never end. But one (versum) thing leads to
another, and here we are again, this time looking
at the factors of versum numbers.

We’re trying a somewhat different format for
the presentation in the hope it will make the
material more interesting.

Recall that a versum number results from the
addition of a number and its digit reversal. For
example, for 100, 100 + 001 = 101. A versum
sequence results from starting with a seed and
continuing the reverse-addition process. Thus the
seed 100 produces the sequence 101, 202, 404, 808,
1616, … .

I remember that; get on with it.

Okay. In getting information for this article,
we looked at a lot of versum numbers (or rather,
our programs did). For reference in the following
discussion, we looked at two sets of versum num-
bers:

B: the first 1,000 terms in the versum se-
quences for 1- through 8-digit base seeds [1]. There
are 8,760 of these seeds, so B contains 8,760,000
versum numbers.

N: All 1- through 10-digit versum numbers.
There are 2,541,196 of these.

Isn’t there a lot of duplication between the two
sets?

Actually, no. Of course, all 1- through 8-digit
numbers in N are in B also. However, only 42,552
of the 9- and 10-digit numbers in N are also in B.
There are only 133,729 1- through 8-digit versum
numbers, so the overlap between the two sets is
only 176,281 out of a total of 11,301,196 in the two
sets — less than 1.6%.

But why not just lump the two together?

The two sets have different characteristics. N
is “shallow”. The maximum number of steps from
a seed to any member of N is only 24.

B is “narrow” but much deeper. It contains
versum numbers with as many as 430 digits.

I understand what you’re saying, but what does it
mean?

That remains to be seen.

Okay, be inscrutable.

We’re not tying to be inscrutable. We just
don’t know. But on to the chase.

Things Eleven

In the last article on versum numbers [2], we
showed that the reverse sum of a (base-10) number
with an even number of digits is divisible by 11.
This raises several questions regarding the factors
of versum numbers.

Can the reverse sum of a number with an odd
number of digits produce a versum number that is
divisible by 11?

Only if the number itself is divisible by 11.
Since the odd- and even-numbered digits “line up”
when the number is reversed, the difference of the
sums of the even- and odd-numbered digits is the
same in the reversal as it is in the original number,
and the result upon addition can’t be divisible by
11 unless the original number is.

Granted that any versum sequence eventually
reaches a term with an even number of digits, and its
successor is divisible by 11, how many terms can there
be before one that’s divisible by 11?

Five. All seeds of the form 10
2n

 (n ≥ 1) have this
property. (The notation 0

2n
 stands for a string of 2n

0s.) For example, for n=1, the sequence for the seed
100 is

that marks blocks recursively encounters
an unusually long chain of pointers.

• 500 program malfunction

This error message does not mean a mal-
function in Icon. Rather it is provided for
the use of programmers to force a run-
time error through runerr() in case an Icon
program detects a malfunction in its own
code.

Next Time

In the next article on debugging, we’ll discuss
Icon’s built-in diagnostic facilities: error traceback,
procedure and co-expression tracing, display(), and
termination dumps.

Reference

1. “Gedanken Debugging”, Icon Analyst 5, pp.
10-11.

10 / The Icon Analyst 40

101

202

404

808

1616

7777 = 707 × 11

For n ≥ 1, 10
2n

 goes to 11 × (70
2n-1

7) in six steps.

It’s clear that no larger 3-digit number could
have more terms before reaching one that has an
even number of digits. Although 100 is the only 3-
digit base seed with this property, for n = 2, there
are seven base 5-digit base seeds in addition to
10000 that have five odd-numbered initial terms.
They all begin with the digit 1, of course.

Is the reverse sum of a number that is divisible by
11 also divisible by 11?

Yes. Since divisibility by 11 depends on the
difference of the sums of the even- and odd-num-
bered digits, the reversal of a number that is divis-
ible by 11 also is divisible by 11. Thus, if x is
divisible by 11, then x + x = (i × 11) + (j × 11) = (i +
j) × 11. As a consequence, once a versum sequence
reaches a term with an even number of digits, all
subsequent terms are divisible by 11.

Hey, I’ve got an idea. Maybe 11j is a versum
number for all j > 0.

Interesting idea; 11 is very special. Let’s see:

111 = 11: yes

112 = 121: yes

113 = 1331: yes

114 = 14641: yes

Maybe you’re onto something; let’s continue:

115 = 161051: yes

116 = 1771561: no …

Oh, well. Moreover, for j = 6 through 34, 11j is
not a versum number. We stopped there because it
seemed unlikely that a higher power would yield
a versum number, and the time it takes to test a
number with a large number of digits for
versumness becomes a limiting factor.

There’s an easy way to disprove your conjec-
ture without testing for versumness. Recall that if
a versum number begins with a digit greater than
one, its last digit must be equal to or one less than
its first. Here’s a little procedure that fails for
numbers that cannot possibly be versum:

procedure mayvers(i)
 local first, last

 first := i[1] | fail # remember vpred()

 if first == "1" then return i

 last := i[–1]

 if first == (last | (last + 1)) then return i
 else fail

end

Using this procedure, it’s easy and fast to find
powers of 11 that cannot possibly be versum num-
bers. The smallest is 1112 = 3138428376721.

Figure 1. Powers of 11 at the Beginning of the Versum Sequence for Seed 101950

6

5

4

3

2

1

0

The Icon Analyst 40 / 11

But that doesn’t prove that there aren’t arbitrarily
large powers of 11 that are versum numbers.

Right. We haven’t found any, but we haven’t
a clue as to how to prove or disprove such a
conjecture.

By the way, what sequence contains 115?

It’s the first term in the sequence for base seed
101950. Figure 1 below shows the number of fac-
tors of 11 in the initial part of that versum sequence.
Incidentally, 101950 is not divisible by 11.

Do factors of 11 build up in successive terms in a
versum sequence that’s “gone eleven”?

No. Consider again x + x = (i × 11) + (j × 11) =
(i + j) × 11. There’s nothing that dictates that (i + j)
be divisible by 11. In fact, the reverse sum of a
number that is divisible by 11j, j > 1, may not be
divisible by 11k, k > 1. The “killing of elevenses” is
not restricted to a single power per reverse sum; it
can drop the number of powers of 11, however
large, to one. See Figure 2 below, in which the
number of factors of 11 drops from 6 to 1 in one
step.

Granted that the number of factors of 11 in a
versum sequence may increase and decrease as the
sequence goes along, is there a limit to how many factors
of 11 there can be in a versum number?

Probably not, although more than three fac-
tors of 11 are uncommon. In B, the maximum
number of factors of 11 is only 7 and there are only
10 of these. There 78 (other) versum numbers that
are divisible by 116.

In N there is only one versum number that is
divisible by 117 and 9 (others) that are divisible by
116.

Here are the details:

Versum numbers divisible by 117:

 base seed term digits

B 10103 258 111

1001285 867 372
1001586 85 43
1003319 28 19
1003319 29 19

10004338 151 71
10007107 566 242
10089905 870 372
10206945 224 99

15006096 577 24

N 180929913 1 10

Versum numbers divisible by 116:

 base seed term digits

B 5 882 364

10278 521 218
10426 745 311
70749 36 19

140496 478 199
1000070 9 9
1000204 191 86
1000540 6 9
1000578 73 39
1001003 20 14
1001465 236 108
1001674 925 390
1001738 767 336
1002101 57 31
1002208 11 12
1002371 397 174
1002748 46 25
1003077 335 153

Figure 2. Powers of 11 in a Segment of the Versum Sequence for Seed 5

6

5

4

3

2

1

12 / The Icon Analyst 40

1003471 904 368
1003628 980 420
1003872 127 57
1004341 41 25
1004785 163 75
1005486 733 312
1005946 451 193
1005963 142 62
1006370 782 328
1006751 93 43
1007503 508 208
1007630 993 412
1007769 362 159
1008790 773 327
1017977 710 296
1029962 388 165
1045976 831 358
1052986 186 88
1067947 347 157
1206598 40 23
1223996 483 209
1303494 921 387
1409996 15 14
1422996 93 44
1705498 13 12
3007929 22 17
3905099 88 41
7005929 988 434
8900399 516 221

10000096 8 11
10000300 545 238
10000523 413 169
10000677 815 346
10001922 199 87
10002433 198 96
10004335 535 233
10006767 32 22
10006916 35 22
10007155 6 10
10007377 605 266
10007713 172 80
10007955 208 91
10008855 917 388
10009006 864 370
10009405 577 238
10009446 542 240
10099453 427 192
10459973 15 14

10459973 16 15
10509954 35 21
10589915 473 203
11106996 605 253
15009396 866 375
18099994 24 16
29008599 274 118
69003999 456 196
70000899 982 409
80099939 855 363
82008999 488 217

89007399 326 149

N 10000540 6 9

20000779 2 9
69099199 1 9

200036769 2 10
300011479 2 10
990055099 1 10

1008029353 2 10
1023089920 2 10
1070690982 2 10

That’s a lot more details than I needed … .

With all the trouble we went to get these
numbers, there as no way we weren’t going to
show them. Do you see any patterns or other
interesting things about these numbers?

Not really. Do you?

The only really interesting thing we see is that
there are two consecutive versum numbers that
are divisible by 117 — terms 28 and 29 in the
sequence for base seed 1003319.

That is surprising.

For what it’s worth, Figure 3 shows a plot of
the number of terms to number in B and N that are
divisible by 116 (dots) and 117 (circles).

Hmm … ; I wouldn’t have expected it to look like
that. It’s obvious how you got the base seeds for B, but
I’m surprised you know the ones for N. I thought you
had to construct base seeds from scratch, seed by seed,
and you only gave them through 8-digits in an earlier
article.

It’s possible (but not easy) to work backward
to find the base seed for a given versum number.

Figure 3 Number of Terms in Versum Sequences before Reaching Factors of 116 and 117

 1 500 1000

The Icon Analyst 40 / 13

We’ll come back to that in another article.

I'm having enough trouble with this article. But I
have another question. What’s the distribution of factors
of 11 in versum numbers?

The distribution for B is shown in Figure 4 at
the top of the next page.

So almost all versum numbers are divisible by 11.

It might seem that way, but it’s not. Less than
half of all versum numbers are divisible by 11.
Granted, once a versum sequence “goes eleven”, it
stays that way. However, the number of digits in
the terms in a versum sequence increases by one on
the average of about 2.45 reverse additions. Any
one base seed doesn’t produce many n-digit versum
numbers.

Would you care to estimate the percentage of
all versum numbers that are divisible by 11?

50%?

We claimed above that it isn’t this large. What
motivates you to guess 50%? Can you prove it?

Well, 50% would be a satisfying result. I pass on
trying to prove it. I never was comfortable with infinity.

To be politically correct, you should say you
are infinity-challenged. Perhaps you have a friend
who isn’t.

Maybe. I'll let you know.

 In the meantime look at Figure 5. It shows the
running percentage of versum numbers that are
divisible by 11. That is, for each versum number on
the horizontal axis, the height of the line is the
percentage of versum numbers to that point that
are divisible by 11. The values of n show the
number of digits in the seed. The plot ends at the
beginning of 11-digit versum numbers. From there,
the running percentage starts to decline because a
smaller percentage of 11-digit versum numbers
are divisible by 11 (nothing mysterious; just be-
cause 11 is odd).

 How does this compare with the percentages of all
numbers?

We don’t have a plot for this, but these figures

n = 9 n = 10 n = 11

Figure 5. Running Percentage of Versum Numbers Divisible by 11

50%

Figure 4. Distribution of Factors of 11 in B

0 1 2 3 4 5 6 7

1 9 4372 575 38 5 1 0 0

2 0 0 0 0 0 0 0 0

3 70 35347 5037 493 51 2 0 0

4 0 13877 1921 187 14 1 0 0

5 890 401354 55781 5431 491 49 3 1

6 0 190851 26312 2586 235 15 1 0

7 11090 4291627 588837 55820 5110 470 42 4

8 0 2659272 363816 34462 3130 284 31 5

 total 12059 7596700 1042279 99017 9036 822 77 10

seed digits number of factors of 11

14 / The Icon Analyst 40

for all n-digit numbers should give you an idea:

n percentage

1 0.00%

2 10.00%

3 9.00%

4 9.10%

5 9.09%

6 9.09%

7 9.09%

8 9.09%

Incidentally, it’s comparatively easy to com-
pute the exact number of n-digit numbers that are
divisible by 11 — just think about what can be
multiplied by 11 to give an n-digit number.

By the way, you haven’t said anything about
versum primes.

We’re saving versum primes until the next
article. We have more to say about composite
versum numbers first. Meanwhile we’ll leave you
with the remark that 11 is a prime versum number
with a unique property.

There’s 11 again! I’m going to have nightmares
about that number. But I’ll be back, if only to hear about
prime versum numbers. It had better be good.

Of course.

Next Time

We expect to wrap up the discussion of the
factors of versum numbers in the next article. We'll
start by discussing other special kinds of factors,
then composite numbers in general, and end with
a description of versum primes.

References

1. “Versum Sequence Mergers”, Icon Analyst 33,
pp. 6-12.

2. “Versum Bimorphs”, Icon Analyst 39, pp. 10-
15.

Icon on the Web

Information about Icon is available on the
World Wide Web at

http://www.cs.arizona.edu/icon/

Tables

One of the things we try to do in the Analyst
is provide more detailed coverage of Icon’s lan-
guage features than is available in other documen-
tation. Here we are at Issue 40 and still working on
this. We also try to give priority to features that are
the most important to programmers. This article is
the result of these concerns.

We covered table access briefly in the first
issue of the Analyst [1]. That was over six years
ago, and although table access in Icon has not
changed since then, many present Analyst sub-
scriptions don’t date back that far. We also think
the topic deserves more discussion than appeared
in the old article.

Tables have an interesting history. As far as
we know, tables first appeared in a high-level
programming language in SNOBOL4 developed
at Bell Telephone Laboratories in 1968 [2]. And
they almost didn’t make it. Only Doug McIlroy’s
stubborn insistence made them a part of SNOBOL4.
He believed that any programming language that
was good for string processing should have the
facilities needed to write assemblers and compilers
— namely, tables with associative look up for
strings. In fact, the first distribution of SNOBOL4
was put together before tables were added. They
were implemented crudely and added to the dis-
tribution as a hexadecimal patch.

Tables proved very popular in SNOBOL4
and, not surprisingly, were used for many things
in addition to the ones Doug envisioned. Since that
time, tables have been added to several high-level
languages, either as a result of the influence of
SNOBOL4 or reinvented by persons who were

Programming
Tips

The Icon Analyst 40 / 15

unaware of their existence in other languages.

Icon inherited tables from SNOBOL4 with
only minor changes.

Ironically, no one thought of adding sets to
Icon until late in Icon’s evolution, despite the fact
that sets are more fundamental than tables, and
one might expect tables to have developed as an
extension of sets.

Sets in Icon were the result of a graduate
course in “language internals” that over a period
of time studied the implementations of different
programming languages in depth. Sets were cho-
sen as a design and implementation project for an
instance of this course devoted to Icon. The design
was a common effort, but each student did his or
her own implementation. Only two of the imple-
mentations passed muster — those by Rob
McConeghy and Gregg Townsend. Rob went on
to add his implementation to Icon, and sets first
appeared in Version 6. As we’ll see, sets had an
effect on table access.

The design of tables reflects the original mo-
tivation for them — associative look up to extend
the numerical subscripting of arrays to strings and
other types of data. Constructions like

T[k] := x

and

y:= T[k]

have a certain elegance and make it easy to under-
stand what is going on.

Some aspects of the original design of tables
were rather unusual, but they were not accidents
or the result of arbitrary decisions.

For example, subscripting a table with a key
to which no value has been assigned produces a
default value rather than, say, failing. As a conse-
quence of this, there originally was no way to tell
for sure if a value had been assigned to a key. All
that could be done was to pick a default value that
was not used for assigning values to keys in the
table and check for it.

There also was no way to delete a key to
which a value had been assigned. All that could be
done was to assign the default value to the key.
This, however, did not reduce the size of the table.

When sets were designed, functions were
included to insert members, delete members, and
test membership. It was only natural to extend

these functions to apply to tables. Thus, the follow-
ing operations now apply to tables:

insert(T, k, x)
delete(T, k)
member(T, k)

The first function accomplishes the same thing
as

T[k] := y

The second function deletes the key k and its
corresponding value from T if k is a key to which a
value has been assigned (it does nothing other-
wise).

The third function succeeds if k is a key in T to
which a value has been assigned but fails other-
wise.

The functions delete() and member() add fa-
cilities for tables that were not available formerly.
Both should be used when the respective facilities
are needed in place of relying on the use of the
default table value.

The function insert() doesn’t add any func-
tionality. It may, however, be somewhat faster
than T[], depending on how big T is, what’s in it,
and whether garbage collections are necessary to
reclaim transient blocks that T[] produces but in-
sert() doesn’t.

Although the use of member() and delete()
clearly show what is intended, the use of insert()
generally does not:

T[k] := x

stands out clearly, and its syntactic similarity with
to

L[i] := x

for lists provides a useful conceptual link.

Incidentally, T[] is about twice as fast as it was
when Reference 1 was written. The improvement
is due to Frank Lhota — one of his many contribu-
tions to the implementation of Icon.

 References

1. “Programming Tips”, Icon Analyst 1, p. 6.

2. The SNOBOL4 Programming Language, second
edition, Ralph E. Griswold, James F. Poage, and
Ivan P. Polonsky, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1971.

16 / The Icon Analyst 40

What’s Coming Up

We’ll be plugging away with more articles in
the series that are still incomplete, with articles on
custom dialogs, debugging, and factors of versum
numbers. We haven’t forgotten program visual-
ization either.

We have a couple of articles in our From the
Library series waiting for a place, and there also
are more Programming Tips to come.

Analyst on Disk?

We’re thinking about distributing the Ana-
lyst on diskette as an alternative to (but not a
replacement for) paper copies. The PostScript file
for a typical issue of the Analyst is too large to fit
on a single diskette, and we’d need to support
different kinds of compression for different plat-
forms. An Acrobat Reader file for an Analyst,
however, easily fits on one diskette and can be read
on most platforms.

The Icon Analyst

Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

Editors

The Icon Analyst is published six times a
year. A one-year subscription is $25 in the United
States, Canada, and Mexico and $35 elsewhere.
To subscribe, contact

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon–project@cs.arizona.edu

 ®

and

Bright Forest Publishers
 Tucson Arizona

© 1997 by Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

All rights reserved.

You could read your Analyst on-line, as it
were, see color images in color, extract text and
images, make a printed copy if you have a PostScript
printer, and avoid the accumulation of paper.

The potential disadvantages are that you need
Acrobat Reader (freely available for MS-DOS, Win-
dows, the Macintosh, and several UNIX platforms)
and a platform that can handle it.

We’re just thinking about this, and in any
event we would continue to make the Analyst
available in printed form.

If you have any thoughts on this subject, let us
know.

