
The Icon Analyst 41 / 1

April 1997
Number 41

In this issue …

Custom Dialogs........................... 1

Debugging 4

Records ... 7

From the Library 10

What’s Coming Up 12

In-Depth Coverage of the Icon Programming Language

Custom Dialogs

If no standard dialog fits a particular need, a
customized dialog can be built using VIB. The
method for building a dialog using VIB is very
similar to the one used for building an application
interface. The few differences are noted in the
following example.

An Example — Dialog for Setting Attributes

There are several commonly used graphics
attributes that a painting or drawing application
might allow the user to change — attributes like
foreground and background colors, the font, line
width, line style, and so forth.

One approach to this problem is to provide a
variety of standard dialogs such as text-entry dia-
logs for entering color names and the font, a selec-
tion dialog for picking a line style, and so forth.
Another approach is to use a single custom dialog
with which all attributes of interest can be set.

In order to create such a dialog using VIB, VIB
must be informed that a dialog, rather than an
application interface, is being created. This is done
in the VIB canvas dialog by checking the dialog
window box and entering the name of a procedure,
as shown in Figure 1:

Figure 1: Specifications for a Custom Dialog

The window label is irrelevant for a dialog;
the label for the dialog is inherited from the win-
dow of the application that invokes the dialog.

Next the vidgets for the custom dialog are
created and placed as they are in building an
application interface. See Figure 2:

Figure 2: The Layout for a Custom Dialog

The order in which text-entry fields in a cus-
tom dialog are selected when the user presses the

2 / The Icon Analyst 41

tab key is the lexical order of their IDs. In construct-
ing this dialog we used IDs 1_bg, 2_fg, 3_font, and
so on so that the fields would be selected in the
order in which they are arranged in the dialog.

A dialog must have at least one regular but-
ton; otherwise there would be no way to dismiss it.
VIB enforces this. A default button can be desig-
nated by selecting dialog default in the button
dialog as shown in Figure 3:

Figure 3: The Default Button Dialog

The code produced by VIB for a custom dia-
log is similar to that produced for an application. It
is shown later at the end of the complete listing that
follows later.

Using a Custom Dialog

A custom dialog is invoked by calling the
procedure named in VIB’s canvas dialog. The ar-
gument of the procedure is a table whose keys are
the IDs of the vidgets in the dialog and whose
corresponding values are the states of these vidgets.

When a dialog is dismissed, it returns the text
of the button used to dismiss it (as for standard
dialogs). Before returning, it also changes the val-
ues in the table to correspond to the states of the
vidgets when the dialog is dismissed.

In the case of the attribute dialog, a significant
amount of work is needed to set up the table before
invoking the dialog. After the dialog is dismissed,
more work is needed to set the attributes. This code
is encapsulated in the following procedure.

link dsetup # dialog setup

procedure attribs(win)
 static atts

 initial atts := table() # table of vidget IDs

 /win := &window

 # Assign values from current attributes.

 atts["1_fg"] := Fg(win)
 atts["2_bg"] := Bg(win)
 atts["3_font"] := Font(win)
 atts["4_linewidth"] := WAttrib(win, "linewidth")
 atts["5_pattern"] := WAttrib(win, "pattern")
 atts["linestyle"] := WAttrib(win, "linestyle")
 atts["fillstyle"] := WAttrib(win, "fillstyle")
 atts["gamma"] := WAttrib(win, "gamma")

 repeat {

 # Call up the dialog.

 attributes(win, atts) == "Okay" | fail

 # Set attributes from table.

 Fg(win, atts["1_fg"]) | {
 Notice("Invalid foreground color.")
 next
 }
 Bg(win, atts["2_bg"]) | {
 Notice("Invalid background color.")
 next
 }
 Font(win, atts["3_font"]) | {
 Notice("Invalid font.")
 next
 }
 WAttrib(win, "linewidth=" ||
 integer(atts["4_linewidth"])) | {
 Notice("Invalid line width.")
 next
 }
 WAttrib(win, "pattern=" || atts["5_pattern"]) | {
 Notice("Invalid pattern.")
 next
 }
 WAttrib(win, "linestyle=" || atts["linestyle"])
 WAttrib(win, "fillstyle=" || atts["fillstyle"])
 WAttrib(win, "gamma=" || atts["gamma"])

 return

 }

end

#===<<vib:begin>>===
procedure attributes(win, deftbl)
static dstate
initial dstate := dsetup(win,
 ["attributes:Sizer::1:0,0,370,400:attributes",],
 ["0.5:Label:::105,204,21,13:0.5",],
 ["1.0:Label:::135,203,21,13:1.0",],
 ["1_fg:Text::35:10,20,339,19: fg: \\=",],

The Icon Analyst 41 / 3

 ["2.0:Label:::199,203,21,13:2.0",],
 ["2_bg:Text::35:10,52,339,19: bg: \\=",],
 ["3.0:Label:::261,204,21,13:3.0",],
 ["3_font:Text::35:11,80,339,19: font: \\=",],
 ["4.0:Label:::324,204,21,13:4.0",],
 ["4_linewidth:Text::3:11,110,115,19:line width: \\=",],
 ["5_pattern:Text::35:11,140,339,19: pattern: \\=",],
 ["button1:Button:regular::206,350,60,30:Cancel",],
 ["fill label:Label:::202,241,70,13:fill style",],
 ["fillstyle:Choice::3:195,262,85,63:",,
 ["solid","textured","masked"]],
 ["gamma:Slider:h:1:97,174,253,20:0.5,4.0,1.0",],
 ["glabel:Label:::11,176,84,13: gamma: ",],
 ["line label:Label:::100,241,70,13:line style",],
 ["linestyle:Choice::3:96,262,78,63:",,
 ["solid","striped","dashed"]],
 ["okay:Button:regular:-1:106,350,60,30:Okay",],
 ["tick1:Line:::117,196,117,201:",],
 ["tick2:Line:::146,195,146,200:",],
 ["tick3:Line:::209,195,209,200:",],
 ["tick4:Line:::272,195,272,200:",],
 ["tick5:Line:::335,195,335,200:",],
)
return dpopup(win, deftbl, dstate)
end
#===<<vib:end>>===

Error checking is needed when the dialog is
dismissed because the user may have entered in-
appropriate values in the text-entry fields. An in-
valid attribute value can be detected by the failure
that occurs when attempting to set it. (The radio
button choices are guaranteed to be valid by virtue
of the button names used, and the gamma value is
guaranteed to be a number in the range specified
by its endpoint values.) In the case of an erroneous
value, attributes() is called again in the repeat loop
enclosing it. Only if all values are legal does attribs()
return.

An example of the use of the attribute dialog
is shown in Figure 4 at the top of the next column.

Standard Dialogs Versus Custom Dialogs

Standard dialogs generally are easier to use in
a program than custom dialogs, and they have the
virtue of providing a standard appearance. Stan-
dard dialogs also offer a facility that is easily over-
looked. A standard dialog is constructed using the
arguments given when the corresponding dialog
procedure is invoked. These arguments can be lists
that change depending on current data. For ex-
ample, in an application that allows the user to

create and delete items, standard dialogs can dis-
play the current list of items, which may change the
number of items presented in the dialog.

Constructing custom dialogs requires time
and effort. Custom dialogs, however, can be laid
out for a particular situation, and slider, scroll bar,
label, and line vidgets can be used in their con-
struction. Unlike standard dialogs, however, the
structure of a custom dialog is fixed when it is
created. The states of the vidgets can be changed,
but the vidgets themselves cannot.

Since VIB can handle only one VIB section in
a file, custom dialogs must be kept in separate files
if they are to be maintained using VIB. In this case,
the applications that use them must link their
ucode files. The need for multiple files causes
organizational, packaging, and maintenance prob-
lems.

A general guideline is to use custom dialogs
only when standard dialogs won’t do or when a
custom dialog can provide a substantially better
interface.

Figure 4: The Custom Dialog

Icon on the Web

Information about Icon is available on the
World Wide Web at

http://www.cs.arizona.edu/icon/

4 / The Icon Analyst 41

Debugging: Built-In Facilities

This is the second in a series of articles on
debugging in Icon and covers the facilities in Icon
that can help find errors that occur during execu-
tion.

Error Termination Information

A large percentage of bugs result in error
termination. When a program terminates because
of run-time error, the nature and location of the
error is listed, followed by a traceback of procedure
calls leading to the error. At the end, the offending
expression is shown. Here’s an example:

Run-time error 106
File recorder.icn; Line 32
procedure or integer expected
offending value: &null
Trace back:
 main()
 &null("Summary information …") from line
 32 in recorder.icn

We’ve modified the output slightly, as we will with
other examples, so that long lines can be accommo-
dated in our two-column format.

Such error termination messages generally
are self-explanatory. For example, the error that
resulted in the output above occurred in the main
procedure. The offending expression was an invo-
cation, but instead of a function, procedure, or
integer, there was an attempt to apply the null
value. This usually is the result of a misspelling. In
the program in which this error occurred, two
letters were transposed, resulting in wirte instead
of write. As you’d expect, wirte has the null value,
since no assignment was made to it. This kind of
error is very common; it usually can be detected
before program execution by using Icon’s option
for reporting undeclared identifiers, as in:

icont –u recorder

Note that the file name and line number infor-
mation is duplicated at the beginning and end of
the error termination message. This is handy when
the traceback is long.

The way the offending expression appears
varies. In the example above, the ellipses indicate
that the string was long and part of it was omitted
so that the line would not be very long. (It’s not
possible, in general, to tell whether the ellipses are

actually in the string or whether they indicate that
the string has been truncated.

The form in which the offending expression
appears depends on what it is. Here’s another
example, in which the subject of string scanning is
null:

Run-time error 103
File summary.icn; Line 402
string expected
offending value: &null
Trace back:
 main()
 {&null ? ...} from line 402 in summary.icn

Notice that the expression to be applied to the
subject is not shown; it has not been evaluated at
the time the error is detected.

Sometimes the offending expression may ap-
pear puzzling:

Run-time error 111
File vitamin.icn; Line 377
variable expected
offending value: "A"
Trace back:
 main()
 {"A" := ""} from line 377 in vitamin.icn

Certainly no Icon programmer would write such
an expression in the expectation that it would
work. The actual expression is

&letters[1] := ""

The reason the offending expression appears as it
does is that &letters is not a variable. As a result,
&letters[1] produces the string "A". By the time the
error occurs, the expression that produced "A" is no
longer available to show in the offending expres-
sion.

Here’s example that shows a different format
for the offending expression:

Run-time error 114
File format.icn; Line 222
invalid type to subscript operation
offending value: set_1(14)
Trace back:
 main()
 {(variable = set_1(14))[3]} from line
 222 in format.icn

This error results from attempting to subscript a set
as if it were a table. The variable = indicates that a

The Icon Analyst 41 / 5

set was the value of a variable. This information is
provided if it is available. The reason it isn’t shown
in some cases is because the variable has been
dereferenced before the detection of the error. This
is the case for the null value of wirte shown earlier.

Here’s another example, which resulted in
attempting to subscript a file as if it were a string:

Run-time error 103
File rotor.icn; Line 118
string expected
offending value: &output
Trace back:
 main()
 {&output[2] := "1"} from line 118 in rotor.icn

When interpreting tracebacks, it’s important
to remember that the information shown is what’s
current at the time of the error. Consider this pro-
cedure, called as process("Type A", 2):

procedure process(category, number, scale)

 number –:= 1 # adjust

 counter := number ∗ scale
…

end

Because the third argument of process() is
omitted in the call, and hence null, a run-time error
occurs in the expression number ∗ scale. The
traceback is:

Run-time error 102
File change.icn; Line 121
numeric expected
offending value: &null
Trace back:
 main()
 process("Type A",1) from line 311 in change.icn
 {1 ∗ &null} from line 11 in change.icn

It appears as if the call was process("Type A", 1) ,
rather than process("Type A", 2). This is because
the value of the parameter number was decremented
before the error occurred. (Changing the value of a
parameter of a procedure may be unwise, but it’s
legal.)

Problems with Error Traceback

One problem with error termination messages
is that they may be very voluminous. There are two
common causes for this: stack overflow and use of
graphics procedures.

Stack Overflow

If a run-time error results from excessive depth
of procedure calls (usually runaway recursion), the
traceback may look like this:

Run–time error 301
File treeview.icn; Line 28
evaluation stack overflow

Trace back:
 main()
 parse() from line 22 in treeview.icn
 parse() from line 28 in treeview.icn
 parse() from line 28 in treeview.icn
 parse() from line 28 in treeview.icn
 parse() from line 28 in treeview.icn
 parse() from line 28 in treeview.icn
 ...

and so on for many lines.

Here it’s clear that parse() is the offending
procedure, although if there is mutual recursion
among several procedures, the cause of the problem
may not be so obvious. In such a situation, it’s often
helpful to look at the beginning of the traceback to
locate the source of the problem.

Graphics Procedures

A substantial portion of Icon’s graphics facili-
ties, including the vidgets provided by VIB, are
written in terms of Icon procedures. Because of this,
error traceback may be truly overwhelming. Here’s
a rather tame example (it’s hopeless to try to show a
really unruly one):

Run–time error 102
File kaleido.icn; Line 256
numeric expected
offending value: &null
Trace back:
 main(list_1 = [])
 kaleidoscope() from line 66 in kaleido.icn
 ProcessEvent(record Vframe_rec_1(window_1, …
 event_Vtoggle(record Vbutton_rec_13(window_ …
 toggle_Vbool_coupler(record Vcoupler_rec_1(1,
 set_Vcoupler(record Vcoupler_rec_1(1,list_86(1 …
 call_clients_Vcoupler(record Vcoupler_rec_1(1 …
 pause_cb(record Vbutton_rec_13(window_1,1 …
 {&null = 1} from line 256 in kaleido.icn

This may not look so bad, but the ellipses are
ours; the lengths of individual lines go up to 341
characters. We’ve even had cases in which we
thought the traceback was in a loop because the
output was so huge. About all you can do in cases

6 / The Icon Analyst 41

Downloading Icon Material

Most implementations of Icon are available for
downloading via FTP:

ftp.cs.arizona.edu (cd /icon)

like this is look at the beginning and end of the
error termination message. To do that, you may
have to save it in a file. (All error messages are
written to standard error output, which compli-
cates the process of saving it in a file.)

There’s a lesson in language design here, but
that’s the way it is. In a later article, we’ll show
library procedures that can help with these kinds
of problems.

Termination Dumps and Displays of
Variables

If the value of &dump is nonzero (its initial
default value is zero) when a program terminates,
a dump of variables and their values is produced.

The dump starts with an image of the current
co-expression. Following this, there are listings of
the local identifiers and their values in procedure
calls back to the original invocation of the main
procedures. Finally, there is a listing of global
variables and their values. Here’s an example:

Run–time error 103
File csgen.icn; Line 137
string expected
offending value: &null
Trace back:
 main(list_1 = [])
 subst(list_4 = ["X","abc"]) from line 127 in csgen.icn
 find(&null,"X",&null,&null) from line 137 in csgen.icn

Termination dump:

co–expression_1 (1)
subst local identifiers:
 a = list_4 = ["X","abc"]
main local identifiers:
 args = list_1 = []
 line = "X:10"
 goal = "X"
 count = 10
 s = "X"
 opts = table_1(0)

global identifiers:
 any = function any
 close = function close
 find = function find
 get = function get
 integer = function integer
 main = procedure main
 many = function many
 map = function map

 move = function move
 open = function open
 options = procedure options
 pos = function pos
 pull = function pull
 push = function push
 put = function put
 randomize = procedure randomize
 read = function read
 real = function real
 stop = function stop
 string = function string
 subst = procedure subst
 tab = function tab
 table = function table
 upto = function upto
 write = function write
 xlist = list_3 = [list_4(2),list_5(2),list_6(2),
 ...,list_8(2),list_9(2),list_10(2)]
 xpairs = procedure xpairs

Notice that the global variables include the func-
tions that the program uses.

Termination dumps occur regardless of
whether a program terminates normally or as the
result of an error. In a program in which a dump is
not wanted if a program terminates normally, this
kind of usage is typical:

procedure main()
 &dump := 1 # just in case
 ...
 &dump := 0 # disable before completion
end

If the program terminates by some other means
than flowing off the end of the main procedure,
such as a run-time error or a call of stop() or exit(),
a dump is produced.

The keyword &dump was added to Icon in
Version 9. Programmers who started using Icon
before Version 9 may have overlooked &dump or
not thought about its usefulness. If you are in this
group, think about adding &dump to the tools you
use on a regular basis.

The Icon Analyst 41 / 7

Records

Many programming languages support
records — structures that are fixed in size and have
fields that are referenced by name. In Icon, records
are useful, but they are somewhat mundane com-
pared to Icon’s other structures; so much so that
records are not covered in the Icon portion of our
Comparative Programming Languages course [1,
2]. And why should they be covered? Surely records
in Icon are simple enough that any programmer
can figure them out.

While that’s probably true, there are aspects
of records and uses for them that sometimes are
overlooked.

The Properties of Records

By way of review, here are the essential char-
acteristics of records in Icon.

•Records are declared, as in

record rational(numer, denom)

which declares a record named rational with field
names numer and denom.

• Instances of records are created during pro-
gram execution by using a record-constructor func-
tion whose name corresponds to the record name
and whose arguments correspond to the fields, as
in

portion := rational(2, 3)

• A record declaration adds a type corre-
sponding to the record name to Icon’s built-in type
repertoire. For example, type(portion) produces
"rational".

• There is no limit to the numbers of record
types that can be declared except the memory
available for representing them. (It’s unlikely for
memory to be a limitation for any “real” program.)

• A record can be declared with no fields, as
in

record marker()

• There is no limit to the number of fields in a
record declaration, except for memory.

• The same field name can be used in differ-
ent record declarations, as in

record particle(charge, mass, spin)
record anti_particle(charge, mass, spin)

…

• The duplicate field names need not be in the
same position in different record declarations, as
in

record employee(name, ssn, position, salary)
record tax_return(ssn, name, address)

• Record fields are accessed by name using
the binary “dot” operator, as in

portion.numer := 1

• Attempting to reference a record by a field
name the record does not have causes a run-time
error.

• Record fields also can be accessed by posi-
tion, as in

portion[2] := 5

which changes the denom field of portion to 5. As
with lists, subscripts can be expressed in positive
or non-positive form, and out-of-bounds subscripts
result in failure. For example,

portion[–2] := 1

assigns 1 to the numer field of portion, but

write(portion[3])

fails.

• Record fields can be accessed by their string
names, as in

Termination dumps actually use a facility
that has been in Icon for a long time: display(i, f).
This function writes a dump in the same format as
&dump, but only going back i levels of procedure
call. The default for i is &level, giving the local
identifiers for all procedure calls back to the invo-
cation of the main procedure. The argument f
allows a file to be specified, &errout being the
default.

Because display() writes to a file, it is not
particularly useful, especially now that &dump is
available. We’ll have more to say on this subject
when we get to library support for debugging.

Next Time

In the next article on diagnostic facilities and
debugging, we’ll tackle procedure and co-expres-
sion tracing.

8 / The Icon Analyst 41

write(portion["numer"])

Subscripting a record by a field name it does not
have fails. Thus,

portion.ratio

causes a run-time error, but

portion["ratio"]

fails.

• Field names and identifiers have separate
“name spaces” and do not conflict with each other.
For example, in

record complex(real, imaginary)

the field name real does not conflict with the iden-
tifier real and hence the function real(). In fact, a
record name and a field name can be the same,
even in the same declaration, as in

record word(word, part_of_speech)

which might lead to code like

item9 := word("world", noun)
…

write(item9.word)

Such usage is likely to be confusing if not actually
obfuscating. (Now that we’ve said that, someone
probably will come up with a valid and helpful use
for this feature.)

• A record name can be the same as the name
of a built-in type. An example is

record file(name, position, status)

Internally, Icon distinguishes between record types
and built-in types of the same name, but type()
does not. Consequently in

log := file("standard.log", 0, "closed")

type(log) and type(&input) both produce "file".

If, however, a record name is the same as the
name of a function, the record constructor replaces
the function as the value of the corresponding
identifier. For example, in

real(exponent, mantissa)

real() creates a record of this type instead of at-
tempting to convert its argument to a real number.
The function still is available, however;

float := proc("real", 0)

assigns the function to float.

• The operation ∗R produces the number of
fields in the record R. For example, ∗portion pro-
duces 2.

• The operation !R generates the fields of R as
variables. This can be used to assign a value to all
fields in a record, as in

every !portion := 1

• The operation ?R produces a randomly
selected field of R as a variable. For example,

?portion := 3

assigns 3 to either the numer or denom field of
portion. ?R fails if R has no fields.

• Records have serial numbers. Each record
type has a separate serial sequence, starting at 1.

• The function serial() produces the serial
number of a record. For example, if portion is the
first-created record of type rational, serial(portion)
produces 1.

• The function image() gives the record type
followed by an underscore, its serial number, and
its size in parentheses. For example, if portion is the
first-created record of type rational, image(portion)
produces

"record rational_1(2)"

• The function name(), when applied to a
string corresponding to a record field reference,
produces the record type and field name, as in

name("portion.numer")

which produces "rational.numer".

• In sorting, records sort after all other data
types. Record types are lexically ordered. Records
of the same type are ordered by their serial num-
bers.

• A record can be sorted to produce a list with
the field values in sorted order. Like other obscure
operations on records, it’s hard to imagine a use for
this, but there probably are some. In any event, it
puts records on par with other structures.

• Records can be used to provide arguments
in invocation in the same manner as lists, as in

atan ! portion

which is equivalent to

atan(portion.numer, portion.denom)

The Icon Analyst 41 / 9

and produces the arctangent of portion.numer di-
vided by portion.denom.

• List invocation can be used to create records,
as in

ratio := rational ! args

where args is a list whose (first two) elements
provide the values of the numer and denom fields
of a rational record. Omitted and extra arguments
are treated as they are in any function or procedure
call; null if omitted, ignored if extra.

• “Record invocation” can be used to create a
new record from another. For example, as a result
of

neutron := particle(0, 1.6749286e–27, "1/2")

antineutron := anti_particle ! neutron

assigns to antineutron an anti_particle with the
same field values as neutron.

Examples

Rational Arithmetic

Here’s an example of a conventional use of
records to manipulate rational numbers. In this
package, the sign is carried in a separate field to
simplify some computations.

The procedure str2rat() converts a string rep-
resenting a rational number in the form "n/d" to a
record representing that rational number. Con-
versely, the procedure rat2str() converts the record
representation to the string representation.

There are a variety of special cases to handle,
including rejecting a denominator of 0 and reduc-
ing rational numbers to their lowest form. The
code itself is mostly self-explanatory.

link numbers

record rational(numer, denom, sign)

procedure str2rat(s)
 local div, numer, denom, sign

 s ? {
 numer := integer(tab(upto('/'))) &
 move(1) &
 denom := integer(tab(0))
 } | fail

 div := gcd(numer, denom) | fail
 numer /:= div
 denom /:= div
 if numer ∗ denom >= 0 then sign := 1

 else sign := –1

 return rational(abs(numer), abs(denom), sign)

end

procedure rat2str(r)

 return r.numer ∗ r.sign || "/" || r.denom

end

procedure mpyrat(r1, r2)
 local numer, denom, div

 numer := r1.numer ∗ r2.numer
 denom := r1.denom ∗ r2.denom
 div := gcd(numer, denom)
 return rational(numer / div, denom / div,
 r1.sign ∗ r2.sign)

end

procedure divrat(r1, r2)

 return mpyrat(r1, reciprat(r2)) # may fail

end

procedure reciprat(r)

 if r.numer = 0 then fail
 else return rational(r.denom, r.numer, r.sign)

end

procedure negrat(r)

 return rational(r.numer, r.denom, –r.sign)

end

10 / The Icon Analyst 41

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.

procedure addrat(r1, r2)
 local denom, numer, div, sign

 denom := r1.denom ∗ r2.denom
 numer := r1.sign ∗ r1.numer ∗ r2.denom +
 r2.sign ∗ r2.numer ∗ r1.denom
 sign := if numer >= 0 then 1 else –1
 div := gcd(numer, denom) | fail

 return rational(abs(numer / div),
 abs(denom / div),sign)

end

procedure subrat(r1, r2)

 return addrat(r1, negrat(r2))

end

Generating Field Names

It’s sometimes useful to be able to find out the
names of the fields of an arbitrary record. This is
used in Bob Alexander’s ximage() procedure [3]
and in other programs that display the details of
Icon’s structures.

We’ve suggested how this might be done in
the section The Properties of Records. Here’s a
procedure that takes a record as its argument and
generates the names of its fields:

procedure field(R)
 local i

 every i := 1 to ∗R do
 name(R[i]) ? {
 tab(upto('.') + 1)
 suspend tab(0)
 }

end

References

1. “Teaching Icon”, Icon Newsletter 51, pp. 2-6.

2. “Teaching Icon”, Icon Newsletter 52, pp. 2-3.

3. “From the Library”, Icon Analyst 25, pp. 1-5.

From the Library

Interactive Expression Evaluation

In his Newsletter article on teaching Icon [1],
Bill Mitchell described a program that he wrote to
allow students to formulate and evaluate Icon
expressions interactively.

The central idea is simple: Take an expression
the user enters, wrap it in a main procedure, save
it in a file, and then compile and execute it.

This idea has been around for a long time and
has been used in rudimentary ways in the Icon
program library.

On the face of it, such a “gross” approach,
which requires creating, compiling, and executing
a program for every expression the user enters in
interactive mode, seems impractical if not ludi-
crous. And indeed it was, not that many years ago,
when working on a 16-bit 286 PC. Granted, work-
stations at the current high end have been able to
handle this adequately for some time, but the user
hardly had the feel of immediate response until
recently. Every month or so now there are faster
platforms, and the former gap between worksta-
tions and PCs is no longer so evident. In fact, with
a Pentium Pro PC or a modest workstation, this
method works quite nicely.

The Icon Analyst 41 / 11

 "8" (string)
 "2" (string)
 "8" (string)
 "1" (string)
 "8" (string)
 "2" (string)
 "8" (string)

The command :list lists all expressions that
have been entered so far, as in

> :list
r1_ := (integer(&pi))
r2_ := (r1_ + r1_)
r3_ := (pi := &pi)

Bill’s original program has been reworked,
spruced up, increased in functionality, and made
more portable. The current version is called qei
(from the Latin quod erat inveniendum, meaning
“which was to be found out”).

Using qei

When qei is launched, it presents the charac-
ter > as a prompt, after which the user can type an
Icon expression to be evaluated, as in

> integer(&pi);

A semicolon is necessary to terminate the expres-
sion; otherwise qei prompts for more to add to
what’s already been entered.

The response to this expression is

 r1_ := 3 (integer)

r1_ is a variable created by qei; subsequent ones are
named r2_, r3_, and so on. As shown, the type of
the result is given in parentheses.

The variables qei that creates can be used in
subsequent expressions, as in

> r1_ + r1_;
 r2_ := 6 (integer)

The user can provide variables also, as in

> pi := π
 r3_ := 3.141592654 (real)
> pi ^ 4;
 r4_ := 97.40909103 (real)

Any kind of expression can be entered, as
indicated by the following sequence:

> list(100, 0);
 r5_ := list_1(100) (list)
> r5_[2] := &e;
 r6_ := 2.718281828 (real)

Commands

qei provides several commands that allow
the user to control the program.

For example, a generator only produces its
first result unless the command :every is used, as in

> :every !r6_;
 "2" (string)
 "." (string)
 "7" (string)
 "1" (string)

The Icon Analyst

Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

Editors

The Icon Analyst is published six times a
year. A one-year subscription is $25 in the United
States, Canada, and Mexico and $35 elsewhere.
To subscribe, contact

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon–project@cs.arizona.edu

 ®

and

Bright Forest Publishers
 Tucson Arizona

© 1997 by Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

All rights reserved.

12 / The Icon Analyst 41

 r3_ := (pi := &pi)

 showtype := 1

 if (r4_ := (pi ^ 4)) then WR("r4_ := ",r4_)
 else write("Failure")

end

procedure WR(tag, e)

 writes(" ",tag, image(e))
 write(if \showtype then " (" || type(e) || ")" else "")

end

Conclusion

We encourage you to try qei. It’s an excellent
way to get started with Icon, and for an experi-
enced Icon programer, it can provide valuable
insights into the darker corners of Icon.

Note

This article describes Version 1.2 of qei, which
was sent to subscribers to the Icon program library
update service in March. An earlier version is in the
9.3 release of the library. More versions are sure to
come.

Reference

1. “Teaching Icon”, Icon Newsletter 51, pp. 2-6.

What’s Coming Up

We had planned another article on versum
numbers for this Analyst, but we didn’t get it done
in time — due in part to loud croaking sounds from
the pond in which our computers live. We should
have the article ready for the next issue.

We’ll continue our series on debugging with
an article on tracing, and we expect to have an
article related to program visualization.

r4_ := (pi ^ 4)
r5_ := (list(100, 0))
r6_ := (r5_[2] := &e)
r7_ := (!r6_)

The command :type is a toggle that turns the
display of the type name off and on; it is on initially.
The command :? lists all the available commands.
Finally, :quit terminates a qei session.

Failure and Errors

If an expression fails, that is noted, as in

> integer("a");
Failure

A syntactic error in an expression produces
an error message, as in

> &bad;
File qei_.icn; Line 22 # "bad": invalid keyword
1 error

This message also reveals some things about how
qei works.

A Peek Inside

As you’d expect, qei uses the system() func-
tion to compile and execute the programs that it
creates. This facility is supported by most operat-
ing systems, including MS-DOS, Windows, and
UNIX.

A key idea in qei is to maintain a list of all the
expressions the user enters. Every new expression
is appended to the list and all the expressions are
included with each new program that is created.
Consequently, all previous expressions are evalu-
ated when a new expression is entered.

For the most part, this works nicely. It makes
all previous results available in a newly entered
expression and the performance impact is not no-
ticeable in most cases. It is, of course, possible to
enter an expression that takes a long time to ex-
ecute. When this happens, all subsequent expres-
sion are affected. For this reason, the command
:clear is provided to remove all previously entered
expressions. In this case, all previous results are
lost also.

Here’s what qei produces for the expressions
shown earlier, up through pi ^ 4:

procedure main()

 r1_ := (integer(&pi))
 r2_ := (r1_+r1_)

