
The Icon Analyst 42 / 1

June 1997
Number 42

In this issue …

Multiple VIB Interfaces 1

Debugging: Tracing.................... 4

From the Library 7

Subscription Renewal 12

Analyst on Diskettes? 12

What’s Coming Up 12

In-Depth Coverage of the Icon Programming Language

Multiple VIB Interfaces

Editors’ Note: This article is based in part on
material provided by Clint Jeffery.

A single visual interface window is adequate
and appropriate for most applications. There are
situations, however, when more than one interface
is needed. Typical examples are multi-user games
and painting and drawing applications.

Before designing an application with more
than one interface window, consider the problems:
managing multiple windows adds programming
complexities, and in single-user situations an ap-
plication with more than one window requires the
user to change his or her focus of attention. In
addition, applications with multiple windows re-
quire more screen space than single-window ap-
plications.

VIB Considerations

VIB can handle only one interface section in a
file. There are ways of fooling VIB by editing the
lines it places at the beginning and end of its
interface code, but these are clumsy. For multiple
interfaces, then, it’s usually best to put each one in
a separate file. The files then can be linked in the
application, as in

link control # control window
link draw # drawing window

where control.icn and draw.icn are two visual in-
terfaces and have been compiled into ucode files,
as in

icont –c control.icn draw.icn

(When more than one file is compiled with the –c
option, separate ucode files are created for each
one.)

When VIB creates a file, as opposed to modi-
fying an existing one, it provides a main procedure
that is useful for testing. In the program organiza-
tion we’re using here, such main procedures should
be deleted and one provided in the program that
links the interface code. (VIB does not add a main
procedure when editing an existing file, so this
only needs to be done once.)

The code for a VIB interface contains two
procedures that are named ui_atts and ui by de-
fault. The procedure ui_atts() returns the attributes
used to open the interface window. In most appli-
cations, it is not needed, but it can be used to open
the window with added or changed attributes.
The procedure ui() opens the interface window if
&windows is null, draws its vidgets, and initializes
the interface.

To avoid conflicting declarations for these
procedures in multiple interfaces, their names need
to be changed. This is done easily in VIB by speci-
fying a procedure name in the canvas dialog as
shown in Figure 1 at the top of the next page. The
name specified — control in this case — is used in
place of ui for the two procedures in the interface
code. In the example above, they are named
control_atts() and control().

Each interface has its own vidgets. The same
vidget ID can be used in more than one interface,
but care should be taken not to use the same
callback name in more than one interface unless a
single procedure handles callbacks from more than
one window.

2 / The Icon Analyst 42

If the names are changed to draw_atts() and
draw() in draw.icn, the application might begin as
follows:

control_vidgets := control()
…

draw_vidgets := draw()

Note that each interface produces its own table of
vidgets.

There’s a “gotcha” here: As mentioned ear-
lier, a “ui“ procedure only opens a window if
&window is null. If &window is null when control()
is called, and nothing else is done, draw() does not
open a window, but instead overwrites what con-
trol() drew in the window it opened. This problem
is easily fixed:

control_vidgets := control()
&window := &null
draw_vidgets := draw()

If there is need to refer to the windows later in
the program, they can be assigned to variables as
follows:

control_vidgets := control()
control_win := &window
&window := &null
draw_vidgets := draw()
draw_win := &window

An alternative to setting &windows to the null
value between calls of the “ui” procedures is to
open the windows using the “ui_atts” procedures:

&window := WOpen ! control_atts()
control_vidgets := control()
&window := WOpen ! draw_atts()
draw_vidgets := draw()

The window to use also can be specified as the
argument to a “ui” procedure, as in

control_win := WOpen ! control_atts()

control_vidgets := control(control_win)
draw_win := WOpen ! draw_atts()
draw_vidgets := draw(draw_win)

Controlling Multiple Interfaces

As mentioned earlier, each interface has its
own vidgets; in each, the ID of the root vidget that
encloses and manages all others in the interface is
"root". These roots can be obtained as needed or
assigned to variables, as in

control_root := control_vidgets["root"]
draw_root := draw_vidgets["root"]

The most difficult part remains: managing
events in more than one window. How this is done
depends on the functionality of the application.

The simplest case is a purely event-driven
application in which actions are taken only in
response to user events and events in all interface
windows have equal priority and need to be
handled as they occur.

In this case, it is not sufficient to process the
windows in order, waiting, for example, for an
event in the first window before going on to the
second. If this is done, events may accumulate in
other windows and not be processed.

The function Active() can be used to deal with
this problem. Active() returns a window in which
an event is pending, blocking and waiting for an
event if none is pending. Every time Active() is
called, it starts with a new window in round-robin
fashion, to assure that all windows can be serviced.

The event loop for an event-driven applica-
tion of the kind described above might look like
this:

repeat {
 root := case Active() of {
 control_win: control_root
 draw_win: draw_root
 }
 ProcessEvent(root, …)
 }

where the ellipses indicate other possible argu-
ments for ProcessEvent().

An alternative to assigning the interface win-
dows to variables is to make use of the fact that a
root vidget has a win field that is the window with
which it is associated. Therefore, the event loop
above can be rewritten as follows:

Figure 1. A VIB Canvas Dialog

The Icon Analyst 42 / 3

repeat {
 root := case Active() of {
 control_root.win: control_root
 draw_root.win: draw_root
 }
 ProcessEvent(root, …)
 }

The code can be further collapsed by putting
the case expression as the first argument of
ProcessEvent():

repeat {
 ProcessEvent(
 case Active() of {
 control_root.win: control_root
 draw_root.win: draw_root
 },
 … # other arguments for ProcessEvent()
)
 }

In some applications, different interface win-
dows may have different priorities. For example, a
drawing application might be designed so that
there is a shift in focus between the control window
and the drawing window. Furthermore, when the
drawing window is the focus, all events in it might
be processed, ignoring events in the control win-
dow until a specific event in the drawing window
changes the focus to the control window, and vice
versa. The code might look like this:

 root := control_root # initial interface
 while ProcessEvent(root, …)

…

procedure go_draw() # callback in control

 root := draw_root

 return

end

procedure go_control() # callback in draw

 root := control_root

 return

end

where go_draw() is in control.icn and go_control()
is in draw.icn.

One problem with this is that if events occur
in the control window while the draw window is
the focus of attention, these events are not pro-
cessed until the focus is changed — and then they

all are processed.

One way to handle this problem is to discard
events that occur in windows other than the focus
window. This can be done by emptying the event
queue of the window that is to become the focus
before changing the focus. The callbacks given
earlier can be modified to do this:

procedure go_draw() # callback in control

 while get(Pending(draw_win))

 root := draw_root

 return

end

procedure go_control() # callback in draw

 while get(Pending(control_win))

 root := control_root

 return

end

Handling multiple interfaces in an applica-
tion like the kaleidoscope [1-2] that is not entirely
event driven poses other problems.

In this kind of an application, processing goes
on even if there are no user events, but user events
must be processed when they occur.

For a single interface, the event-processing
loop typically looks something like this:

repeat {
 while ∗Pending() > 0 do
 while ProcessEvent(root, …)
 # do something before checking for next event
 }

It’s important that what’s done before check-
ing for the next event be brief; otherwise the user
may become annoyed at the unresponsiveness of
the interface, perhaps repeat actions that “didn’t
take”, or even assume the application is hung.

If we introduce multiple interfaces, this event
loop needs to be recast. For two interfaces, the loop
might look like this:

repeat {
 while ∗Pending(win1 | win2) > 0 do
 ProcessEvent(
 case Active() of {
 win1: root1
 win2: root2
 },

4 / The Icon Analyst 42

 …
)
 # do something before checking for next event
 }

Note that Active() is called only if there is an event
pending in one of the windows; it therefore does
not block.

References

1. “The Kaleidoscope”, Icon Analyst 38, pp. 8-13.

2. “The Kaleidoscope”, Icon Analyst 39, pp. 5-10.

Debugging: Tracing

Tracing is Icon’s most powerful debugging
tool. Tracing produces messages for both proce-
dure and co-expression activity.

Procedure Tracing

For procedures trace messages occur for

invocation (call)

return

failure

suspension

resumption

Consider this recognizer for context-sensitive
strings of the form an bncn [1]:

procedure main()

 while writes(line := read()) do
 if line ? {
 abc("") & pos(0)
 }
 then write(" accepted") else write(" rejected")

end

procedure abc(s)

 suspend =s | (="a" || abc("b" || s) || ="c")

end

For the input abcc (which is not recognized),
the trace output is:

: main()
abc.icn : 5 | abc("")
abc.icn : 13 | abc suspended ""

abc.icn : 5 | abc resumed
abc.icn : 13 | | abc("b")
abc.icn : 13 | | abc suspended "b"
abc.icn : 13 | abc suspended "abc"
abc.icn : 5 | abc resumed
abc.icn : 13 | | abc resumed
abc.icn : 15 | | abc failed
abc.icn : 15 | abc failed
abc.icn : 9 main failed

Notice that program execution begins with a
call to main(). If program execution terminates by
a return, failure, or suspension from main(), there
is a trace message for this, as shown in the example
above.

Except for the call to main(), which does not
occur in the program itself, each line of tracing
shows the name of the source file in which proce-
dure activity occurs (abc.icn in the example above).
If the file is composed from more than one file, that
is reflected in the name field. The field for the file
name is 13 characters long. If the file name is longer
than that, the initial part is discarded (it probably
should be the trailing part).

Following a separating colon after the file
name, the line number in the file where the activity
occurred is given, followed by vertical bars that
indicate the level of procedure call (the value of
&level).

The rest of the line indicates the type of proce-
dure activity with an associated value if the activ-
ity has one. Values are shown as they are for error
traceback [2].

If you recall the article on event monitoring
for functions [3], you’ll notice there is no trace
message for removal of a suspended procedure on
exit from a bounded expression. There is such an
event for procedures, and removal is important,
because otherwise suspended procedures would
accumulate, consuming more and more memory.
The removal of a suspended procedure is an imple-
mentation matter, however, not a language fea-
ture. In interpreting trace output, it is important to
remember this, because a suspended procedure
may never be resumed. Here is an example using
a recursive generator given in Reference 4:

procedure main()

 while writes(line := read()) do
 if line == star('abc') \ 10
 then write(" yes") else write(" no")

end

The Icon Analyst 42 / 5

procedure star(chars)

 suspend "" | (star(chars) || !chars)

end

Since star() is a infinite recursive generator, some
limit on its results is needed; otherwise, in the case
of input that is not included in its sequence, stack
overflow eventually occurs.

Here is the trace output for the input aa,
which is found:

: main()
findstar.icn : 3 | star('abc')
findstar.icn : 9 | star suspended ""
findstar.icn : 3 | star resumed
findstar.icn : 9 | | star('abc')
findstar.icn : 9 | | star suspended ""
findstar.icn : 9 | star suspended "a"
findstar.icn : 3 | star resumed
findstar.icn : 9 | star suspended "b"
findstar.icn : 3 | star resumed
findstar.icn : 9 | star suspended "c"
findstar.icn : 3 | star resumed
findstar.icn : 9 | | star resumed
findstar.icn : 9 | | | star('abc')
findstar.icn : 9 | | | star suspended ""
findstar.icn : 9 | | star suspended "a"
findstar.icn : 9 | star suspended "aa"
findstar.icn : 5 main failed

Note that the last suspension of star() is not re-
sumed.

Tracing occurs if the value of &trace is non-
zero. (The initial default value of &trace is 0, except
as noted in the following paragraph.) The value of
&trace is decremented for each trace message, so if
&trace is set to a positive value, it turns off auto-
matically, provided procedure activity continues
long enough. Assigning a negative value to &trace,
as in

&trace := –1

results in unlimited tracing. The value of &trace
can, of course, be changed at any time during
program execution.

The initial value of &trace also can be set in a
command-line environment by compiling a pro-
gram with the with the –t option, as in

icont –t example

which sets the initial value of &trace to –1. The

initial value of &trace also can be set by using the
environment variable TRACE to a nonzero value,
as in

setenv TRACE –1

Values other than –1 can be used.

Since these methods only affect the initial
value of &trace, setting it in a program can be used
to override the effect of the initial value (although
if the initial value of &trace is nonzero, there still is
a trace message for the call to main() that starts
program execution).

A problem with the –t option is that tracing
occurs when the program is run, but there is no
evidence of tracing in the source program. The
environment variable TRACE overrides –t, so

setenv TRACE 0

turns off tracing in a program compiled with –t,
unless &trace is set in the program itself.

A problem with setting TRACE to a nonzero
value is that it affects all Icon programs — even
programs you may not know were written in Icon.

Procedure tracing suffers from the same prob-
lems that termination dumps do, except that pro-
cedure tracing may be arbitrarily long:

• Output always is sent to standard error
output.

• Output may be voluminous and contain
messages for procedures that are not in the pro-
gram proper, especially in programs that use graph-
ics and have VIB interfaces.

Tracing also is nonselective; all procedures
produce messages. These problems can be miti-
gated to some extent by facilities in the Icon pro-
gram library, which we will describe in a later
article.

In some situations, it may be helpful to limit
the number of trace messages by setting the value
of &trace to a small positive value at a selected
location, as in

&trace := 10
trace this suspicious case

 …

Co-Expression Tracing

For co-expresions, trace messages occur for

activation

6 / The Icon Analyst 42

return

failure

Consider this program, which prepends a label to lines
of input that begin with a blank:

procedure main()

 digit := create seq()

 while line := read() do {
 if line[1] == " " then writes("L", right(@digit, 3, "0"), ":")
 write(line)
 }

end

Here is typical trace output:

: main()
label.icn : 6 | main; co-expression_1 : &null @ co-expression_2
label.icn : 3 | main; co-expression_2 returned 1 to co-expression_1
label.icn : 6 | main; co-expression_1 : &null @ co-expression_2
label.icn : 3 | main; co-expression_2 returned 2 to co-expression_1

…

The level shown is for procedures; there is no concept of
level for co-expression activity. Note that the unary @C
operation is just an abbreviation for &null @ C. Note also
that trace messages are produced for both procedure activity
and co-expression activity; there is no way to select only one
kind. The lines are rather long because of two occurrences of
co–expression in each of them; we’ve made the type size
smaller to make it possible to compose this page.

In the example above, the use of co-expressions is
simple. This need not be the case, as illustrated by this
contrived example in which there is no predictable order to
co-expression activation:

global co_list

procedure main()

 co_list := []

 every 1 to 4 do
 put(co_list, create |(?&letters @ ?co_list))

 @?co_list

end

Typical trace output from this program is

: main()
chaos.icn : 10 | main; co-expression_1 : &null @ co-expression_2
chaos.icn : 8 | main; co-expression_2 : "c" @ co-expression_3
chaos.icn : 8 | main; co-expression_3 : "q" @ co-expression_4
chaos.icn : 8 | main; co-expression_4 returned "q" to co-expression_3
chaos.icn : 8 | main; co-expression_3 : "m" @ co-expression_2
chaos.icn : 8 | main; co-expression_2 returned "m" to co-expression_3

…

Needless to say, it may be difficult to
interpret tracing of unstructured co-ex-
pression activity. In our experience co-
expression tracing is generally less useful
than procedure tracing for debugging

References

1. The Icon Programming Language, Ralph
E. Griswold and Madge T. Griswold, Peer-
to-Peer Communications, 1996, pp. 223-
224.

2. “Debugging: Built-In Facilities”, Icon
Analyst 41, pp. 4-7.

3. “Dynamic Analysis of Icon Programs”,
Icon Analyst 28, pp. 9-12.

4. The Icon Programming Language, Ralph
E. Griswold and Madge T. Griswold, Peer-
to-Peer Communications, 1996, p. 210.

Next Time

In the next article on debugging, we’ll
start describing the facilities in the Icon
program library that can be used in con-
junction with the built-in facilities to make
their output easier to use.

Renew Your Subscription Now

Icon Analyst

The Icon Analyst 42 / 7

From the Library: Anatomy of a
Graphics Procedure

In this article we’ll examine in detail a graph-
ics procedure from the Icon program library [1].
We’ll look closely at the code and discuss many of
the techniques. We’ll also consider some of the
various design decisions. At the end, we’ll give a
complete listing of the procedure.

The procedure of interest implements drag-
ging, which is found in many graphical interfaces.
Dragging is a process in which the user manipu-
lates the mouse to move an object in a window
from one place to another. An object, in this sense,
is generally something visually distinct that can be
moved as a rigid unit while the rest of the display
remains static. An icon on a desktop is an example.

Dragging begins by positioning the mouse
pointer over an object and pressing a mouse but-
ton. With the button down, the mouse is moved,
and the object moves with it, so that the same point
on the object stays under the mouse pointer. Fi-
nally, the mouse button is released to “let go” of the
object and leave it in its new position. In the before-
and-after figures at the top of the next column, the
center square is dragged out of its column to a new
position.

Figure 1. Dragging a Rectangle

Dragging is implemented in the Icon pro-
gram library by the procedure Drag(). It was origi-
nally written over two years ago; this discussion is
necessarily a reconstruction of our thoughts at that
time, omitting dead-end approaches and other
problems that we’ve now forgotten.

Motivation

As part of a VIB face-lift [2], we wanted better
realism during the rearrangement of interface ob-
jects. Most of these objects are rectangular. Before,
when such an object was moved, an outline fol-
lowed the mouse until it was placed. We wanted
instead to move the entire object, not just its out-
line, to more faithfully represent the appearance of
the interface during movement.

Because dragging is a standard interactive
paradigm, it seemed wise to produce a general-
purpose procedure rather than just something spe-
cific to VIB. This predisposition towards writing
sharable code has led to several library proce-

8 / The Icon Analyst 42

dures.

The Drag() procedure was written and de-
bugged along with a special test driver, then in-
stalled in the library and used by VIB.

The Design

Coming up with a design took a bit of thought.
Unlike most graphics procedures, dragging in-
volves both input and output. What we settled on
is given by the comments at the front:

Drag(x, y, w, h) lets the user move a rectangular area
using the mouse. Called when a mouse button is
pressed, Drag() handles all subsequent events until
a mouse button is released. As the mouse moves,
the rectangular area originally at (x, y, w, h) follows it
across the screen; vacated pixels at the original
location are filled with the background color. The
rectangle cannot be dragged off-screen or outside
the clipping region. When the mouse button is
released, Drag() sets &x and &y to the upper-left
corner of the new location and returns.

Let’s review that one sentence at a time.

Drag(x, y, w, h) lets the user move a rectangular
area using the mouse. Drag() is associated with user
interaction, and it deals with a rectangular area
specified in the conventional manner. Rectangular
objects are a common case, and we weren’t pre-
pared to attack the much harder problem of drag-
ging arbitrary shapes.

Called when a mouse button is pressed, Drag()
handles all subsequent events until a mouse button is
released. The assumption is that the user initiates
dragging by pressing a mouse button while the
pointer is atop an object to be dragged. The pro-
gram that calls Drag() is expected to identify an
event as a dragging request and determine the
location and extent of the corresponding object
before making the call. The Drag() procedure, in
turn, reads all subsequent events up to and includ-
ing the first release of any mouse button, which
signals the end of dragging.

As the mouse moves, the rectangular area origi-
nally at (x, y, w, h) follows it across the screen. While
Drag() is active, it moves the image of the object
being dragged — that rectangular area — to corre-
spond to the mouse motion.

Vacated pixels at the original location are filled
with the background color. When the object moves
away from its original position, what should re-
place it in the area that has been “exposed”? We

decided to simply paint those pixels with the win-
dow background color, as if the object had been
sitting in front of a plain canvas. That is not an ideal
solution, because it does not handle the exposure
of overlapped objects, but we decided it was good
enough. (VIB sets a darker-than-normal back-
ground color before calling Drag(), leaving a vis-
ible hole, and then fills it in when Drag() returns.)

The rectangle cannot be dragged off-screen or
outside the clipping region. These restrictions sim-
plify the coding. As long as the object remains
within the intersection of the clipping region and
the window boundaries, it can be moved around
using CopyArea(). If it were allowed to move out-
side this region, part of it would disappear; and
without additional complication, we’d have no
way to get it back. The fact that Drag() notices the
clipping region also could be considered a feature,
in that it gives the caller some additional control.

When the mouse button is released, Drag() sets &x
and &y to the upper-left corner of the new location and
returns. How does Drag() tell its caller where the
object ended up? It needs to return two values, an
x value and a y value. Rather than encoding both
values somehow in the procedure return value, we
decided to set the values of the keywords &x and
&y. That makes a certain amount of sense, because
those keywords are set by input events, and Drag()
is just a fancy event handler. The returned values of
&x and &y specify the object location, not the final
mouse position.

The Code Prologue

We will now go through the body of Drag()
from beginning to end, looking (at least briefly) at
every line of code. It’s a large procedure, but we’ll
break it into small chunks and give a short explana-
tion before each code fragment. The complete pro-
cedure is listed in Figure 2 on pages 10 and 11.

The first half of the code sets things up for an
event loop. The code begins, of course, with the
procedure declaration. Drag() actually declares five

Icon on the Web

Information about Icon is available on the World
Wide Web at

http://www.cs.arizona.edu/icon/

The Icon Analyst 42 / 9

parameters — a win parameter in addition to the
rectangle specification. Like most of the library’s
graphics procedures, an optional leading window
specification is allowed, and this additional pa-
rameter is not mentioned in the individual
procedure’s documentation.

procedure Drag(win, x, y, w, h)
 (local declarations)

An idiomatic approach is used to allow omis-
sion of the window argument. If a window is
supplied, nothing is done and the code proceeds
onward. If a window is not supplied, a recursive
call is made, shifting the values of the win, x, y, w
parameters into the x, y, w, h positions. The recur-
sive call specifies &window for the window value,
if it is not null; otherwise runtime error 140 is
reported (“window expected”) and the recursive
call never occurs.

 if type(win) ~== "window" then
 return Drag((\&window | runerr(140)), win, x, y, w)

No provision is made for defaulting x, y, w, or h; all
must be specified.

Icon allows negative values in width and
height specifications. The following code converts
negative w and h values to positive equivalents,
with corresponding adjustments to x and y.

if w < 0 then
 x –:= (w := –w)
if h < 0 then
 y –:= (h := –h)

A good library procedure should not assume
that the window’s attributes have default values. If
the caller has changed the dx or dy attributes, the
window’s coordinate system has changed, affect-
ing subsequent calculations.

dx := WAttrib(win, "dx")
dy := WAttrib(win, "dy")

Initial limits of motion are calculated from the
window size and dx/dy values. The variables x0
and x1 hold the horizontal limits of movement for
the object’s upper-left corner, and similarly y0 and
y1 hold the vertical limits.

x0 := –dx
y0 := –dy
x1 := WAttrib(win, "width") – dx – w
y1 := WAttrib(win, "height") – dy – h

If a clipping region has been set, the motion
limits are further adjusted. New values are as-
signed only if they make the region smaller.

x0 <:= \WAttrib(win, "clipx")
y0 <:= \WAttrib(win, "clipy")
x1 >:= \WAttrib(win, "clipx") +
 \WAttrib(win, "clipw") – w
y1 >:= \WAttrib(win, "clipy") +
 \WAttrib(win, "cliph") – h

A “scratch canvas” is obtained using another
library procedure not discussed here. This is just a
hidden window used for refreshing areas exposed
by movement of the dragged object. CopyArea() is
called to initialize the hidden window with a copy
of the visible window.

behind := ScratchCanvas(win)
CopyArea(win, behind, –dx, –dy)

As discussed earlier, moving the object from
its original position exposes the background color.
This is actually accomplished by setting the corre-
sponding portion of the scratch canvas to the back-
ground color.

Bg(behind, Bg(win))
EraseArea(behind, x + dx, y + dy, w, h)

In order to keep the same point of the object
under the mouse pointer as it is dragged, the offset
from that point to the object corner is recorded; &x
and &y contain the mouse position of the event that
initiated dragging.

xoff := x – &x
yoff := y – &y

That completes the preparations; the remain-
ing code awaits and reacts to input events.

The Event Loop

Event processing is handled by a loop that
executes once for each event. The loop begins by

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.

10 / The Icon Analyst 42

getting the next event from
Event() and checking it. Any of
the three kinds of mouse release
events causes the loop to termi-
nate. For any other kind of event,
the loop body is entered.

until Event(win) ===
 (&lrelease | &mrelease |
 &rrelease) do {

Any other event is most
likely a mouse movement event;
but the actual event doesn’t
matter, and isn’t even recorded,
as long as it is not a mouse but-
ton release. What counts is the
location at which the event oc-
curred.

The new object position is
calculated from the pointer lo-
cation and the recorded offset.
The position is constrained to be
within the limits given by x0,
x1, y0, and y1, and the object is
drawn at its new location by
copying its image from the old
location.

 # move the rectangle
 xnew := &x + xoff
 ynew := &y + yoff
 xnew <:= x0
 ynew <:= y0
 xnew >:= x1
 ynew >:= y1
 CopyArea(win, x, y, w, h,
 xnew, ynew)

The area exposed by the
latest movement is now redrawn
by copying from the scratch can-
vas. This is easy if the new and
old locations do not overlap.

 xshift := xnew – x
 yshift := ynew – y

 if abs(xshift) >= w |
 abs(yshift) >= h then {
 CopyArea(behind, win,
 x + dx, y + dy, w, h, x, y)
 }

Several different situations
must be considered when there

procedure Drag(win, x, y, w, h)
 local dx, dy, x0, y0, x1, y1
 local behind, xoff, yoff, xnew, ynew, xshift, yshift

 if type(win) ~== "window" then
 return Drag((\&window | runerr(140)), win, x, y, w)

 if w < 0 then
 x –:= (w := –w)
 if h < 0 then
 y –:= (h := –h)

 dx := WAttrib(win, "dx")
 dy := WAttrib(win, "dy")

 x0 := –dx # set limits due to window size
 y0 := –dy
 x1 := WAttrib(win, "width") – dx – w
 y1 := WAttrib(win, "height") – dy – h

 x0 <:= \WAttrib(win, "clipx") # adjust limits for clipping
 y0 <:= \WAttrib(win, "clipy")
 x1 >:= \WAttrib(win, "clipx") + \WAttrib(win, "clipw") – w
 y1 >:= \WAttrib(win, "clipy") + \WAttrib(win, "cliph") – h

 behind := ScratchCanvas(win)
 CopyArea(win, behind, –dx, –dy)
 Bg(behind, Bg(win))
 EraseArea(behind, x + dx, y + dy, w, h)

 xoff := x – &x
 yoff := y – &y

 until Event(win) === (&lrelease | &mrelease | &rrelease) do {

 # move the rectangle
 xnew := &x + xoff
 ynew := &y + yoff
 xnew <:= x0
 ynew <:= y0
 xnew >:= x1
 ynew >:= y1
 CopyArea(win, x, y, w, h, xnew, ynew)

 # repaint the area exposed by its movement
 xshift := xnew – x
 yshift := ynew – y

 if abs(xshift) >= w | abs(yshift) >= h then {

 # completely disjoint from new location
 CopyArea(behind, win, x + dx, y + dy, w, h, x, y)
 }

 else {

 # new area overlaps old

Figure 2. The Procedure Drag()

The Icon Analyst 42 / 11

is overlap. Vertical and hori-
zontal movement are handled
independently, although this
may do a slight amount of extra
copying.

 else {
 if xshift > 0 then

 CopyArea(behind, win,
 x + dx, y + dy, xshift, h, x, y)
 else if xshift < 0 then
 CopyArea(behind, win,
 x + dx + w + xshift, y + dy,
 –xshift, h, x + w + xshift, y)
 if yshift > 0 then
 CopyArea(behind, win,
 x + dx, y + dy, w, yshift,
 x, y)
 else if yshift < 0 then
 CopyArea(behind, win,
 x + dx, y + dy + h + yshift,
 w, –yshift, x, y + h + yshift)
 }

Finally, at the bottom of
the loop, x and y are updated to
reflect the new object location, and the loop re-
peats.

 x := xnew
 y := ynew
 }

Finishing Up

Looping ends when a mouse button is re-
leased. Any mouse movement was seen earlier in
the form of mouse-drag events, so the x and y
values of the release event can be ignored.

An EraseArea() call ensures that the scratch
canvas does not tie up any unneeded color map
entries. The keywords &x and &y are set in order to
pass back the final object location. As is conven-
tional for graphics procedures, the window value
is returned.

EraseArea(behind)
&x := x
&y := y
return win

Conclusion

We’ve looked over a graphics procedure from
the Icon program library and examined it in detail.

Many of the techniques and considerations noted
here apply also to other library procedures.

If written just for VIB, this procedure could
have been smaller and simpler. VIB does not use a
defaulted window argument, negative size speci-
fications, or a translated coordinate system.

On the other hand, the extra effort to address
these concerns leads to fewer surprises for its po-
tential callers and makes Drag() more suitable for
inclusion in the library.

References

1. The Icon Program Library; Version 9.3, Ralph E.
Griswold and Gregg M. Townsend, Icon Project
Document IPD279, Tucson, Arizona, 1996.

2. VIB: A Visual Interface Builder for Icon; Version 3,
Gregg M. Townsend and Mary Cameron, Icon
Project Document IPD265, Tucson, Arizona, 1996.

Downloading Icon Material

Most implementations of Icon are available for
downloading via FTP:

ftp.cs.arizona.edu (cd /icon)

 if xshift > 0 then
 CopyArea(behind, win, x + dx, y + dy, xshift, h, x, y)
 else if xshift < 0 then
 CopyArea(behind, win,
 x + dx + w + xshift, y + dy, –xshift, h, x + w + xshift, y)
 if yshift > 0 then
 CopyArea(behind, win, x + dx, y + dy, w, yshift, x, y)
 else if yshift < 0 then
 CopyArea(behind, win,
 x + dx, y + dy + h + yshift, w, –yshift, x, y + h + yshift)
 }

 x := xnew
 y := ynew
 }

 EraseArea(behind)

 &x := x
 &y := y

 return win

end

Figure 2 (continued). The Procedure Drag()

12 / The Icon Analyst 42

What’s Coming up

In the next issue of the Analyst, we’ll con-
tinue the series on debugging with a description of
tools in the Icon program library that can make the
built-in facilities more useful.

We still haven’t completed the article on fac-
tors of versum numbers; maybe for next time.

We plan to get back to program monitoring in
the next Analyst, with an emphasis on presenting
results visually.

The Icon Analyst

Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

Editors

The Icon Analyst is published six times a
year. A one-year subscription is $25 in the United
States, Canada, and Mexico and $35 elsewhere.
To subscribe, contact

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon–project@cs.arizona.edu

 ®

and

Bright Forest Publishers
 Tucson Arizona

© 1997 by Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

All rights reserved.

Analyst on Diskettes?

We only received two responses to our pro-
posal to make the Analyst available on diskettes in
Adobe Portable Document Format.

One response was enthusiastically positive.
The other posed a number of questions and raised
several troublesome issues.

Although we believe the issues can be re-
solved, with the lack of response from other read-
ers, we’re not going to undertake the project — at
least in the near future.

If you have thoughts on the subject that you’ve
not expressed, please let us know what they are.

Subscription Renewal

For many of you, this is the last issue in your
present subscription to the Analyst. If so, you’ll
find a renewal form in the center of this issue.
Renew now so that you won’t miss an issue.

Your prompt renewal helps us by reducing
the number of follow-up notices we have to send.
Knowing where we stand on subscriptions also
lets us plan our budget for the next fiscal year.

