
The Icon Analyst 46 / 1

February 1998
Number 46

In this issue …

The Icon Analyst on the Web .......1
Text-List Vidgets ................................1
Numerical Carpets Update ..............4
Graphics Corner .................................5
An Icon Debugger ............................. 7
Versum Primes ................................. 12
What’s Coming Up .......................... 16

In-Depth Coverage of the Icon Programming Language

The Icon AnalystThe Icon Analyst

The Icon Analyst on the Web

The idea of providing supplementary infor-
mation related to the Analyst started with the
thought that it would be helpful to readers to have
hot links to Web pages mentioned in the Analyst.

Given that start, we decided to add images
from the Analyst, primarily to give our readers a
way to see the colors, which often are important
but impossibly expensive to produce for a printed
publication with a small circulation. And it then
seemed natural to add related images for which
there wasn’t room in the Analyst.

We started the on-line supplement to the
Analyst with Issue 43 to show the results of pro-
gram visualization, where color is a key element
[1]. In Issue 44 we added VRML worlds that could
be downloaded and explored [2].

The article on numerical carpets in Issue 45 [3]
raised another possibility — providing programs
described in the Analyst (these programs are not
yet in the Icon program library). We’ve now done
that; you’ll find them in the in the supplement to
that issue, not this one. See the article in this Ana-
lyst that starts on page 4 to see some of the conse-
quences of putting programs on-line.

We plan to provide program material from
the Analyst in future on-line supplements. If there
are other things from the Analyst you’d like to see
on-line, let us know. Realize, however, that we
can’t put everything on the Web — that would be
unfair to our subscribers and we’d need the income
from subscriptions to produce the Analyst even if
it were entirely on-line.

The on-line supplements to the Analyst are
not static. From time to time we make corrections,
delete dead links, add new ones, and so forth. The
date of the last update is shown at the top of the
main page for each supplement.

Note: In recent Analysts, we listed incorrect
URLs for supplementary material. They used to
work, but were changed to clean up our Web site.
See page 8 for the URL for this issue.

References

1.“Kaleidoscopic Visualization” Icon Analyst

43, pp. 1-9.

2.“Program Visualization in 3D”, Icon Analyst

44, pp. 1-7.

3.“Anatomy of a Program — Numerical Carpets”,
Icon Analyst 45, pp. 1-10.

Text-List Vidgets

With Version 9.3.1 of the Icon program li-
brary, there’s a new kind of vidget that can be used
when building visual interfaces with VIB: the text-
list vidget.

The User’s View

A text-list vidget consists of an area in which
lines of text are displayed and a scrollbar that
allows moving through the lines. See Figure 1 on
the next page.



2 / The Icon Analyst 46

Figure 1.  A Text-List Vidget

There are three types of text-list vidgets:

• “read-only” vidgets that allow only scrolling
but not the selection of a line

•vidgets that allow the selection of a single line

•vidgets that allow the selection of more than
one line

The type is indicated visually by grooves at the
left side of the vidget: none if selection is not allowed
(Figure 2), one if a single line can be selected (Figure
1), and two if more than one line can be selected
(Figure 3).

Figure 2.  A Read-Only Text-List  Vidget

Figure 3.  A Multiple-Selection Text-List Vidget

When the user selects a line of text by clicking
on it, the line is highlighted, as shown in Figure 4,
and there is a callback that notifies the program of
the selection. When the user clicks on a previously
selected, highlighted line, there also is a callback to
notify the program that the line is no longer selected.

Configuring Text-List Vidgets in VIB

The icon for a text-list vidget appears fourth
from the left in VIB’s icon bar. See Figure 4.

Figure 4.  The VIB Window

Clicking on the text-list icon and dragging
onto the application canvas area creates a new text-
list vidget. See Figure 5.

Figure 5.  A Text-List Vidget in VIB

Text-list vidgets are positioned and sized in
the same way as other vidgets [1]. The dialog for a
text-list vidget, as shown in Figure 6, allows the
specification of its selection type and other at-
tributes.

Downloading Icon Material

Most implementations of Icon are available for
downloading via FTP:

ftp.cs.arizona.edu (cd /icon)



The Icon Analyst 46 / 3

Figure 6.  Dialog for a Text-List Vidget

Using Text-List Vidgets in an Application

Text-list vidgets are appropriate when there
are a large number of items for the user to view and
from which selections may be made. Text-list
vidgets in which no selection is allowed can be
used to display data or instructions.

Text-list vidgets that allow only a single selec-
tion provide functionality similar to that for menus
and radio buttons — one of a number of mutually
exclusive choices. Multiple-selection text-list
vidgets have functionality similar to multiple in-
dependent buttons and toggle dialogs.

Setting Up Text-List Vidgets

The lines of text for a text-list vidget are set up
using

VSetItems(vidget, items)

where vidget is the text-list vidget and items is a list
of strings. There is no limit to the number of items
in  such a list except the amount of memory avail-
able to form the list.

Callbacks

As is the case for most vidgets, the callback
procedure for a text-list vidget has two arguments:
the vidget itself and a value:

procedure tl_cb(vidget, value)
…

The nature of the callback for a text-list de-
pends on its selection type. (There is, of course, no
callback for read-only text-list vidgets.) For a single-
selection vidget, the value is the line (string) se-
lected. In the case of a multiple-selection vidget,
the value is a list of the currently selected lines
(strings).

When a callback occurs for a single-selection
vidget because a line has been deselected, the value

is null. It is important to handle deselection call-
backs properly. In many applications, deselection
callbacks require no action, but they must he
handled, since the value is null, not a string as it is
for selection callbacks. A typical way of handling
deselection callbacks is

procedure tl_cb(vidget, value)

   if /value then return
… # processed selection callback

   return

end

Text-List Vidget States

A text-list vidget maintains a state that can be
queried and set in the same manner as for other
vidgets that maintain states [2].

For example, in some uses of a single-selec-
tion text-list vidget, it may be desirable for the
callback procedure itself to deselect a selected line
after it has been processed, so that the user has a
visual indication that the selection has been pro-
cessed (in analogy to a regular button, which is
briefly highlighted, as opposed to a toggle button
that remains “selected” until the user pushes it
again). Such a callback might look like this:

procedure tl_cb(vidget, value)

   if /value then return
… # processed selection callback

   VSetVidget(vidget, value)

   return

end

The call of VSetVidget() produces a callback
to tl_cb() itself, but this does not cause a problem,
since the value is null and the procedure immedi-
ately returns.

VGetState() can be used to get the state of a
text-list vidget. Unlike other vidgets that maintain
state, the state of a text-list vidget is not the same as
its last callback value. Instead, it is a list of integers.
The first integer is the index in the list of the top line
of the scrollable area. The remaining integers are
the indices of selected lines. Unlike a value in a
callback, which only gives the strings  selected, the
state provides information about their location.
This can be useful if the same string occurs more
than once in a list and the position of the selection
is significant.



4 / The Icon Analyst 46

Numerical Carpets Update

When we were finishing the article on nu-
merical carpets in the last issue of the Analyst [1],
we inserted a last-minute note to the effect that we
hoped to make the programs available on-line. We
did this with some trepidation — at the time the
programs definitely were “works in progress”.
They worked, but they had rough edges and parts
of them had been hastily put together; they were
not in shape to make public, even with disclaimers.

As has often been the case, we set out to put
the programs in acceptable (if imperfect) form. But
it wasn’t that simple: Fixing problems exposed
others and also led to the addition of facilities that
were useful but not essential. This in turn led to
conceptual problems, major revisions to the pro-
grams, and so on around the loop.

The programs are better and more capable
than the were when the original article was writ-
ten, but at a penalty: More features have added
complexity and the programs are considerably
larger.

Then documentation was needed. It has long
been our experience that the way to do research is
to write about it. This doesn’t mean starting with
nothing and writing up significant results. Rather,
it means documenting existing results and taking
very seriously the problems in exposition that
come up — discovering gaps, pieces that don’t fit
together, and giving special attention to things that
are hard to explain.

When we first started documenting our re-
search results, we thought that if we couldn’t ex-
plain something clearly, it was because of our lack
of skill and writing experience. That was part of it,
but later we came to understand that such difficul-
ties often indicate something wrong with what we
were trying to describe or a lack of sufficiently
deep understanding on our part. Now when we
have a problem explaining a concept, we question
our grasp of the material and suspect a flaw in the
concept itself. That often turns out to be the case,
and although it’s not always easy to fix the prob-
lems, fixing them often produces new and better
results.

The same is true of program documentation.
We started to document the numerical carpets
programs, stumbled over an explanation, realized
the problem was in a concept or a feature, and
stopped to fix the problem. Even when we gave up
and documented a weakness, we found that a few
days later, we had an idea for improvement. Pro-
gram development was driven by documentation
— something that’s not evident in commercial
software products … .

Out of all this came better and more capable
programs, but they still are “works in progress”.
(We don’t recall ever declaring a program finished,
although many have wound up that way.)

New concepts and features included in the
current version of the numerical carpets programs
are:

•support for databases containing multiple
carpet specifications

•a definition facility that allows a name to be
associated with a string and  used in place of
the string

•improved facilities for specifying colors

•the ability to specify the library modules that
are needed to generate carpets

•improved control over the process of gener-
ating carpets

Limitations

Like other vidgets used on VIB interfaces,
text-list vidgets cannot be resized by the program
using the interface. Since  lines of text scroll verti-
cally, the height of the vidget usually does not
present a problem. There is, however, no horizon-
tal scrolling, and lines that are too long to fit in the
area are truncated at the right. Consequently, the
width must be pre-chosen to provide adequate
space, even though the lengths of lines to be dis-
played may not be known when the interface is
constructed.

Text-list vidgets can only be used on VIB
interfaces — there is no text-list dialog. Such a
dialog would be very useful, but it is not available
because of technical problems in the implementa-
tion (in other words, we haven’t figured out how to
make it work).

References

1.“Building a Visual Interface”, Icon Analyst 34,
pp. 2-3.

2.“The Kaleidoscope”, Icon Analyst 39, pp. 5-10.



The Icon Analyst 46 / 5

The interface for the new version of the car-
pet-specification program uses scrollable text lists,
a recent addition to VIB’s repertoire that is de-
scribed in an article that begins on page 1. Figure 1
shows what the new interface looks like.

Figure 1. The New Carpet-Specification Interface

There’s documentation and example data.
Drop by and tell us what you think.

Reference

1.“Anatomy of a Program — Numerical Carpets”,
Icon Analyst 45, pp. 1-10.

Graphics Corner — Gamma

In the RGB color model, all colors are com-
posed from three components of light: red, green,
and blue. The intensity of light for each component
ranges from 0 to a maximum value that corre-
sponds to maximum intensity. The color model is
linear — a specification of 50% of a color corre-
sponds to a midway value in intensity

Unfortunately, monitor hardware is not lin-
ear. Skipping the details, it takes disproportion-

ately more voltage for electron guns to produce the
expected brightness as specified intensity increases.
A good approximation to this behavior is given by

B = I γ

where I is the specified intensity and B is the
monitor brightness, both normalized to the range
from 0.0 to 1.0.  γ is a constant that depends on the
particular monitor and can have any value greater
than 0.

Adjusting the specified intensities in this
manner is known as gamma correction. The correc-
tion is applied separately to each color component.
Maximum (1.0) and minimum (0.0) intensities are
unaffected;  mid-range values are affected the most.

For most monitors, the value of γ is between
2.0 and 3.0, with 2.2 being typical. (γ = 2.2 is
standard for color television in North America.)
For example, if γ is 2.2, then a mid-range intensity
of 0.5 translates into a brightness of about 0.218. In
order for a specified intensity of 0.5 to produce the
expected brightness, it must be changed to 0.51/γ,
which is about 0.730.

Figure 1 shows a plot for a few different
values of γ. See the side-bar Plotting Curves in
Icon on the next page to see how it was done.

Figure 1. I Versus I 1/γ

Note that low values of γ produce very dark im-
ages, while large values produce very light images.
Monitors do not have the extreme values of γ
shown in these plots, but we’ll explain later why
applying gamma adjustment independent of the
monitor’s γ can be useful.

0.0

1.0

1.0

γ = 1.0

γ = 0.5

γ = 0.1

γ = 2.2

γ = 5.0

γ = 10.0

I

I 1/γ



6 / The Icon Analyst 46

If it were just a matter of converting color
specifications to what’s needed to display them
properly, gamma correction could be done with-
out even knowing about the underlying problem.

Gamma correction is done automatically by
the graphics systems for the Macintosh and Win-
dows. For example, reading in an image file that
was saved with linear intensity values looks like it
should (or at least approximately so). Not all graph-
ics systems do automatic gamma correction how-
ever; the X Window System, which is commonly
used on UNIX platforms, does not. So a direct
monitor display of a linear-intensity image tends
to look dark and murky. It is left to applications to
do gamma correction. Icon does this, using the best
information available on the probable value of γ for
monitors used with various UNIX platforms. So if
you use Icon, image files you read into a window
are automatically corrected. There is more too it,
unfortunately.

The assumption in applying gamma correc-
tion automatically is that images files represent
intensities linearly. Not all do; some are designed
for direct display without gamma correction and
their intensity values have been adjusted for a
monitor’s γ(2.2 is typical). There generally is no
way of knowing whether an image file has been
saved with linear intensities or gamma-corrected
intensities, and if so, what value of γ was used.

Gamma Values in Icon

In Icon, the attribute gamma has the current
value of γ. For example,

WAttrib("gamma")

returns the value of γ, and

WAttrib("gamma=1.0")

sets γ to 1.0.
Changing gamma does not change existing

pixels in the window; it only affects pixels that are
subsequently drawn. Specifically, it affects the in-
terpretation of the foreground and background
colors. Put simply, all operations that read and
write pixels are interpreted with the current value
of γ.

Gamma correction normally is used to pro-
duce proper appearance on a specific monitor. It
also can be used to change the appearance of
images, such as lightening an image for a Web page
background.

Plotting Curves in Icon

It’s quite easy to plot two-dimensional
curves in Icon. Since windows are composed of
discrete pixels, you need to decide how many
pixels (points) are needed to produce an accept-
able result. Then it’s just a matter of computing
and drawing each point on the curve.

Here’s the program we used to plot the
curves in Figure 1.

link graphics

$define Dimension 1000

procedure main()

   WOpen("size=" || Dimension || "," || Dimension) |
      stop("∗∗∗ cannot open window")

   every plot_gamma( 0.1 | 0.5 | 1.0 | 2.2 | 5.0 | 10.0)

   WriteImage("gamma_plot.gif")

end

procedure plot_gamma(gamma)
   local x, y

   every x := 0 to Dimension – 1 do {
      y := (real(b) / Dimension) ^ (1.0 / gamma)
      DrawPoint(x, Dimension ∗ (1 – y))
      }

   return

end

Dimension gives the number of pixels
(points) in the x and y directions (the same in
this case). The pixel values in the x direction are
normalized for the plotting range of 0.0 to 1.0
and the y value is computed for each.

Since y increases downward in Icon’s co-
ordinate system, it is necessary to invert the y
coordinate with respect to the window height.

This program does not label the axes or the
curves. This is possible, but it’s much easier to
add these by eye using a drawing or painting
program.

We could make the program shorter at the
expense of clarity. Or we could make it much
more general, but since such programs are so
easy to write, it hardly seems worth it.

For some curves, connected line segments
produce better results than points. We leave
this as an exercise.



The Icon Analyst 46 / 7

Increasing the value of γ above the standard
generally lightens the appearance of images that
are read (except for fully saturated and fully unsat-
urated colors). Figure 2 shows an image read with
the normal value of γ, while Figure 3 shows the
same image read with γ set to 5.0.

Figure 2. Image Read with Normal γ Value

Figure 3. Image Read with γ = 5.0

If, however, an image is read with, say, γ = 5.0
and then written out, the process of writing the
image applies the inverse gamma correction and
the resulting image file is the same as the one read
in.

The way to change the appearance of the
image is to change the value of γ back to the normal
one before writing:

gamma := WAttrib("gamma") # normal gamma
WAttrib("gamma=5.0") # new value
ReadImage( … )
WAttrib("gamma=" || gamma) # restore normal
WriteImage( … )

Additional Information

We have simplified some aspects of the visual
appearance of images on computer monitors. Hard-
ware is not as simple as we’ve assumed, and the
situation is complicated by ambient light and the
way the human visual system perceives light. The

complete and correct handling of all the issues is
very difficult.

You can find more information about the
subject in text books on computer graphics [1,2]
and on the Web {1}.

More to Come

This article provides the groundwork for a
subsequent article on an application that allows
the value of γ to be changed interactively.

References

1. Computer Graphics, Donald Hearn and M. Pauline
Baker, 2nd ed., Prentice Hall, 1994, pp. 513-515.

2. Computer Graphics: Principles and Practice, James
A. Foley, Andries van Dam, Steven K. Feiner, and
John F. Hughes, 2nd ed., Addison-Wesley, 1990,
pp. 564-568.

Link

1. Poynton’s Gamma FAQ:

   http://www.inforamp.net/~poynton/notes/
   colour_and_gamma/GammaFAQ.html

itweak — An Icon Debugger

itweak is an interactive debugger for Icon,
developed by Håkan Söderström. itweak allows
you to

•set and clear breakpoints
•attach conditions to breakpoints
•evaluate Icon expressions
•define macros
•examine the procedure call chain
•get a variety of information about variables
•print information

See also the side-bar Debugger Commands on the
next page.

itweak is written in Icon. The idea behind
itweak is to modify the ucode files for the program
being debugged, first done in David Shartsis‘
debugify program. Ucode, as you may recall, is the
assembly language for Icon’s virtual machine [1-
2].

itweak has two components, itweak.icn, which
prepares the ucode files for the program to be
debugged, and dbg_run.icn, which provides run-



8 / The Icon Analyst 46

time support. Ucode files for dbg_run.icn are linked
with the tweaked ucode files for the program to be
debugged.

Here’s an example of using itweak, taken
from the demonstration included with the itweak
package. The program to be debugged is ipxref.icn
from the Icon program library. It links options.icn
from the Icon program library. In a command-line
environment, ucode files for both are created by

icont –c ipxref.icn
icont –c options.icn

The next step is to run itweak on the resulting
ucode files to prepare them for debugging:

itweak ipxref  options

This generates a file dbg_init.icn. Ucode files for it
are created by

icont –c dbg_init.icn

Finally, an  icode (“executable”) file named sample
is made by linking all the ucode files:

icont –o sample ipxref.u1 options.u1

The ucode files for dbg_init.icn are linked auto-
matically as a result of modifications to ucode files
made by itweak. Running sample starts the debug-
ging session in which commands can be entered.
For the demonstration, this is

sample ipxref.icn

which takes ipxref.icn itself as input.
While this may seem complicated, it’s en-

tirely straightforward and can be encapsulated in
a Makefile, as is done in the itweak package.

Figure 1 on pages 9 through 12 shows the
demonstration debugging session. Text entered by
the user is underlined, while program output is
not. To shorten the listing, we’ve omitted portions
of the program output, as indicated by ellipses.

Reading through the session will tell you
more about itweak and its capabilities than we can
describe in prose. We encourage you to spend

Supplementary Material

Supplementary material for this issue of the Analyst, including color images and Web links,
is available on the Web. The URL is

http://www.cs.arizona.edu/icon/analyst/iasub/ia46/ia46sub.htm

some time with it — and to get itweak and try it
yourself. itweak is in the Icon program library and
comes with extensive documentation. You can read
the documentation on-line {1}.

References

1.“An Imaginary Icon Computer”, Icon Analyst

8, pp. 2-6.

2. The Implementation of the Icon Programming Lan-
guage, Ralph E. Griswold and Madge T. Griswold,
Princeton University Press, Princeton, New Jersey,
1986.

Link

1. itweak: An Interactive Debugging Facility for the
Icon Programming Language:

   http://www.cs.arizona.edu/icon/docs/itweak.htm

Debugger Commands
break set breakpoint
clear clear breakpoint or debugger parameter
condition attach condition to breakpoint
do attach macro to breakpoint
end terminate macro definition
eprint print every value from expression
fprint formatted print
frame inspect procedure call chain
goon resume execution
help print explanatory text
ignore set ignore counter on breakpoint
info print information
macro define new command
next resume execution, break on every line
print print expressions
set set a debugger parameter
source read debugging commands from file
stop terminate debugging session
trace set value of &trace
where print procedure call chain



The Icon Analyst 46 / 9

# Annotated debugging commands for the demo debugging session.
# $Id: demo.cmd,v 2.21 1996/10/04 03:45:37 hs Rel $
# After seeing the 'automatic' debugging session you may want to repeat some of the commands manually in a new interactive session.
# The following commands use a liberal amount of 'fprint' to make the output more readable. The first few commands are spelled
# out fully. Then we start  using abbreviations.
# When you get the first prompt you are somewhere in anonymous initialization code. Enter 'next' to step into a real source file. This
#  is not necessary, but may allow you to omit the file name in 'breakpoint' commands.
next
[0] main (ipxref.icn:62)
# What source files do we have?
info files
Tweaked source files in this program:
   ipxref.icn
   options.icn
# Let's find out what globals the program contains...
fprint "––– Globals:\n"
–––Globals:
info global
alphas
buffer
……………………………………
var
xflag
# ...and the locals of the current procedure:
fprint "––– Locals in %1:\n"; &proc
––– Locals in main:
info locals
Local identifiers in the current procedure:
   L
   args
……………………………………
   w2
   word
# Set a breakpoint in the main loop.
break 88
[1]
goon
[1] main (ipxref.icn:88)
# Got the first break.
print word
{word} "link"
goon
[1] main (ipxref.icn:88)
# Next break.
pr word
{word} "global"
# Boring to 'print word' every time. Add this command to the breakpoint.  Note that when a breakpoint has commands the usual
# prelude is not printed when a breakpoint is reached. Thus add some extra printing. Note that 'fprint' does not automatically output
# a newline.
do .
fprint "––– Break in %1 line %2: "; &proc; &line
print word
end
go
––– Break in main line 88: {word} "global"
go

Figure 1. Demonstration Debugging Session



10 / The Icon Analyst 46

––– Break in main line 88: {word} "record"
go
––– Break in main line 88: {word} "("
# Attach a condition to the breakpoint. This time we use the explicit breakpoint id (1).
cond 1 word == "buffer"
go
––– Break in main line 88: {word} "buffer"
# Let's examine a compound variable.
fprint "––– Examining 'resword'.\n"
––– Examining 'resword'.
pr resword
{resword} list_429(28)
# It's a list. Try 'eprint' to see all elements.
eprint !resword
{!resword}
  1: "break"
  2: "by"
……………………………………
 27: "until"
 28: "while"
# 'eprint' prints 'every' value generated by an expression.
# Try another one.
pr prec
{prec} list_430(1)
# A list again. Prints its elements,
epr !prec
{!prec}
  1: record procrec_1(3)
# Only one element which is a record.
pr prec[1].pname
{prec[1].pname} "main"
epr !prec[1]
{!pred[1]}
  1: "main"
  2: 62
  3: 0
# We may even invoke one of the target program's procedures. Here we invoke 'addword' to add a bogus entry in the cross reference.
# We use global 'linenum' to provide the line number.
pr addword("ZORRO", "nowhere", linenum)
{addword("ZORRO", "nowhere", linenum)} &fail
# Examine globals again.
fprint "––– Globals one more time:\n"
––– Globals one more time:
inf gl
alphas
buffer
……………………………………
var
xflag
[debug NOTE] The following global(s) no longer hold their usual Icon functions:
  proc
fprint "––– WHAT??!!! The program has modified 'proc' –– bad manners!\n"
––– WHAT??!!! The program has modified 'proc' ––  bad manners!
# It's good to have a robust debugger. Let's examine the new value.
pr proc; type(proc)
{proc} "main"
{type(proc)} "string"

Figure 1 (continued). Demonstration Debugging Session



The Icon Analyst 46 / 11

# Examine the current breakpoint.
fprint "––– The current breakpoint:\n"
––– The current breakpoint:
info br .
[1] ipxref.icn 88:88  DO defined
   CONDITION: word == "buffer"
# Let's set a breakpoint in procedure 'addword'...
br 150
[2]
# ...and delete the first breakpoint.
clear br 1
go
[2] addword (ipxref.icn:150)
# This is the way to find out where we are (the procedure call chain):
where
Current call stack in co–expression_1(1):
(2) addword
(1) main
# It is possible to examine any of the frames in the call chain.
frame 1
(1) main local identifiers:
   args = list_1 = ["ipxref.icn"]
   word = "buffer"
……………………………………
   switches = table_11(0)
   nfile = &null
# Let the program work along for a while. Ignore the 280 next breaks.
fprint "––– Ignoring the next 280 breaks...\n"
––– Ignoring the next 280 breaks...
ign . 280
go
[2] addword (ipxref.icn:150)
# Find out about the word "word":
pr var["word"]
{var["word"]} table_50(2)
# It's a table. Examine its keys and entries.
epr key(var["word"])
{var["word"]} table_50(2)
{key(var["word"])}
  1: "addword"
  2: "main"
epr !var["word"]
{!var["word"]}
  1: list_2472(13)
  2: list_802(24)
# The entries are lists. Let's look at the "addword" entry.
epr !var["word"]["addword"]
{!var["word"]["addword"]}
  1: "word"
  2: "addword"
……………………………………
 12: 156
 13: 157
# That's a lot of typing. Let's try a macro.
mac var

Figure 1 (continued). Demonstration Debugging Session



12 / The Icon Analyst 46

eprint !var["word"]["addword"]
fprint "That was %1 items.\n"; ∗var["word"]["addword"]
end
# Try the macro (which has now become a new command):
var
{!var["word"]["addword"]}
  1: "word"
  2: "addword"
……………………………………
 12: 156
 13: 157
That was 13 items.
# Now we've tried the most common commands. Let the program run to completion undisturbed. The following is an abbreviation
# of 'goon nobreak'
fpr "––– Now let the program produce its normal output...\n\n"
––– Now let the program produce its normal output...
# We will see the normal output of the program: a cross reference listing (in this case applied to its own source code). Note the
# bogus 'ZORRO' variable we entered by calling 'addword'.
go no
variable procedure line numbers

L format 209 215 228 231 231 232 233
L main 64 142 144 145
……………………………………
ZORRO nowhere 74
addword ∗ main 103 107 114 119 138
……………………………………

Figure 1 (continued). Demonstration Debugging Session

Versum Primes

Most persons interested in numbers consider
the primes to be the most fascinating of all. We’ve
touched on versum primes in previous articles;
now it’s time to take a direct look at them.

We’ve seen versum primes as factors, and it’s
clear that there are a lot of them, but how many and

what kinds of properties do they have?
The smallest versum prime is the infamous 11

we encountered earlier [1]. It has the distinction of
being the only palindromic prime with an even
number of digits. We’ll explore palindromic primes
later in this article, but what about versum primes
in general?  They exist; the smallest non-palindro-
mic versum prime is 241.  The “big” question is are
there an infinite number of versum primes? That
seems very likely, but there are a number of conjec-
tures about the infinitude of various kinds of num-
bers among primes that have defied the efforts of
the best mathematicians. We’re certainly not going
to try to prove there are (or are not) an infinite
number of versum primes.

Palindromic Primes

Let’s start with an easier (?) question: “Are
there an infinite number of palindromic versum
primes?”. Or, to start even more simply, “Are there
an infinite number of palindromic primes?” Palin-
dromes (of odd length) are relatively plentiful
among primes. Very large palindromic primes are
known. As of this writing, the largest recorded one
has 11811 digits (11811 itself is a versum palin-



The Icon Analyst 46 / 13

drome but not a prime). This palindromic prime
can be represented by the digit pattern

1059011465641059011

where xn stands for n repetitions of the string x.
Since the middle digit is odd, this is not a versum
number. The largest known versum palindromic
prime has 11011 digits (11011 also is a nonprime
versum palindrome) and the digit pattern

 1055013242423055011

It’s generally believed that there are an infi-
nite number of palindromic primes, but it’s usually
listed as an unproved conjecture. We encountered,
however, the following remark in a news group
[2]:

The number of palindromic primes is infinite.
This follows from the fact that the class of
automorphic quadratic forms is also infinite.

That sounds impressive, but we have no idea what
it means, and we’re inclined to believe authorita-
tive references that say the conjecture is unproved.

You’ll recall that all palindromes with an
even number of digits are versum numbers, while
palindromes with an odd number of digits are
versum only if the middle digit is even [3].

A survey of small palindromic primes and all
the known large ones shows about half have an
even middle digit. So it’s reasonable to conjecture
that if there are an infinite number of palindromic
primes, then there are an infinite number of versum
palindromic primes, and hence an infinite number
of versum primes.

Nonpalindromic Versum Primes

But what about nonpalindromic versum
primes? As suggested earlier, there probably are
infinitely many of these, but we have no hope of a
proof, and we lack a viable way of testing large
nonpalindromic primes for versumness. The limit
for testing numbers for versumness with the best
tool we have, isversum(), is about 25 digits [4]. In
the world of primes, numbers of this size are like
dust mites.

Figure 1 is an attempt to put primes and
versum numbers in perspective. The numbers in
the left column are the numbers of digits. Thus the
scale is logarithmic for the magnitude of integers.
At the beginning are tiny numbers in the world of
primes. Hash marks separate gaps — gaps so vast
as to be incomprehensible.

Figure 1. Primes and Versum Numbers

In finding versum primes, we can test primes
for versumness or we can test versum numbers for
primality. We have lists of versum numbers up to
n = 10 [5], and it’s easy to test these for primality.
But for n > 10  we’re stuck on the versum side.
Readily available lists of small primes are more
limited, but more can be computed without diffi-
culty. There’s a problem with testing primes for
versumness; there are far too many primes. The
following listing shows the number of primes,
versum numbers, and versum primes (obtained by
testing versum numbers for primality):

n primes versum numbers versum primes

1 4 4 1
2 21 14 1
3 143 93 12

n
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

10,000

500,000

1,000,000

end of lists of small primes

limit of fast prime testing

limit of versum testing

largest known versum
    palindromic prime

second largest known prime

largest known prime

end of lists of versum numbers



14 / The Icon Analyst 46

4 1061 256 13
5 8363 1793 157
6 68906 4872 147
7 586081 34107 2047
8 5096876 92590 1862
9 45086079 648154 30018
10 404204977 1759313 28280
11 3663002302 ~12314926 ?
12 33489857205 ~33426947 ?
13 308457624821 ~233983594 ?
14 2858876213963 ~635111993 ?
15 26639628671757 ~4445688286 ?

The numbers of versum numbers for n > 10
are approximations obtained from the recurrence
given in the article cited above.

To tabulate the versum primes for n = 11, we’d
have to test more than 3.6 billion primes. Forget
that.

Nonetheless, there are still tractable problems
related to nonpalindromic versum primes. For
example, we easily can divide numbers into two
categories: non-versum and possibly versum [1].
We also might find patterns of digits other than
palindromes for which we can test for versumness.
But to do anything like this, we need the digits.

Digits, Digits

We might as well start with the biggest known
primes. Primes with 10,000 and more digits are
dubbed “gigantic”, and are available on the Net
{2}. As of this writing, there are 5401 recorded
gigantic primes (the number increases frequently).

That number of primes is reasonable to sub-
ject to the “maybe versum” test. There’s a hitch,
though. All recorded large primes are given by
mathematical expressions. For versum testing, we
need the digits for numbers.

Most mathematical expressions for primes
involve only arithmetic operations and are com-
paratively short. It may seem surprising that enor-
mous primes can be represented in this way. In
some cases, this is the result of a priori knowledge
about the mathematical structure, such as for the
Mersenne primes. See the side-bar Mersenne
Primes on the next page.

Even if there is no a priori knowledge about
the mathematical structure of a prime, it’s gener-
ally easy to get to a short mathematical expression
for a prime p: p ± 1 are composite and often yield
prime factorizations with only a few terms.
(Mersenne primes are extreme examples.)

Many of the mathematical expressions for
gigantic primes are given in a form that can be
directly evaluated in Icon. For example, the largest
known prime is given as

2^2976221–1

It is trivially easy to wrap such an expression
in a program that evaluates and writes it:

procedure main()

  write(2^2976221–1)

end

Such computations take a while, but they are fea-
sible.

The Icon Analyst

Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

Editors

The Icon Analyst is published six times a
year. A one-year subscription is $25 in the United
States, Canada, and Mexico and $35 elsewhere.
To subscribe, contact

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon–project@cs.arizona.edu

 

and

                     Bright Forest Publishers
                     Tucson Arizona

© 1998  by Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend



The Icon Analyst 46 / 15

Not all primes can be represented in a com-
pact form using simple arithmetic operations. And
in some cases, the mathematical expressions given
for primes involve notation and computations that
are not commonly seen. A simple example is

8∗R(12600)∗10^3705+1

where R(12600) stands for a number consisting of
12,600 1s. Numbers like this are called repunits. In
base 10, they can be expressed as

(10 n –1 ) / 9

It’s easy to handle repunits expressed as R(n)
— simply add a library module containing a proce-
dure R(n):

procedure R(n)

   return repl("1", n)

end

We used repl() rather than an arithmetic computa-
tion because n can be huge. This module then can
be linked as part of the evaluation wrapper.

Other unfamiliar functions and operations
can be added to this module as needed. For ex-
ample, one commonly used function in the expres-
sions for gigantic primes is the “primorial” func-
tion, primorial(n), which is the product of all primes
less than or equal to n (note the analogy to factori-
als).

The primorial function can be cast as an Icon
procedure as follows:

Mersenne Primes

For many centuries it was thought that
2p–1 was a prime for all prime p. In 1536,
Hudalricus Regius showed that 211–1 = 2047
was composite (23 × 89).

Others added to the knowledge of num-
bers of this form, but it was the French monk
Marin Mersenne who attracted attention by
making the audacious assertion in 1644 that
2p–1 is prime for p = 2, 3, 5, 7, 13, 17, 19, 31, 67,
127, and 257 but composite for all other primes
< 257. He was wrong, but his name is now
associated with primes of the form 2p–1.

At that time, no one, including Mersenne,
was able to test his assertion, which required
hand calculation. It wasn’t until 1947 that the
range in Mersenne’s assertion was completely
checked. The primes in this range occur for  p
= 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, and 127.

With more sophisticated mathematical
tools and fast computers, many more
Mersenne primes have been found. As of this
writing, there are 36 known Mersenne primes:

number       prime digits
1 2 1
2 3 1
3 5 2
4 7 3
5 13 4
6 17 6
7 19 6
8 31 10
9 61 19

10 89 27
11 107 33
12 127 39
13 521 157
14 607 183
15 1279 386
16 2203 664
17 2281 687
18 3217 969

number       prime digits
19 4253 1281
20 4423 1332
21 9689 2917
22 9941 2993
23 11213 3376
24 19937 6002
25 21701 6533
26 23209 6987
27 44497 13395
28 86243 25962
29 110503 33265
30 132049 39751
31 216091 65050
32 756839 227832
33 859433 258716
34 1257787 378632
35 1398269 420921
?? 2976221 895932

It is not known if the last Mersenne prime
is the 36th, since the region between it and
Mersenne prime 35 has not been completely
explored.

Mersenne primes are prominent in the
quest for ever larger primes. The primary rea-
son is  the Lucas-Lehmer test {2}, which makes

testing for them much faster than for other
numbers of comparable size. As of this writ-
ing, the five largest recorded primes are
Mersenne and the smallest of them has more
than three times as many digits as the largest
known non-Mersenne prime.

The search for ever larger Mersenne
primes continues with GIMPS (the Great
Internet Mersenne Prime Search). This project
uses, among other things, the resources of
thousands of PCs scattered around the world,
working on pieces of the project when they
otherwise would be idle. The necessary soft-
ware is free, and anyone with an appropriate
PC can participate {3}.



16 / The Icon Analyst 46

What’s Coming Up

Our plans for the next issue of the Analyst
include articles on exploring numerical carpet space
and an application for interactively changing the
gamma value of images. We also expect to describe
changes we’ve made to the versum-testing proce-
dure to make it more efficient.

We have lots of other things on the deck,
including material for Graphics Corner and From
the Library.

procedure primorial(n)
   local k, m

   m := 1

   every k := prime() do { # prime generator
      if k <= n then m ∗:= k
      else return m
      }

end

Incidently, in expressions for gigantic primes,
the primorial function is not given in functional
notation, but rather as a suffix operation, n# in
analogy to n!. Fortunately, it’s easy to convert this
notation to functional notation:

   expr ? {
      while writes(tab(upto(&digits))) do {
         span := tab(many(&digits))
         if ="#" then
            writes("primorial(", span, ")")
         else writes(span)
         }
      write(tab(0))
      }

This simple approach works because of the regu-
larity of the expression notation in the list of gigan-
tic primes.

Not all the functions used in the expressions
for gigantic primes are easily implemented. One
that occurs several times is the cyclotomic polyno-
mial of order n in x, which is given by

Cn(x) = Πk(x – e2πik/n)

where k runs over all positive integers less than n
that are relatively prime to n.

For this, we went to Mathematica, where it’s a
part of the standard computational repertoire. (If
you’d like to implement this in Icon, we’ll be happy
to put it in the Icon program library.)

We’ve now computed the digit expressions
for all but a few gigantic primes. They turn out to
be interesting for reasons unrelated to versum
numbers. We’ll have something to say about these
in a subsequent article.

More Information

The literature about primes is vast. In addi-
tion to the links listed below, we’ll put references
and additional links that we don’t have room for
here on the Web page for this issue of the Analyst.

References

1.“Factors of Versum Factors”, Icon Analyst 40,
p. 9-14.

2.“Palindromic Primes”, Robert D. Silverman,
net.math, June 24, 1983.

3.“Versum Palindromes”, Icon Analyst 34, p. 6-
9.

4.“Versum Numbers as Factors”, Icon Analyst

45, pp. 12-16.

5..“Versum Numbers”, Icon Analyst 35, pp. 5-
11.

Links

1.The Largest Known Primes:
http://www.utm.edu/research/primes/largest.html#contents

2.Mersenne Primes: History, Theorems and Lists:
   http://www.utm.edu/research/primes/mersenne.shtml#test

3.Mersenne Prime Search:
   http://www.mersenne.org/prime.htm


