
The Icon Analyst 47 / 1

April 1998
Number 47

In this issue …

Assault on Mount Versum ...............1
Exploring Carpet Space .................... 5
Graphics Corner ............................... 10
From the Library .............................. 13
Tricky Business ................................ 14
What’s Coming Up ..........................16
Feedback? .......................................... 16

In-Depth Coverage of the Icon Programming Language

The Icon AnalystThe Icon Analyst

Assault on Mount Versum

The main impediment to studying versum
numbers has been the difficulty of identifying
them: determining whether or not a number is
versum — the sum of a number and its reversal.

Some numbers have digit patterns, notably
palindromes,  that are easy to handle and a deter-
mination can be made quickly, independent of the
length of the number. Some numbers also can be
rejected quickly using the “first-last” test [1] — and
again in time independent of their length.

For the rest, we have been left to use a proce-
dure, vpred(), that in the worst case tries possible
solutions working from the ends all the way to the
middle, recursively. This procedure does more
than is needed to make a determination — it gen-
erates the predecessors. Generating predecessors
does not, however, appreciably increase the time
required to test for versumness, since only one
predecessor is needed for this.

The time required to test for versumness in
this fashion increases exponentially with the length
of the string for worst-case data. This has been
observed experimentally; mathematical analysis is
intractable. In other words, the time required has
the form

t = c× kn

where c is a constant that depends on the platform,
k is a platform-independent constant that is about
2.02. Figure 1 shows why this time complexity
limits versum testing in this manner to relatively
small integers.

1    2    3    4    5     6    7    8    9   10   11   12  13   14  15

700

600

500

400

300

200

100

ti
m

e

digits

Figure 1. Testing for Versumness

On the platform we’re using, versum testing
for n > 25 is impractical. For particular numbers of
interest, n can be somewhat larger — we just wait
longer — but 25 is the practical limit for general
testing.

The ideal solution to this problem is to find a
better algorithm — one with a better time complex-
ity. We have not found one and we doubt a fast
algorithm exists.

So we decided to start by seeing what we
could do to improve the performance of vpred()
without fundamentally changing the method it
uses. Note that this effort does not propose to
change the time complexity; the most it can do is
reduce the constants. In other words, it might



2 / The Icon Analyst 47

increase the value of n for which the time required
is tolerable. However successful this effort might
be, the fundamental problem remains.

What follows is a description of what we did
— a case history. The approach we took was not the
ideal one, perhaps. One can even argue that in the
face of the known time complexity, it was not
worth doing.

The Structure of the Procedures

In order to understand what follows, it’s nec-
essary to know a little about the approach and the
procedures involved.

The approach is to segregate numbers accord-
ing to their initial digit: 0, 1, and 2-9. An initial 0
arises in internal calculations and requires special
processing. Numbers that begin with 1 require a
separate approach because of the possibility that
the initial 1 is the result of a carry on reverse
addition. Numbers that begin with a digit greater
than 1 all can be treated the same way [1].

Except for numbers with initial digit 0, the
approach is to look for possible predecessors for
the middle portion between the first and last digits
— working on the middle portion of a string that is
two digits less than the original one:

first-digit middle-portion last-digit

The procedures called depend on the first digit.
Figure 2 shows the call graph.

vpred() is the “root” procedure — a wrapper
for the procedures that do the actual work. All
vpred() does is make some simple checks before
calling vpred_() and then verifies its results.

vpred_() calls other procedures depending on
the value of its argument.

vpred_1(), vpred_2(), and vpred_3() produce
the predecessors of 1-, 2-, and 3-digit numbers,
respectively. These “ground” the computation.

vpred_i0(), vpred_i1, and vpred_i2() handle
larger numbers whose initial digit is 0, 1, or 2–9,
respectively

These procedures in turn call vpred_noinc()
and vpred_inc() to look for predecessors for middle
portions that do not and do increase their length,
respectively. The latter correspond to predeces-
sors that produce a carry. These procedures call
vpred_(), which is where the recursion arises.

Dynamic Analysis

The first thing we did was to apply some of
dynamic analysis tools described in earlier Ana-
lyst articles [2-5] to try to get a better understand-
ing what goes on during the computation.

We started by looking at procedure calls.
Here is a typical example for a 20-digit number:

vpred()

vpred_()

vpred_noinc() vpred_inc()

vpred_3()vpred_2()vpred_1() vpred_i1() vpred_i2()vpred_i0()

Figure 2. Call Graph for Versum Testing Procedures



The Icon Analyst 47 / 3

procedure calls rets fails susps resums removes

vpred 3 0 3 0 0 0
vpred_ 47503 0 47503 18032 18032 0
vpred_1 4536 0 4536 0 0 0
vpred_2 16968 4536 12432 0 0 0
vpred_3 11592 0 11592 0 0 0
vpred_i1 11794 0 11794 13432 13432 0
vpred_i2 2613 0 2613 64 64 0
vpred_inc 23714 0 23714 13384 13384 0
vpred_noinc 23786 0 23786 84 84 0

The main observation is that there are a lot of
procedure calls, with vpred_() being the “winner”
as expected.

Our expectations confirmed, we overlooked
the obvious and put procedure calls aside tempo-
rarily to look at resource usage.

When looking at the program, type conver-
sions stood out. The procedures use both string
and integer representations of numbers, requiring
conversion back and forth. In addition, when we
first wrote the procedures, we were rather cavalier
about type conversion, letting it happen automati-
cally and unnecessarily. For example, there were
instances of expressions such as this:

last || vpred_inc(1 || middle) || 0

To avoid an unnecessary type conversion, this
obviously should be

last || vpred_inc("1" || middle) || "0"

We systematically revised the code to avoid
this kind of problem. We also observed that some
repetitious automatic (implicit) type conversions
could be avoided by explicit conversion, as in
string(i). Here are counts of type conversions be-
fore and after our modifications for the same num-
ber used in analyzing procedure calls:

before

Explicit successful conversions: ii 112127

Implicit successful conversions: is 158036

Implicit conversion no–ops: ss 93613

after

Explicit successful conversions: ss 192

Explicit conversion no–ops: ss  588

Implicit successful conversions: is 1048

Implicit conversion no–ops: ss 6587

The types before and after conversion are given by
letter pairs. For example, is indicates the conver-

sion of an integer to a string. The “no-ops” occur
when there is an implicit attempt to convert a value
to the type it already has.

To fully understand what’s going on, you’d
have to examine the program in detail.  The overall
picture is clear: There are far fewer type conver-
sions as the result of the changes. The changes
affect execution time somewhat; it improved about
6%.

An Accidental Discovery

While working on improving the usage of
types, we found a variety of other “little things”
that needed fixing and we went over the program
thoroughly, looking for code that could be im-
proved.

Having done this, we decided some testing
was in order to be sure we hadn’t broken anything.

Our usual tests went without a hitch. Then,
thinking of the article on versum primes in the last
issue of the Analyst [6], we tried vpred() on the
(then) largest known prime (a Mersenne prime
with 895,932 digits). This was ”safe”, since the
prime begins with a 6 and ends with a 1, and hence
fails the first-last test and should be rejected imme-
diately.

When we tried this, nothing happened. The
program just sat there, apparently hung. The obvi-
ous possibility was something wrong with the
first-last test, since without it, the program would
run for an astronomical amount of time.

Checking the code, which is very simple,
showed no problem. We briefly suspected some-
thing was wrong with Icon (a suspicion we know
we should ignore, especially in cases like this).

We turned on tracing and to our amazement,
the program “hung” in vpred() — it didn’t even get
to vpred_(). How could that be?

The first line of vpred() is a test to make sure
the number is positive:

if i < 1 then fail

Aha! In this case i was a string (read from a
file). The seemly innocuous comparison requires
converting the integer to a string. That’s a slow
process for a really large integer — quadratic in the
number of digits. In other words, the program was
working; working hard.

We changed the test to this rather awkward
expression:



4 / The Icon Analyst 47

if i[1] == ("–" | "0") then fail

and, sure enough, “instant rejection”.
Since we hope to test large integers for

versumness, we had to consider the fundamental
problem. We found many cases in which arith-
metic was performed on strings. However, we
couldn’t reverse course and make integers the
preferred form, since there were many more string
operations than integer operations, and conver-
sion between large integers and strings is slow
either way. We did what we could do easily, but
there still are places, such as the division of strings
by 2, that need to be replaced by symbolic opera-
tions. Later. In any event, the improvement in
speed for some very large numbers (notably ones
that are rejected) was improved vastly.

A Design Change

For reasons we’ve forgotten, the last thing
vpred() does when it finds a versum predecessor is
to convert it the corresponding versum primary
[7]. This has the advantage of producing  canonical
forms, but it also can be very time consuming.
Since the caller of vpred() can always compute
versum primaries from what  vpred() produces, we
eliminated the conversion and got another notice-
able improvement in speed (for numbers that are
versum).

More Dynamic Analysis

As mentioned earlier, we tabulated proce-
dure calls. This told us there were a lot of them, but
it gave no insight as to the pattern or depth of
recursion of calls.

At this point we resorted to tracing and ana-
lyzing the output, which  is voluminous for any-
thing but small numbers or quick rejections. Typi-
cal output looks like this:

vpred.icn : 37 | | vpred_("1276478784635844...")
vpred.icn : 75 | | | vpred_i1("1276478784635844...")
vpred.icn : 142 | | | | vpred_noinc("2764787846358441...")
vpred.icn : 192 | | | | | vpred_("2764787846358441...")
vpred.icn : 76 | | | | | | vpred_in("2764787846358441...")
vpred.icn : 178 | | | | | | vpred_in failed
vpred.icn : 80 | | | | | vpred_ failed
vpred.icn : 194 | | | | vpred_noinc failed
vpred.icn : 143 | | | | vpred_noinc("7647878463584414...")
vpred.icn : 192 | | | | | vpred_("7647878463584414...")
vpred.icn : 76 | | | | | | vpred_in("7647878463584414...")
vpred.icn : 176 | | | | | | | vpred_inc("1647878463584414")

vpred.icn : 185 | | | | | | | | vpred_("1647878463584414")
vpred.icn : 75 | | | | | | | | | vpred_i1("1647878463584414")
vpred.icn : 157 | | | | | | | | | | vpred_noinc("4787846358440")
vpred.icn : 192 | | | | | | | | | | | vpred_("4787846358440")
vpred.icn : 76 | | | | | | | | | | | | vpred_in("4787846358440")
vpred.icn : 178 | | | | | | | | | | | | vpred_in failed
vpred.icn : 80 | | | | | | | | | | | vpred_ failed
vpred.icn : 194 | | | | | | | | | | vpred_noinc failed
vpred.icn : 158 | | | | | | | | | | vpred_noinc(14787846358440)
vpred.icn : 192 | | | | | | | | | | | vpred_(14787846358440)
vpred.icn : 75 | | | | | | | | | | | | vpred_i1(14787846358440)
vpred.icn : 149 | | | | | | | | | | | | | vpred_noinc("78784635843")
vpred.icn : 192 | | | | | | | | | | | | | | vpred_("78784635843")
vpred.icn : 76 | | | | | | | | | | | | | | | vpred_in("78784635843")

…

We decided that the depth of recursion was
worth looking at, so we processed trace output
with this simple program to produce depth num-
bers:

procedure main()

   while line := read() do
      line ? {
         i := 0
         every tab(upto('|')) do
            i +:= 1
         write(i)
         }

end

The numbers, although less voluminous than
the trace output, were, if anything, less compre-
hensible. To understand the data, we needed a
visual representation of it. Note that the indenta-
tion of the trace output provides a visual represen-
tation, although in that form it is hard to see the
“big picture”.

We piped the numbers into a simple program
that displays a scrolling histogram. Figure 3 shows
what a (small) segment of the output looks like:

Figure 3. Visualization of Call Depth

The “peaks” and “valleys” suggest long se-
quences of recursive calls to vpred_() that ulti-



The Icon Analyst 47 / 5

mately are futile. Although this short segment
doesn’t show it, the scrolling histogram gives the
impression of repeated patterns.

In other words, it might be that the same
computation is being performed repeatedly. We
analyzed the trace output to tabulate the argu-
ments with which vpred_() was called using this
simple program:

procedure main()
   local count, line, arg, n

   count := table(0)

   while line := read() do
      line ? {
         tab(find("vpred_(") + 7) | next
         ="\"" # remove quote if string
         count[integer(tab(upto('")')))] +:= 1
         }

   count := sort(count, 4)

   while n := pull(count) do
     write(left(pull(count), 25), right(n, 8))

end

Comment: Programs like this show the value
of a high-level language with good string-process-
ing capabilities. This program took only a few
minutes to write. We probably wouldn’t have both-
ered doing it in C.

As expected, we found vpred_() called repeat-
edly with the same argument. An example is:

argument calls

15 9072
145 6720

16 4536
5 4536

146 3360
45 3360

1462 3024
18462 2240

462 1512
1463 1512

18463 1120
8462 1120

                     …

It finally occurred to us to do what we should
have considered doing earlier: Add memory to
store results and then check arguments to see if
they already had been processed, thus avoiding
redundant  computations [8-9].

Next Time

We’ll continue the assault on Mount Versum
in the next Analyst, starting by adding memory to
the procedures.

References

1.“Versum Numbers”, Icon Analyst 35, pp. 5-11.

2.“Dynamic Analysis of Icon Programs”, Icon

Analyst 28, pp. 9-12.

3.“Dynamic Analysis of Icon Programs”, Icon

Analyst 29, pp. 10-12.

4.“Dynamic Analysis”, Icon Analyst 30, pp. 6-
11.

5.“Dynamic Analysis”, Icon Analyst 33,  pp. 3-6.

6.“Versum Primes”,  Icon Analyst 46,  pp. 12-16.

7.“Equivalent Versum Sequences”, Icon Ana-

lyst 32, p. 1-6.

8.“Procedures with Memory”, Icon Analyst 21,
pp. 8-12.

9.“Procedures with Memory”, Icon Analyst 22,
pp. 1-4.

Exploring Carpet Space

When we were developing the article on nu-
merical carpets [1], we found situations in which
we wanted to vary a parameter to see what effect
that would have. For example, we varied the modu-
lus from 2 through 17 with “lone-one” initializa-
tion to show how strikingly the modulus affects
the pattern. We did this manually, creating 16
carpets, one by one.

When we found that moduli 4 and 8 produced
interesting carpets with prime-sequence initializa-
tion, we tried other moduli, starting with ones of
the form 2n. This didn’t turn up anything interest-
ing, so we thought about trying a lot of moduli,
such as 2 through 100. Doing that one by one,
however, would have required more time and



6 / The Icon Analyst 47

effort — not to mention tedium — than we were
willing to tolerate.

This is a case where the flexibility and gener-
ality of the carpet-specification program wasn’t
needed but another kind of programming help
was.

The concept is simple: Something like

every Modulus := 2 to 100 do
   # create carpet

In fact, we created an ad hoc program to generate
carpets in the background and used it to create
many carpets in which one parameter of the speci-
fication took on a range of values.

For what it’s worth, we didn’t find anything
interesting for prime-sequence initialization, but
the idea of being able to explore carpet space was
intriguing. This led to the application described in
this article.

Carpet Space

There’s more to exploring carpet space than
just varying the modulus. Carpet space, as we have
characterized it, is 7-dimensional:

width
height
modulus
top initializer
left initializer
neighbors
colors

The first three are simply numerical and their
likely ranges are comparatively small. The remain-
ing four, however, are more complex and can
reasonably take on a vast number of values. The
idea of even describing portions of 7-dimensional
carpet space is daunting; concepts and strategies
are needed. And, of course, programming help is
necessary.

An Approach to Exploring Carpet Space

What we decided to do was to design a pair of
programs using the general idea of the carpet-
specification and carpet-generation programs [1],
one program to produce specifications for portions
of carpet space and the other to produce corre-
sponding individual carpet specifications.

This is a grand idea, but the question is how to
accomplish it in a manageable way. We settled for
an application that allows the specification of alter-

native values for parameters. The result is a “meta-
specification” from which a database of carpet
specifications is obtained from combinations of
parameter alternatives .

Conceptually, a meta-specification has a form
such as this:

Width := 64 | 128
Height := 64 | 128
Modulus := 2  to 64

…

This example illustrates several problems. If
specifications are produced for every possible com-
bination of alternatives, the example above would
produce carpets of size 64×64, 64×128, 128×64, and
128×128. That might be what is wanted, but if only
64×64 and 128×128 are wanted, there is no way to
specify that. With the 63 different moduli, there
would be 252 carpets, half of which might be
unwanted. And, of course, for other parameters
with their alternatives, the number could become
astronomical.

There are certain natural couplings of param-
eters: width and height, top and left initializers,
and modulus and number of colors. By taking
alternatives in parallel from these couplings, car-
pet space is effectively reduced to 4 dimensions.
On the other hand, enforcing such couplings would
make exploring some parts of carpet space
impractically difficult.

We decided to provide optional couplings.
Note that while these couplings often occur in
practice and have a degree of naturalness to them,
they are not the only ones possible. We simply
decided that more flexibility would make the ap-
plication too complicated to use effectively.

What coupling means in terms of generating
specifications from a meta-specification is parallel
evaluation instead of the built-in cross-product
evaluation [2]. For example, coupling width and
height for

Width := 64 | 128
Height := 64 | 128

would produce carpet sizes 64×64 and 128×128,
while

Width := 128 | 64
Height := 64 | 128

would produce carpet sizes 128×64 and 64×128.
In couplings where the number of alterna-

tives is not the same, we chose to stop when one of



The Icon Analyst 47 / 7

a coupled pair of alternatives runs out. For ex-
ample,

Width := 64
Height := 64 | 128

would produce only the carpet size 64×64. It might
seem like such a specification would be a mistake,
but it could be useful when turning couplings on
and off .

Coupling of coupled pairs is possible by evalu-
ating pairs in parallel. Consider, for example,

Width := 64 | 128
# coupled pair

Height := 64 | 128
##### pairs coupled

Modulus := 5 | 6 | 7
# coupled pair

Colors := "g5" | "g6" | "g7"

(The alternatives for colors are the names of Icon
palettes.) If widths and heights are coupled and the
moduli and colors also are coupled, but separately,
there are two carpet sizes and three modulus-
colors combinations — six carpets in all. If the two
couples are coupled, there are only two carpets:
one 64×64 with modulus 5 and palette "g5" and
another 128×128 with modulus 6 and palette "g6".
The third alternates for the modulus and colors are
not used, since there are only two alternatives for
the size.

Although  parallel evaluation terminates when
one of the coupled pair of alternatives runs out,
repeated alternation can be used to “fill out”
coupled alternatives, as in

Width := |64
Height := |64
Modulus := 5 | 6 | 7
Colors := "g5" | "g6" | "g7"

which results in three 64×64 carpets.
Another problem with exploring carpet space

is that it is all too easy to produce a meta-specifica-
tion that corresponds to a huge or even unlimited

number of carpets. For example,

Modulus := seq(2)

specifies an unlimited number of moduli. An obvi-
ous solution is to use

modulus := seq(2) \ limit

but an option to limit the total number of specifica-
tions produced from a meta-specification is needed
also.

The next question is how all of this can be
represented in an interactive application.

The Carpet Meta-Specification Program

Figure 1 shows the rather odd-looking inter-
face for the meta-specification program.

Figure 1. The Application Interface

Below the menu bar are radio buttons for
specifying parallel (||) or cross-product (X) evalua-
tion. (Parallel evaluations correspond to coupling
in the sense we described earlier.) The labels W, H,
M, C, T, L, and N identify the seven parameters.
Thus, in Figure 1, widths and heights are coupled,
and all other evaluations are cross evaluations,
except that the neighbors are evaluated in parallel
with all else.

Below the radio buttons is a text-list [3] that
shows the alternatives that have been entered for a
parameter. This window serves as a focus for one
parameter at a time, rather than having seven text-
lists. In Figure 1, the focus is on the moduli. The
focus can be changed by using the Focus menu or
keyboard shortcuts.

Alternatives can be given on separate lines or
by expressions that themselves have alternatives.

Icon on the Web

Information about Icon is available on the World
Wide Web at

http://www.cs.arizona.edu/icon/



8 / The Icon Analyst 47

In Figure 1, there are two lines, one specifying
moduli 2 through 7 and the other specifying 10.
These alternatives could, of course, be given on one
line.

The add button below the text list brings up a
dialog for adding a line to the current list, while the
clear button removes all lines.

Selecting a line in the text-list brings up a
dialog that allows the line to be edited or deleted.
See Figure 2.

Figure 2. The Dialog for  a Line

The File menu provides for loading and sav-
ing meta-specifications, as well as invoking the
companion program to expand the meta-specifica-
tion.

The Implementation

The implementation of the meta-specification
program and its companion meta-expander show
some interesting aspects of programming in Icon.

The meta-specification program itself is, for
the most part, much like other interactive applica-
tions with visual interfaces. It’s too long to show
here, but it’s available on our Web site (see page 14)
and one important aspect of it is described in the
Tricky Business article that starts on page 14.

The meta-specification program incorporates
the functionality described in the previous section.
It writes out a meta-specification as a file of prepro-
cessor definitions for the parameter alternatives
and couplings. It then compiles and executes the
meta-expander, which includes the meta-specifi-
cation file: The same technique used for basic car-
pet specification and generation.

The meta-expander is more interesting. If it
weren’t for parallel evaluation, the expansion of a
meta-specification would be comparatively simple.
It might look like this:

link carputil # for record declaration
link xcode # to encode database as file

$include "plorincl.icn" # meta-specification file

procedure main()

   i := –1

   database := table()

   rec := carpet() # starting carpet

   every {
      rec.width := Width & # generate all alternatives
      rec.height := Height &
      rec.modulus := Modulus &
      rec.colors := Colors &
      rec.top := Top &
      rec.left := Left &
      rec.neighbors := Neighbors
         } \ Limit do {
         rec.name := Name || right(i +:= 1, 3, "0")
         database[rec.name] := rec
         rec := copy(rec) # start with last fields intact
         }

   xencode(database) # write to standard output

end

In this program, database is a table for the
specifications and carpet() is a record that contains
the parameters for a single carpet specification. At
the end of expansion, the database is written out
using xencode() so that it can be loaded by a
program to explore the expanded space or gener-
ate the individual carpets in the background.

The portion of the program that generates the
parameters can be written with mutual evaluation
instead of conjunction, a form that will be useful
later:



The Icon Analyst 47 / 9

  every (
      rec.width := Width,
      rec.height := Height,
      rec.modulus := Modulus,
      rec.colors := Colors,
      rec.top := Top,
      rec.left := Left,
      rec.neighbors := Neighbors
         ) \ Limit do {   …

In order to perform parallel evaluation, co-
expressions are necessary. Programmer-defined
control operations [3-4] are designed for just such
a situation. Here’s a procedure that performs par-
allel evaluation, terminating when one of the ex-
pressions runs out of alternatives:

procedure Parallel_(L) # Parallel_{expr1, expr2}

   while @L[1] do {
      @L[2] | fail
      suspend
      }

end

To see how this procedure fits into the expan-
sion process, consider only the coupling of the
width and height, which can be done as

 every (
      Parallel_ {
         rec.width := Width,
         rec.height := Height
         },
      rec.modulus := Modulus,
      rec.colors := Colors,
      rec.top := Top,
      rec.left := Left,
      rec.neighbors := Neighbors
         ) \ Limit do {   …

Of course, for cross-product evaluation to be
possible, Parallel_{ } can’t be hard-wired into the
program. Instead, an identifier is used whose value
is defined in the meta-specification:

 every (
      wh{
         rec.width := Width,
         rec.height := Height
      },
     …

where for parallel evaluation the meta-specifica-
tion file contains

$define wh Parallel_

To use this method for cross evaluation, we
need a programmer-defined control operation for
cross-product evaluation also:

procedure Cross_(L) # Cross_{expr1, expr2}

   while @L[1] do {
      while @L[2] do
         suspend
      L[2] := ^L[2]
      }

end

To get cross-produce evaluation for the width
and height, the definition in the meta-specification
file would be

$define wh Cross_

In all there are six places where there may  be
either cross-product or parallel evaluation, de-
pending on the meta-specification. The evaluation
portion of the meta-expander is:

 every {
      c3{
         c2{
            c1{
               wh{
                  rec.width := Width,
                  rec.height := Height
                  },
               mc{
                  rec.modulus := Modulus,
                  rec.colors := Colors
                  }
               },
            tl{
               rec.top := Top,
               rec.left := Left
               }
            },
         rec.neighbors := Neighbors
         }
      } \ Limit do {   …

where c1, c2, and c3 determine the evaluation
mode of the parameter pairs.

References

1.“Anatomy of a Program — Numerical Carpets”,
Icon Analyst 45, pp. 1-10.

2."Result Sequences", Icon Analyst 7, pp. 5-8.

3.“Programmer-Defined Control Operations”,



10 / The Icon Analyst 47

Graphics Corner
Gamma Adjustment

In the last issue of the Analyst [1], we de-
scribed how the gamma value can be changed to
adjust the appearance of an image displayed on a
monitor.

In this article, we describe an application that
allows the gamma value to be adjusted automati-
cally. We use the term adjustment rather than
correction, since the application can be used to
produce images that do not have a “correct” ap-
pearance but which may nonetheless be useful. For
example, the gamma value can be increased to
lighten an image to make it suitable as a back-
ground for a Web page. Changing the gamma
value also can be used to get other effects. See
Figure 1.

γ = 0.8 normal γ γ = 8.0

Figure 1.  The Effects of Different γ Settings

The Application

The idea behind the application is simple:
Read an image from a file into a window with an
altered value of γ, reset γ to its normal value, and
write the image out:

gamma := WAttrib("gamma") # normal gamma
WAttrib("gamma=5.0") # new value
ReadImage( … )
WAttrib("gamma=" || gamma) # restore normal
WriteImage( … )

The interface for the application is shown in
Figure 2.

Figure 2. The Application Interface

The File menu provides for loading and sav-
ing images and, as usual, for quitting the applica-
tion. When an image is loaded, it is displayed in a
separate window.

The slider allows the value of γ to be set in the
range of 0.1 to 100.0 on a logarithmic scale. At the
extremes, moderately saturated colors become al-
most black and white, respectively. Fully unsatur-
ated colors (intensity 0.0) and fully saturated col-
ors (intensity 1.0) are unaffected as the formula
shows:

B = I γ

The current value of γ is shown in lower
portion of the window. Initially it is the normal
value for the monitor.

Since it’s not possible to set a precise value
with a slider, the set button is provided to produce

Icon Analyst 22, pp 8-12.

4.“Programmer-Defined Control Operations”,
Icon Analyst 23, pp 1-4.

5.“Text-List Vidgets”, Icon Analyst 46, pp. 1-4.

Downloading Icon Material

Implementations of Icon are available for down-
loading via FTP:

ftp.cs.arizona.edu (cd /icon)



The Icon Analyst 47 / 11

a dialog for entering the γ value numerically. See
Figure 3.

Figure 3.  The Dialog for Setting γ

The reset button sets γ back to its initial value.
The continuous display toggle controls the

effect of moving the slider. If it’s on, as shown in
Figure 2, the appearance of the image changes as
the thumb of the slider is moved. If it’s off, the
appearance of the image only changes when the
thumb is released. The reason for this option is that
the image is read every time there is a callback from
the slider. If a callback occurs whenever the thumb
is moved, continuously updating for a large image
may be too slow and lag the thumb movement. By
filtering the slider events, a callback only occurs
then the thumb is released [2].

Aside: Ideally, a copy of the image being modi-
fied would be read into a hidden window and
copied to a visible window using CopyArea(). This
would be fast and avoid the need for filtering
events for large images. Unfortunately, CopyArea()
does not apply γ correction when copying between
windows with different values of γ. This is an
inconsistency that was overlooked in the design
and implementation of CopyArea().

The Program

The program is relatively simple and short, so
we’ll show it all here. See the notes that follow the
listing.

link interact
link vfilter
link vsetup

global continuous_vidget # update toggle
global gamma # gamma value
global gamma_vidget # gamma vidget
global default_gamma # default gamma
global name # name of image file
global pane # window for image
global vidgets # table of vidgets

procedure main()

   vidgets := ui()

   continuous_vidget := vidgets["continuous"]
   gamma_vidget := vidgets["gamma"]

   VSetState(continuous_vidget, "1")

   default_gamma := WAttrib("gamma")
   set_gamma(default_gamma)

   GetEvents(vidgets["root"], , shortcuts)

end

procedure continuous_cb(vidget, value)

   if \value then VSetFilter(gamma_vidget, &null) else
      VSetFilter(gamma_vidget, "1")

   return

end

procedure file_cb(vidget, value)

   case value[1] of {
      "load @L" :  load_image()
      "quit @Q" :  exit()
      "save @S" :  save_image()
      }

   return

end

procedure gamma_cb(vidget, value)

   set_gamma(10.0 ^ value)

   return

end

procedure load_image()

   WClose(\pane)

   repeat {
      if OpenDialog("Load image file:") ==
         "Cancel" then fail
      pane := WOpen("label=" || dialog_value, "image=" ||
        dialog_value, "gamma=" || gamma) | {
            Notice("Cannot open image file.")
            next
            }
      name := dialog_value
      Raise()
      return
      }

end



12 / The Icon Analyst 47

procedure reset_cb()

   set_gamma(default_gamma)

   return

end

procedure save_image()

   WAttrib(\pane, "gamma=" || default_gamma) | {
      Notice("No image loaded.")
      fail
      }
   snapshot(pane)
   WAttrib(pane, "gamma=" || gamma)

   return

end

procedure set_cb()

   repeat {
      if OpenDialog("Set gamma value:", gamma, 10) ==
        "Cancel" then fail
      if 0.0 <= numeric(dialog_value) <= 100.0 then {
         set_gamma(dialog_value)
         return
         }
      else {
         Notice("Invalid gamma value.")
         next
         }
      }

end

procedure set_gamma(value)

   gamma := value

   WAttrib(\pane, "gamma=" || gamma)
   VSetState(gamma_vidget, log(value, 10))
   show_gamma()
   ReadImage(\pane, name)
   Raise()

   return

end

procedure shortcuts(value)

   if &meta then case map(value) of {
      "l" :  load_image()
      "q" :  exit()
      "r" :  set_gamma(default_gamma)
      "s" :  save_image()
      }

   return

end

procedure show_gamma()
   static old_gamma, x, y

   initial {
      old_gamma := ""
      x := vidgets["placeholder"].ax
      y := vidgets["placeholder"].ay
      }

   WAttrib("drawop=reverse")
   DrawString(x, y, old_gamma)
   DrawString(x, y, gamma)
   WAttrib("drawop=copy")

   old_gamma := gamma

   return

end

#===<<vib:begin>>=== modify using vib
procedure ui_atts()
   return ["size=337,201", "bg=gray–white"]
end

procedure ui(win, cbk)
return vsetup(win, cbk,
   [":Sizer:::0,0,337,201:",],
   ["10:Label:::109,97,21,13:1.0",],
   ["20:Label:::193,97,28,13:10.0",],
   ["3:Label:::23,97,21,13:0.1",],
   ["continuous:Button:regular:1:12,120,126,20:_
      continuous update",continuous_cb],
   ["file:Menu:pull::0,2,36,21:File",file_cb,
      ["load @L","save @S","quit @Q"]],
      ["gamma:Scrollbar:h::12,62,305,16:–_
         1.0,2.0,2.0",gamma_cb],
   ["glabel:Label:::102,37,112,13:gamma correction",],
   ["label1:Label:::276,97,35,13:100.0",],
   ["label2:Label:::117,159,56,13:gamma = ",],
   ["line1:Line:::0,23,336,23:",],
   ["line2:Line:::34,80,34,90:",],
   ["line3:Line:::209,80,209,90:",],
   ["line4:Line:::121,80,121,90:",],
   ["line5:Line:::295,80,295,90:",],
   ["reset:Button:regular::57,156,42,20:reset",reset_cb],
   ["set:Button:regular::12,156,35,20:set",set_cb],
   ["placeholder:Button:regularno::179,171,35,20:",],
   )
end
#===<<vib:end>>=== end of section maintained by vib

Notes

The placeholder vidget (the last vidget in the
VIB code section above) is an invisible button — it



The Icon Analyst 47 / 13

has no label and no outline. It serves only to iden-
tify a place on the canvas to show the current γ
setting.

The procedure show_gamma()  uses the up-
per-left corner of placeholder to identify the place
the current gamma value is drawn whenever it is
changed. The placeholder vidget was positioned
experimentally to give the desired results. Note
that show_gamma() uses reversible drawing to
erase the previously displayed gamma value.

The procedure continuous_cb() changes the
filter attribute of the slider vidget using

VSetFilter(vidget, value)

There is no filtering of slider events if value is null
but filtering if it is nonnull.

Note: Prior to the development of this applica-
tion, there was no way to change the filter attribute
of a slider or scrollbar during program execution.
We had to add VSetFilter() to do this. This proce-
dure is not in the current Icon program library
(Version 9.3.1). It will appear in the next release
and will  be sent in the next subscriber update to the
library.

References

1.“Graphics Corner — Gamma Correction”, Icon
Analyst 46, pp. 5-7.

2.“Building a Visual Interface”, Icon Analyst 36,
pp. 1-4.

From The Library

In past articles on the Icon program library,
we’ve concentrated on programs and procedures
that are particularly useful. The library also con-
tains recreations. Here’s one of the best.

Concentration, also known as the Memory
Game or Pelmanism, is a card game involving
matching. A deck of cards is dealt face down on a
table, and players take turns exposing pairs of
cards, one after the other. A pair of equal rank
(such as two queens) is removed and scored for the
player, who is then awarded another turn. An
unmatched pair is turned back over and ends the
turn. Play continues until all cards have been re-
moved.

A good memory of previously seen cards is
crucial for success. Strategy also counts; some-
times it is best to choose a losing card that has been
seen before. Ian Stewart discusses two-person Con-
centration in the October, 1991, issue of Scientific
American magazine.

The Icon program library contains a solitaire
version of Concentration in the file gprogs/
concen.icn. This program displays an array of
cards, initially face down, that are manipulated
using the mouse. See Figure 1.

Figure 1. The Game of Concentration

Clicking on a card “turns it over” to reveal its
face. Another click elsewhere exposes a second
card, as seen in the screen snapshot. A third click
(anywhere) ends the turn: the two cards are re-
moved if they match or turned back over if they do
not.

When all the cards have been paired, the
game is over, and the full set of cards is displayed
face up. Clicking again reinitializes for a new game.
The program can be exited at any time by pressing
the Q key.

Pairing up a full deck of cards can seem daunt-
ing at first. The Concentration program accepts a



14 / The Icon Analyst 47

Tricky Business

If you’ve looked through Icon’s complete com-
putational repertoire, you’ve probably found things
that you couldn’t imagine you’d ever use.

One of these might be variable(), which was

command-line argument to control the number of
cards. For example,

concen 12

displays just twelve cards, a good number for
learning how the game works.

The card images used in the Concentration
game are some of the nicest we’ve seen. They came
originally from a free implementation of Spider,
an excellent double-deck solitaire game. Notice
that we’ve put  a repeat pattern with the Icon logo
on the back of the cards, although it’s difficult to
see it in Figure 1.

The Concentration card game even inspired a
television show by the same name. Hugh Downs
hosted this NBC game show, which ran from 1958
to 1973. Contestants matched pairs of hidden prizes
and won the game by solving a rebus.

added to Icon a few versions back. If s is the string
name of a variable, variable(s) returns the corre-
sponding variable, to which assignment can be
made. If s is not the name of a variable, variable(s)
fails.

One of the main uses of this function is in MT
Icon [1], in which variable() allows one thread to
access a variable in another thread. When writing
the third edition of the Icon language book, we
were hard pressed to find a meaningful example of
the use of variable() in ordinary programming [2].

It’s been our experience that unanticipated
uses of language features are discovered, some-
times long after the features are introduced. Of
course, we have no way of knowing how Icon
programmers use various features unless they tell
us.

We recently discovered a use for variable()
that we had not thought of before. It basically
involves a relationship between program structure
and the data the program processes — where strings
in the data are the names of variables in the pro-
gram. This may come about by structuring the
program to fit the data or vice versa.

An example occurs in the meta-carpet specifi-
cation program described in an article that begins
on page 5.

In this application, there is a single text-list  [3]
for displaying and modifying the alternatives for
one of seven parameters. See Figure 1 on page 7.

The parameter of interest is chosen by the user
through a keyboard shortcut or the Focus menu.
See Figure 1 below.

Figure 1. The Focus  Menu

Supplementary Material

Supplementary material for this issue of the Analyst, including color images and Web links,
is available on the Web. The URL is

http://www.cs.arizona.edu/icon/analyst/iasub/ia47/ia47sub.htm



The Icon Analyst 47 / 15

The callback procedure for this menu might
look like this:

procedure focus_cb(vidget, value)

   case value[1] of {
      "widths @W" :  focus("widths")
      "heights @H" :  focus("heights")
      "moduli @M" :  focus("moduli")

…
      }

   return

end

where focus() loads the text-list vidget with a list
that corresponds to its argument. Similarly, the
keyboard shortcuts for setting the focus just call
focus() in the same way.

We can simplify this by getting the string
from the menu item.

procedure focus_cb(vidget, value)

   focus(value[1] ? tab(upto(' ')))

   return

end

The procedure focus() then could have this
form:

procedure focus(param)

   case param of {
      "widths" :  VSetItems(display, widths)
      "heights" :  VSetItems(display, heights)
      "moduli" :  VSetItems(display, moduli)

…
      }

…

   return

end

where display is the text-list vidget and widths,
heights, moduli, … are global variables whose val-
ues are the respective lists. See Reference 3 for an

explanation of VSetItems().
You might think at this point, and rightly so,

that there is a lot of redundancy in the code above
— needed to get from strings to variables of the
same name. That’s where variable() comes in:

procedure focus(param)

   VSetItems(display, variable(param))

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.

The Icon Analyst

Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

Editors

The Icon Analyst is published six times a
year. A one-year subscription is $25 in the United
States, Canada, and Mexico and $35 elsewhere.
To subscribe, contact

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon–project@cs.arizona.edu

and

                     Bright Forest Publishers
                     Tucson Arizona

© 1998 by Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

All rights reserved.



16 / The Icon Analyst 47

What’s Coming Up

As usual, we have a lot of things on deck and
aren’t sure yet which will be in the next issue of the
Analyst.

The second article on the assault on Mount
Versum is scheduled. Also in the works are articles
on three-dimensional paths, digit patterns, and
sorting. There’ll also likely be another Graphics
Corner.

Feedback?

The next issue marks eight years of publica-
tion for the Analyst.

When we started we had some ideas about
what we wanted to do but no clear idea where they
might lead in time. And we would not have pre-
dicted that the Analyst would continue for so long.

Our initial intention was to provide material
for all levels of Icon programmers from novices to
experts. Over time, there has been less and less
material for beginning Icon programmers. For one
thing, much of the basics was covered in early
issues. For another, most of our subscribers were
experienced Icon programmers, possibly because
the Analyst did not appeal to beginning program-
mers. Another factor was our own interests.

In recent years, there has been more special-
ized material about application areas, such as the
apparently never-ending series on versum num-
bers. And the introduction of graphics in Icon has
had a major impact on the content of the Analyst.

We get very little feedback from our readers.
We would like to have more. We’d like to know
what you like and don’t like, what we might do that
we’re not doing, how you feel about the on-line
component of the Analyst, and so on.  It’s easy; just
send a message to icon-project@cs.arizona.edu.

…
   return

end

This takes care of all the parameters.
Note that the names of the variables for the

lists were chosen in coordination with the items in
the Focus menu. In other words, using variable()
was taken into account in the selection of names.

The technique can be extended to simplify
other aspects of the application. For example, by
adding a global variable current and adding the
following line to focus(), the string name of the
current parameter is available throughout the ap-
plication:

   current := param

The value of current can be used, for example,
in the callback procedure that adds a line to the list
of alternatives for the current parameter:

procedure add_cb()

   if TextDialog(
      "Add line to " || current || ":", # caption
      "alternatives", # label
      "", # default
      ExprWidth # field width
      ) == "Cancel" then fail # quick exit

   put(variable(current), dialog_value[1])

   return

end

One nice aspect of this design is that adding
another parameter does not require major revi-
sions throughout the program; in fact, the proce-
dures shown here do not need to be changed at all.

The technique described in this article is, of
course, not limited to interactive applications. It
can, for example, be used in a program that pro-
cesses data with known keywords whose occur-
rence requires actions by the program.

References

1.“Multi-Thread Icon”, Icon Analyst 14, pp. 8-
12.

2. The Icon Programming Language, 3rd edition, Ralph
E. Griswold and Madge T. Griswold, Peer-to-Peer
Communications, Inc., 1996, p. 199.

3. “Text-List Vidgets”, Icon Analyst 46, pp. 1-4.


