
The Icon Analyst 48 / 1

June 1998
Number 48

In this issue …

Line Termination .. 1
Character Patterns3
Assault on Mount Versum7
File-System Navigation Using VIB10
Programming Tips15
Subscription Renewal 16
What’s Coming Up16

In-Depth Coverage of the Icon Programming Language

The Icon AnalystThe Icon Analyst

Line Termination
Text and Binary Files

The files that can be read and written by Icon
fall into two general categories: text files and bi-
nary files. This division is more a matter of how a
file is used than any inherent property of a file.

Text files consist of lines that are followed by
line terminators, while there is no concept of lines in
a binary file. Line terminators are just characters
reserved for the purpose of terminating lines in
text files.

The lines in text files can be arbitrarily long,
although most are intended for printing or display
on a monitor and usually are of modest length.
Some applications have limits on the lengths of
lines they can read and write. Icon does not.

The function read() is intended for reading
text files. It recognizes line terminators, discards
them, and returns the characters up to line termi-
nators. The last line of a file read in text mode by
Icon need not have a terminator; Icon handles this
as a special case. Be aware though, that if the last
line of a text file does not have a terminator, some
applications may discard the last line when read-
ing.

The function reads() is intended for reading
binary files. It does not recognize or discard line

terminators (which may appear in binary files but
have no intended special status), but instead reads
a specified number of characters. For example,

reads(&input, 10)

reads and returns the next 10 characters from the
standard input file. If there are fewer than the
specified number of characters, a shorter string is
returned unless no characters remain, in which
case reads() fails.

In writing, write() appends a line terminator
to the string it writes, while writes() does not.
writes() is appropriate for writing binary data or
portions of lines to which a line terminator eventu-
ally is added.

Line Terminators

Reading and writing files would be consider-
ably simpler if all platforms used the same charac-
ters for line terminators — or even the same num-
ber of characters for line terminators.

In the MS-DOS, and hence Windows, world,
a line terminator is two characters: a “carriage
return” (hex 0D) followed by a “linefeed” (hex 0A).

This convention was derived from manual
typewriter technology, in which starting a new line
required a carriage carrying a platen to be reposi-
tioned at the left — often with a disconcerting
“clunk” — followed by notching up the platen to
move the paper up.

This concept was carried over to computer
terminals that originally, at least, were designed to
behave much like typewriters. There being no
physical “carriage” to return, the return character
moved the cursor to the left of the current line and
the linefeed character moved the cursor down one
line to start a new one. (We wondered if we needed
to explain this, but recalled that many college
students don’t know what a punched card is.)

It is, of course, not necessary to have two
characters to accomplish the action of moving the
cursor to the left and down a line; software can

2 / The Icon Analyst 48

easily interpret a single character to produce the
desired effect. Note, however, that on such termi-
nals, the two actions sometimes were required
independently for some kinds of positioning.

Better designed operating systems long ago
made the more intelligent decision to use a single
character as a line terminator and let software
provide the necessary interpretation.

The simplistic interpretation of a line termi-
nator as two characters to represent two separate
actions in MS-DOS and Windows platforms has
created endless problems even for users of other
operating systems — simply because file transfer
between different operating systems is necessary
and commonplace. Unfortunately, once such a
decision is made, implemented, and widely used,
there’s no easy way back.

UNIX uses the linefeed character as a line
terminator and calls it the newline character, but
the Macintosh OS, which came later, chose to use
the return character. While there are arguments as
to which character is better, the ASCII standard
specifies the linefeed character for this purpose.
There seems to be a “not invented here” factor in
Macintosh operating system design: being differ-
ent only to be different. Granted, the Macintosh
contributed many wonderful innovations to per-
sonal computer technology that later were lamely
copied by its competitors. The choice of a non-
standard line terminator is, however, an unneces-
sary complication, not an innovation.

Other recent operating systems use one of the
three line terminators mentioned above. For ex-
ample, the Amiga uses the linefeed, while the Atari
(no longer common) uses return/linefeed.

Prior to Version 9.3.1 of Icon, the implementa-
tion of Icon for a specific platform used the line
terminator native to that platform. With Version
9.3.1 [1], Icon recognizes all three line terminators,
allowing text files written on one platform to be
read by Icon on any platform.

C, the language in which Icon is implemented,
originated in the UNIX environment. Naturally, its
I/O libraries use the linefeed character when read-
ing and writing text files. It’s also common to find
C programs in which the linefeed character is used
explicitly with the expectation that it is the line
terminator.

When C was ported to other platforms, the
line-terminator problem had to be faced. Using
different line terminators on different platforms

would have invalidated programs that had “knowl-
edge” of the line terminator — and that it was a
single character. Instead, I/O libraries for different
platforms were written to translate between native
line terminators and the linefeed character when
reading and writing text files. Thus, for example, a
C program can write a linefeed character with the
assurance it will appear as a native line terminator,
regardless of the platform on which the program is
run. As long as the file is a text file. Having a linefeed
character translated into a return character or a
return-linefeed pair would be disastrous for a file
containing “binary” information.

It’s worth noting that in the UNIX world,
there is no real concept of text and binary files. It all
depends on what’s intended and how it is inter-
preted. Of course, programs expecting one or the
other may malfunction if given inappropriate files.
Some programs use ad hoc criteria to differentiate
between text and binary data. A common method
is to assume that a file containing any character
with the 8th bit set is a binary file. These days, such
characters provide an extended text character set
that some software handles properly and, in fact,
expects.

The Macintosh has from its conception used
most of the 256 possible 8-bit values to represent
text characters, making it the first widely available
platform on which a variety of useful (even neces-
sary) special characters could be directly repre-
sented.

Translation Modes

To deal with the different interpretation of
files, modes for reading and writing files were
introduced. In the translated mode, native line ter-
minators are translated coming in and going out.
In the untranslated mode, they are not.

The mode is a property of how a file is opened,
not of the file itself (there is nothing in a file that
says ”this is a text file” or “this is a binary file”. In
Icon, the mode can be specified in the second
argument of open(), in which options for opening
a file can be specified. The letters "t" and "u" stand
for translated mode and untranslated mode, re-
spectively. For example,

input := open("ledger.in", "u")

opens the file ledger.in for reading in text mode,
while

output := open("new.db", "wu")

The Icon Analyst 48 / 3

opens the file new.db for writing in untranslated
mode. In the absence of a mode specification, the
default is the translated mode.

It is particularly important to open a file in the
correct mode running on MS-DOS/Windows. Note
that when in UNIX, a mode specification has no
effect, while on the Macintosh it does.

A Complication

If there are complications when working
across several operating systems, expect them to
be for MS-DOS/Windows [1].

In MS-DOS, the end of a text file is indicated
by the control-Z character (hex 1A) — even if that
character actually is in the middle of a file. Our
understanding is that in early versions of MS-DOS,
this was the only way for the system to detect the
end of a text file, although later versions of MS-
DOS know how long the file is and accept the
physical end of file as well as a control-Z. Perhaps
someone with earlier experience with MS-DOS
than we have can confirm or correct this impres-
sion.

It’s easy enough to use control-Z only for its
intended purpose when creating a text file, but a
control-Z characters may — and often must —
appear in binary files.

If a binary file is read in untranslated mode,
this is not a problem. Simple enough, right? — just
open the file in untranslated mode. Wrong. Files
read from standard input are always translated;
there’s no way to prevent it.

MS-DOS/Windows users, not realizing this
somewhat subtle problem, sometimes make the
mistake of supplying a binary file as redirected
input on the command line, as in

chrcount <setup.exe

intending, perhaps, to tabulate the characters in
setup.exe. This almost always causes erroneous
results, since input stops when a control-Z is en-
countered. In this case, if the error is detected at all,
the file appears to have been truncated. This prob-
lem is the source of the most frequent single ”trouble
report” to the Icon Project.

Problems like these reside with the operating
system and I/O libraries: They are beyond the
reach of Icon.

If you need to read a binary file in untranslated
mode, the only way to do it is by opening the file

within the program. The program fileprnt.icn in the
Icon program library provides an example of how
to do this. Be aware, though, that programs written
on platforms that don’t have this problem are
unlikely to have considered it in their design or
even to have known it’s a portability problem.

Reference

1. “The Curse of DOS”, The Icon Newsletter 54, pp.
1-2.

Character Patterns

Patterns of digits often are evident in study-
ing versum numbers and primes. In the case of
versum numbers, patterns sometimes provide clues
that are helpful in discovering relationships and
basic properties. The 4-digit versum numbers that
begin with the digits 2 through 9 provide an ex-
ample:

2002 3003 4004 5005 6006 7007 8008 9009
2101 3102 4103 5104 6105 7106 8107 9108
2112 3113 4114 5115 6116 7117 8118 9119
2211 3212 4213 5214 6215 7216 8217 9218
2222 3223 4224 5225 6226 7227 8228 9229
2321 3322 4323 5324 6325 7326 8327 9328
2332 3333 4334 5335 6336 7337 8338 9339
2431 3432 4433 5434 6435 7436 8437 9438
2442 3443 4444 5445 6446 7447 8448 9449
2541 3542 4543 5544 6545 7546 8547 9548
2552 3553 4554 5555 6556 7557 8558 9559
2651 3652 4653 5654 6655 7656 8657 9658
2662 3663 4664 5665 6666 7667 8668 9669
2761 3762 4763 5764 6765 7766 8767 9768
2772 3773 4774 5775 6776 7777 8778 9779
2871 3872 4873 5874 6875 7876 8877 9878
2882 3883 4884 5885 6886 7887 8888 9889
2981 3982 4983 5984 6985 7986 8987 9988
2992 3993 4994 5995 6996 7997 8998 9999

If you look at these numbers in the right way,
it’s easy to see that adding 1001 to a number in a
column gives the value of the number to its right.
This property was discovered by looking for a
pattern and then proving the general case [1].

Mathematicians commonly use this kind of
approach to discovery but then publish only the
result and its proof [2].

The human cognitive system often can sense
the existence of patterns at a glance, but except in
the simplest cases, it cannot easily characterize
them or determine the underlying rules. This usu-

4 / The Icon Analyst 48

ally requires reasoning and tools — tools that
range from making hand notations to using com-
puter applications.

When working with versum numbers, we
used various kinds of notational devices to de-
scribe patterns and relationships. Most of these
didn’t make it into the Analyst articles, but a few
did, such as the notation sn to stand for n repetitions
of the string s. This notation does two things: It
shows a pattern and it abbreviates. The importance
of abbreviation, even when a pattern is evident, is
illustrated by this string:

 00

It’s obvious that it consists only of zeroes, but
how many are there? For this, you need a “tool” of
some kind, such making tick marks. (Without us-
ing any devices, and glancing at the line above only
briefly, how many zeros would you guess there
are?)

This inability to accurately perceive more a
small number of things quickly is a well-known
and fundamental limitation of the human cogni-
tive system. This sometimes is called “Miller’s 7 ±
2 Law” [3]. If you’re not familiar with this aspect of
the human cognitive system, try writing succes-
sively longer strings of (say) zeroes without keeping
track and see how far you can get before you can’t
accurately tell how many there are at a glance.

Where patterns are important, it is necessary
to have concepts about relevant patterns, notations
for making them evident, and tools for discovering
or creating patterns.

This article is the first in a series in which we
will explore these topics. Although motivated by
patterns in strings of digits, the problem is equally
important in other kinds of string data and the
techniques are equally applicable. Needless to say,
we will soon come to programming.

Character Encodings

The emphasis in this article is on character
patterns and generally does not apply to situations
in which the elements of interest are longer, such as
words. The reason for this distinction will become
clear before long.

In digit strings, the fundamental units are
characters. However, there are many other situa-
tions in which single characters can be used to
represent more complex entities.

This was the basis for describing geometric

designs using Lindenmayer Systems and turtle
graphics. For example, in the string

B := "F+FFff–FF+ffFFffFFff–FFFFFFFFF"

the character F indicates moving forward in the
current direction while drawing, f is the same
without drawing, + indicates a turn to the right,
and – a turn to the left. There are evident patterns
even in this short string.

Using characters to represent more complex
entities has several advantages. Such representa-
tions are compact compared to the data they en-
code, and Icon’s string processing operations can
be used to analyze and manipulate the data. For
example,

map(B, "+–", "–+")

produces a string with the directions of the turns
reversed.

Other examples of this kind of encoding are
given in the Mappings and Labelings chapter in
the Icon language book [4]. Some are more obvious
than others. Representing a standard deck of play-
ing cards by 52 different characters is natural, even
if the advantages of doing so are not clear. Other
encodings, such as using characters to label the
nodes of a directed graph, are less obvious. Con-
sider the graph shown in Figure 1.

c

e

a b d

 f

Figure 1. A Simple Directed Graph

The arcs can be represented by a string of “from-
to” character pairs:

arcs := "abbdbfcacbcedddf"

The direction of the arcs then can be reversed by

 arcs := reverse(arcs)

There are two notable disadvantages to this
kind of encoding: (1) To understand it, it is neces-

The Icon Analyst 48 / 5

sary to know what the characters stand for and
make the necessary translation, and (2) the number
of different characters available is quite limited.
We’ll have more to say about the second problem
in another article; for now, we’ll assume that prob-
lem domain is such that encodings like these are
appropriate. In the case of digit strings, the encod-
ing is inherent and imminently natural (at least in
base 10).

The next issue is what kinds of character
patterns are appropriate. This, of course, depends
on the problem domain. For analyzing versum
numbers, two kinds of patterns stand out: palin-
dromes and repetitions. In textile design (a syn-
thetic process), these are important, although pal-
indromes are treated differently (see the side bar).
Interleavings and extensions to fit width constraints
also are important patterns in textile design. In
DNA analysis, other kinds of patterns are of inter-
est, and so on.

We’ll start with the familiar territory of digit
strings and take up other problem domains in
future articles.

Patterns and Grammars

Three kinds of patterns seem useful in charac-
terizing versum numbers and primes: specific
substrings, repetitions, and reversals. We origi-
nally worked with palindromes, but eventually
decided that reversals, which can be used to de-
scribe palindromes, were more useful. Consider,
for example,

12345694560456045606328374560901456054321

This is far from being a palindrome, but the
fact that its last six digits are the reversal of its first
five might be interesting. Note also that the string
4560 is repeated three times near the beginning of
the string and occurs at two other places. This
might be important or irrelevant.

To capture such patterns, we need notation
for them. Such notation needs to be linear and
unambiguously representable in character strings.
For repetitions and reversals, it needs to be a brack-
eting notation, since patterns can be nested.

For repetitions, we chose (s,n) to represent the
string s replicated (concatenated) n times. Thus,
the three repetitions of 4560 can be represented as
(4560,3). When n is one, (s) suffices and provides
“punctuation” that can be useful for making im-
portant strings more evident. For example, the

string above might be shown as

1234569(4560,3)32837(4560)901(4560)54321

Note that the characters "(", ",", and ")" are
meta-characters that are used to describe patterns
and cannot be used for encoding data.

For reversals, we chose the notation <s> to
denote the reversal of s. This adds the characters
"<" and ">" to the list of meta-characters. The string
now can be written as

(12345)69(4560,3)32837(4560)901(4560)<12345>

There are several things wrong with the pat-
tern notation as it stands. Even in this simple
example, instances of the “important” strings 12345
and 4560 and their relationships are not easy to
identify. In more complicated cases, this problem
can be intractable. In addition, the string with
patterns encoded is longer than the original string,
whereas brevity is an important consideration.

One way to overcome these problems is to use
additional characters to represent the patterns.
Thus, if A stands for 12345 and B stands for 4560,
the encoding is considerably shortened and rela-
tionship between patterns is more obvious:

A69(B,3)32837(B)901(B)<A>

Now, however, the strings that A and B stand
for are not contained in the string. Anticipating
more such “labeled” patterns, as well as patterns
within patterns, the obvious solution in Icon is to
use a table. It can contain the “root” string, which
we’ll associate with the label ∗. It might start out
with a single element:

 pats := table()
 pats["∗"] :=
 "12345694560456045606328374560901456054321"

and acquire more elements as patterns are identi-
fied. With A and B added, the elements become

pats["∗"] := "A69(B,3)32837(B)901(B)<A>"
pats["A"] := "12345"
pats["B"] := "4560"

But this is just a representation of a (very simple)
production grammar. It can, for example, be treated
as an L-System [5-6]. This is handy, since we have
programs for dealing with L-Systems. In the syn-
tax used for these, an L-System for the pattern
above is

6 / The Icon Analyst 48

axiom:∗
∗ –> A69(B,3)32837(B)901(B)<A>
A –> 12345
B –> 4560

Although you can find the patterns used here
by hand, that’s not practical for long strings with a
lot of structure. Another thing that may not be
obvious in this simple example: There generally
are many ways in which a string can be encoded in
terms of patterns. To illustrate this, we’ll shift from
digits to letters to avoid any implication of numeri-
cal meaning. Consider this 360-character string:

bdabdabdabdabdabdabdabdabdababcbabcbabcb
abcbabcbabcbabcbabcbabcbababcbabcbabcbabc
babcbabcbabcbabcbabcbababcbabcbabcbabcbab
cbabcbabcbabcbabcbababcbabcbabcbabcbabcba
bcbabcbabcbabcbababcbabcbabcbabcbabcbabcb
abcbabcbabcbababcbabcbabcbabcbabcbabcbabc
babcbabcbababcbabcbabcbabcbabcbabcbabcbab
cbabcbababcbabcbabcbabcbabcbabcbabcbabcba
bcbabadbadbadbadbadbadbadbadbadba

This string is not contrived. It represents dis-
tances between consecutive versum numbers. We’ll
have an article on this subject in the next issue of
the Analyst.

The string above contains only four different
characters. This may seem obvious, but it’s all too
easy to miss a stray character that is similar in
shape to another. And suppose the string was 3,600
characters long instead of 360.

It’s clear at a glance that there is considerable
structure in this string. In fact, there are many
different ways of representing this string in terms
of patterns. Here’s one grammar:

axiom:∗
∗ –> Ab<A>a
A –> BD
B –> (bda,9)
C –> (babc,9)
D –> (Cba,4)

Perhaps the most important feature (for our

purposes) is that the root string is a palindrome,
Ab<A>, followed by an a. A itself has structure,
being composed of repetitions.

It may be easier to understand the structure
by viewing it as a tree, as shown in Figure 2:

BD

Ab<A>a

∗

(bda,9) (Cba,4)

(babc,9)

Figure 2. A Grammar Tree

The value of the grammatical representation
can be seen by what the string would look like with
just the pattern encodings:

(bda,9)((babc,9)ba,4)b<(bda,9)((babc,9)ba,4)>a

Here’s a different grammar for same string:

axiom:∗
∗ –> ACb<A>a
A –> (bda,9)
B –> (babc,9)
C –> (Bba,8)

This grammar is slightly shorter than the pre-
vious one, and the pattern string it describes is
considerably shorter than the previous one:

((ba,9)a,8)(ba,9)(c,9)

What constitutes a good or possibly best gram-
mar depends on the problem domain. We’ll ad-
dress this issue in a subsequent article.

Next Time

As you might expect, we did not produce the
grammars in this article by hand. In the next article
in this series, we’ll show how to find patterns and
describe an application to help with the task.

References

1.“Versum Numbers”, Icon Analyst 35, pp. 5-11.

2. Mathematics and Plausible Reasoning, G. Polya,
Princeton University Press, 1954.

Downloading Icon Material

Implementations of Icon are available for down-
loading via FTP:

ftp.cs.arizona.edu (cd /icon)

The Icon Analyst 48 / 7

3.“The Magic Number Seven, Plus or Minus Two”,
G. A. Miller, Psychological Review, 63, 81-97.

4. The Icon Programming Language, 3rd edition, Ralph
E. Griswold and Madge T. Griswold, Peer-to-Peer
Communications, Inc., 1996, pp. 237-246.

5. “Anatomy of a Program — Lindenmayer Sys-
tems”, Icon Analyst 25, pp. 5-9.

6. “Anatomy of a Program — Lindenmayer Sys-
tems”, Icon Analyst 26, pp. 4-9.

Assault on Mount Versum
(continued)

In the last article on testing numbers for
versumness [1], we described some initial steps we
made to improve performance, but we stopped at
the point where we decided to add memory for
recording the results of computations.

Adding Memory

Adding memory trades time for storage. In
the case of vpred() as originally written, the two
were out of balance — little storage was required,
but the time required was unacceptably long.

The simplest form of memory would be a
table subscripted by numbers with the correspond-
ing values being the predecessors, if any. Unfortu-
nately there is a complication: Some versum num-
bers have two predecessors [2].

We tried encoding the predecessors as strings.
Although strings provide a compact representa-
tion, encoding and decoding the strings was too
time consuming — in other words, not the right
balance of time and memory for our situation.

Next we tried records whose fields contained
the predecessors. That didn’t work: Although a
versum number can have at most two predeces-
sors, some intermediate values with leading zeros
can have more. For example, with leading zeros
allowed, as they must be in interior portions of
versum numbers, the number 1098900 has three
predecessors: 118089, 0119790, and 0549450.

Because of this, we decided to use lists. Here’s
the way memory is used; some details and matters
unrelated to adding memory are omitted:

top-level procedure
procedure vpred(s)

 local t
 static done

 # initialize predecessor memory
 initial done := vpred_init()

 # reject numbers that can't be versum
…

 # avoid buildup from successive calls
 vpred_done := copy(done)

 every t := vpred_(s) do
 if t[1] ~== "0" then suspend t

end

internal workhorse
procedure vpred_(s)
 local t, v, p, u

 # check for zeros or empty string
…

 v := vpred_done[s] # get value if any

 if \v then { # if there's a predecessor list
 suspend !v # generate the values
 fail # nothing else to produce
 }

 # select procedure according to first digit
 p := case s[1] of {
 "0" : vpred_i0
 "1" : vpred_i1
 default : vpred_in
 }

 u := set() # set for predecessors

 every t := p(s) do { # get results from procedure
 if … # test for valid predecessors
 then insert(u, t) # add to set
 }

 if ∗u = 0 then { # no predecessors
 vpred_done[s] := nopreds
 fail
 }

 u := sort(u) # need a list

 suspend !u # generate predecessors

 vpred_done[s] := u # add to memory

 fail # nothing else to produce

end
…

initialize predecessor table for all 1– , 2–, and 3–
digit numbers
procedure vpred_init()

8 / The Icon Analyst 48

 local tbl

 tbl := table()

 nopreds := [] # common empty list

 # note predecessors for numbers with initial 0s
 # are needed for intermediate results
 tbl["0"] := ["0"]
 tbl["1"] := nopreds

…

 tbl["8"] := ["4"]
 tbl["9"] := nopreds
 tbl["00"] := ["00"]
 tbl["01"] := nopreds

…

 tbl["98"] := nopreds
 tbl["99"] := ["90"]
 tbl["000"] := ["000"]
 tbl["001"] := nopreds

…

 tbl["998"] := nopreds
 tbl["999"] := nopreds

 return tbl

end

Note that providing pre-computed predeces-
sors for all 1-, 2-, and 3-digit numbers eliminates
three procedures formerly used to compute them.

Here is an example of the effectiveness of
adding memory. The number tested is the 20-digit
number used for examples in the last article [1].

without memory: 2760 ms.
with memory: 116 ms.

The impact of memory on procedure activity
is shown in the procedure-depth histograms shown
in Figures 1 and 2.

In looking at these figures, be aware that there
is a great difference in the amount of procedure
activity in the two cases. The “peaks ”and “val-
leys” are the significant aspects.

Figure 1. Call Depth Before Adding Memory

Figure 2. Call Depth After Adding Memory

Although providing memory for predeces-
sors greatly increases the speed of vpred(), the time
complexity is still exponential in the worst case.
The exponent is smaller, but the fundamental prob-
lem remains.

Insight

When we first started looking at the process of
testing for versumness, the constraints on the last
digits of a number whose initial digit is greater
than 1 were evident and relatively easy to prove
[3]. There was no such obvious test for numbers
whose initial digit was 1, and we noted this as
something to review later, but we never did came
back to it.

As things stood, it was much faster, on aver-
age, to test for versumness for numbers with initial
digit i > 1, since many can be rejected outright.

Closer inspection of versum numbers with an
initial 1 also shows a pattern that can be used to
reject some candidates. The pattern is not between
the first and last digits but between the second and
last digits:

second digit possible last digits

0 0, 1, 9
1 0, 1
2 1, 2
3 1, 2, 3
4 1, 3, 4
5 1, 4, 5
6 1, 5, 6
7 1, 6, 7
8 1, 7, 8

9 1, 8

The pattern is more obvious when repre-
sented by a matrix. First digits are given in the left-
most column; possible last digits are marked in
subsequent columns.

The Icon Analyst 48 / 9

last digit

0 1 2 3 4 5 6 7 8 9
0 × × ×
1 × ×
2 × ×
3 × × ×
4 × × ×
5 × × ×
6 × × ×
7 × × ×
8 × × ×
9 × ×

Note in particular that if the last digit is 1, any
second digit is possible. It is, no doubt, possible to
continue in this direction to find other patterns of
acceptable digits, but this is enough to make a
major difference in the speed with which many
numbers can be tested for versumness.

Here’s one way to cast the test:

procedure reject(s)
 local first, second, last

 first := s[1]
 last := s[–1]

 if first > 1 then { # "2..." ... "9..."
 if last == (first | (first – 1)) then fail
 else return
 }
 else { # 1 ...

 if last == "1" then fail # "1...1" always possible
 second := s[2]
 case second of {
 "0" : if last == ("0" | "9") then fail else return
 "1" : if last == "0" then fail else return
 "2" : if last == "2" then fail else return
 "9" : if last == "8" then fail else return
 default : if last == (second | (second – 1))
 then fail else return
 }
 }

end

Note that reject() succeeds if the number cannot be
versum.

Loose Ends

There still are possibilities for improving the
speed of versum testing. The rejection test only
works at the top level, in vpred() itself. We do not
completely understand why it doesn’t work at
lower levels (it fails only very rarely), although we
have some clues. If a good rejection test could be
found that worked internally in vpred_(), the speed
of testing for most nonversum numbers would be
improved dramatically.

We also do not completely understand the
properties of intermediate results with initial ze-
roes. There probably is less to be gained in this area,
but it’s definitely a loose end.

Conclusion

We’ve presented the performance of versum
testing in the context of testing large numbers. Any
improvements have a significant impact on small
numbers also; many procedures we’ve used in
studying aspects of versum numbers use vpred().
Cumulatively, the speed of testing is important in
many areas.

References

1.“Assault on Mount Versum”, Icon Analyst 47,
pp. 1-5.

2.“Versum Predecessors”, Icon Analyst 37, pp.
11-15.

3.“Versum Predecessors”, Icon Analyst 37, pp.
11-15.

10 / The Icon Analyst 48

File-System Navigation Using VIB

The new text-list vidget [1] has considerably
simplified many aspects of designing visual inter-
faces for Icon programs. In particular, it allows
browsing through a large number of items while
only using a fixed amount of screen space — a
capability not available with any other vidget.

One obvious use for text-list vidgets is in
navigating through a file system, moving from
directory to directory, selecting files of interest,
and so on.

Some operating systems provide methods for
file-system navigation that applications can use.
For other operating systems, an application must
provide its own navigation mechanism.

Icon’s dialogs provide ways for specifying
the names of files for opening and saving but no
way to get around in a file system or even seeing
what files exist. Proving a file-navigation mecha-
nism on a per-application basis is a formidable
task. This article describes a VIB “helper” applica-
tion that can be used in other VIB applications.

The Navigator

File-system navigation is inherently system
dependent. The application described here is de-
signed for use with UNIX. Implementations for
other operating systems would differ in detail but
not in structure.

Figure 1 shows the navigation interface.

Figure 1. The Navigation Interface

A single text-list vidget displays the contents
of the current directory in alphabetical order. The
names of directories are followed by slashes to
distinguish them from “plain” files. ../ is the direc-
tory above the current one, and ./ is the current
directory, included for completeness. Clicking on
the name of a directory makes it the current direc-
tory and lists its files. Clicking on the name of a
plain file selects it. The two buttons at the bottom
are used to dismiss the file-navigation interface.
Entering a return character is equivalent to Okay,
indicating acceptance of the currently selected file.

In addition to scrolling, the position in the file
listing can be changed using the home and end
keys, which set the position to the beginning and
end of the list, respectively. Entering a character
positions the listing so that the first file name begin-
ning with the character is shown. If there is no such
file name, the next in order determines the position.

Note that this navigation interface is not a
complete application. It provides no way to do
anything with a file or even to quit. Instead, like a
dialog, it provides information for an application
that uses it.

Using the Navigator in a VIB Application

The navigator provides six global variables
for communication with the application that uses
it:

• nav_init, a procedure for creating the interface

• nav_window, the navigator window

• nav_root, the root vidget for the navigator

• nav_keyboard, the procedure the navigator
uses for handle user keyboard input

• nav_state, the state of the navigator

• nav_file, the selected file when the navigator is
dismissed.

Calling nav_init() initializes the navigator, cre-
ating its window and setting the initial values of
global variables. The navigator window is hidden
so that its display can be controlled by the applica-
tion that uses it.

The event loop for the navigator must handle
its own functionality and provide for the use of the
navigator. This is a bit tricky, but it follows the
general method described in the Analyst article
on application with multiple VIB interfaces [1].
Here is a typical event loop:

The Icon Analyst 48 / 11

 repeat {
 case Active() of {
 &window : {
 root_cur := root
 keyboard_cur := shortcuts
 }
 nav_window : {
 root_cur := nav_root
 keyboard_cur := nav_keyboard
 }
 }
 ProcessEvent(root_cur, , keyboard_cur)
 if \nav_state then process_file()
 }

For each iteration of the event loop, the active
window is determined to see which interface has a
pending event.

If it’s the application itself (&window here),
the current root is set to its root (root here) and the
procedure for handling keyboard events is as-
signed (shortcuts here).

If, on the other hand, the active window is the
navigator’s, the variables are set to its root and
keyboard handler.

Once this is done, the event is processed.
After the event is processed, the navigator’s state is
checked. If it is nonnull, this means that the naviga-
tor handles the event and process_file() is called to
process the file.

This should appear mysterious. The
navigator’s window is created hidden, and hidden
windows don’t accept events. So where does the
navigator event come from?

This is a consequence of a procedure in the
application that needs a file, which might look like
this:

procedure find_file()

 WAttrib(nav_window, "canvas=normal")

 return

end

All this procedure does is make the navigator
interface visible so that it can accept events.

When the navigator interface is dismissed, it
sets nav_state to the name of the button used to
dismiss it: "Okay" or "Cancel". Since nav_state is
nonnull when the navigator is dismissed,
process_file() is called.

The procedure process_file() might start like

this:

 WAttrib(nav_window, "canvas=hidden")

 button := nav_state
 nav_state := null

 if nav_state == "Cancel" then fail

 input := open(nav_file) | {
 Notice("Cannot open " || image(nav_file) || ".")
 fail
 }

…

First the navigation window is hidden. The
variable button is used to save the navigator state
before it is set to null (since the navigator interface
is no longer active). Then if the navigator was
dismissed with "Cancel", meaning that the user
decided not to select a file, the procedure fails (it
could also return; the use of fail is essentially docu-
mentation).

Note that find_file() and process_file() work
cooperatively to activate and deactivate the
navigator’s interface.

The Navigation Interface

Here is the code for the navigation interface.
UNIX-specific code is surrounded with preproces-
sor conditionals to identify it and to provide a place
for corresponding code for other operating sys-
tems.

navitrix.icn:

link vsetup

$include "keysyms.icn"

global directory
global dir
global file_list
global files

Globals used to communicate with the application
that uses the navigator

global nav_file
global nav_root
global nav_state
global nav_vidgets
global nav_window

procedure nav_init()
 local window_save, atts

 window_save := &window # save current window
 &window := &null # clear for new one

12 / The Icon Analyst 48

Supplementary Material

Supplementary material for this issue of the Analyst, including images and code, is available
on the Web. The URL is

http://www.cs.arizona.edu/icon/analyst/iasub/ia48/ia48sub.htm

 atts := navig_atts()
 put(atts, "canvas=hidden")
 (WOpen ! atts) |
 stop("∗∗∗ can't open navigation window")
 nav_vidgets := navig() # initialize interface
 nav_window := &window # navigation window
 &window := window_save # restore previous
 files := nav_vidgets["files"]
 nav_root := nav_vidgets["root"]

 nav_file := nav_state := &null

 nav_refresh()

 return

end

procedure nav_files_cb(vidget, value)

 if /value then return

$ifdef _UNIX
 if value ?:= tab(upto('/')) then {
 chdir(value)
 nav_refresh()
 return
 }
$else
 Deliberate Syntax Error
$endif

 nav_file := value

 return

end

procedure nav_refresh()
 local ls, input
 static x, y

 initial {
 x := nav_vidgets["placeholder"].ax
 y := nav_vidgets["placeholder"].ay
 directory := ""
 }

$ifdef _UNIX
 input := open("pwd", "p")
$else

 Deliberate Syntax Error
$endif

 WAttrib(nav_window, "drawop=reverse")
 DrawString(nav_window, x, y, directory)
 DrawString(nav_window, x, y, directory := !input)
 WAttrib(nav_window, "drawop=copy")

 close(input)

 file_list := []

$ifdef _UNIX
 ls := open("ls –a –p .", "p")
$else
 Deliberate Syntax Error
$endif

 every put(file_list, !ls)

 VSetItems(files, file_list)

 close(ls)

 return

end

procedure nav_okay_cb()

 if /nav_file then {
 Notice("No file selected.")
 fail
 }

 nav_state := "Okay"

 return

end

procedure nav_locate(e)
 local i
 static pos

 initial pos := list(1)

 every i := 1 to ∗file_list do {
 if file_list[i] >>= e then break
 }

 pos[1] := i

 VSetState(files, pos)

The Icon Analyst 48 / 13

 return

end

procedure nav_shortcuts(e)

 case e of {
 "\r" : nav_okay_cb()
 Key_Home : VSetState(files, 1)
 Key_End : VSetState(files, ∗file_list)
 default : if type(e) == "string" then
 nav_locate(e)

 }

 return

end

procedure nav_cancel_cb()

 nav_state := "Cancel"

 return

end

#===<<vib:begin>>===
procedure navig_atts()
 return ["size=294,412", "bg=pale gray",
 "label=Navitrix"]
end

procedure navig(win, cbk)
return vsetup(win, cbk,
 ["navig:Sizer:::0,0,294,412:Navitrix",],
 ["cancel:Button:regular::86,378,49,20:Cancel",
 nav_cancel_cb],
 ["files:List:w::13,50,273,314:",nav_files_cb],
 ["okay:Button:regular::21,378,49,20:Okay",
 nav_okay_cb],
 ["placeholder:Button:regularno::20,22,65,17: ",],
 ["refresh:Button:regular::224,378,56,20:refresh",
 nav_refresh],
 ["border:Rect:grooved::18,374,55,28:",
 nav_okay_cb],
)
end

#===<<vib:end>>===

A Browser Using the Navigation
Application

Here is a simple application that illustrates
the use of the navigation interface. As written, it
provides only for invoking the navigation inter-
face (find from the File menu or @F as a keyboard
shortcut).

If a file is selected, it is displayed in a “read-
only” text list, where it can be examined. Figure 2

shows the browser after a file has been selected.

Figure 2. A File Browser

This application is only designed to show
how the navigation interface might be used. It
could, of course, be made more capable, such as
providing the ability to rename and delete files.

browser.icn:

link navitrix
link vsetup

global placeholder
global vidgets

$define LineLength 75
$define FileLength 500

procedure main()
 local root, root_cur, keyboard_cur

 nav_init()

 vidgets := ui()

 root := vidgets["root"]
 placeholder := vidgets["placeholder"]

 repeat {
 case Active() of {
 &window : {
 root_cur := root
 keyboard_cur := shortcuts
 }
 nav_window : {
 root_cur := nav_root
 keyboard_cur := nav_keyboard
 }

14 / The Icon Analyst 48

 }
 ProcessEvent(root_cur, , keyboard_cur)
 if \nav_state then process_file()
 }

end

procedure process_file()
 local input, file_list, button
 static list_vidget, x, y, name_old

 initial {
 list_vidget := vidgets["list"]
 x := placeholder.ax + TextWidth("file: ")
 y := placeholder.ay + WAttrib("leading") – 2

 name_old := ""
 }

 WAttrib(nav_window, "canvas=hidden")

 button := nav_state
 nav_state := &null

 if button == "Cancel" then fail

 input := open(nav_file) | {
 Notice("Cannot open " || image(nav_file) || ".")
 fail
 }

 file_list := []

 every put(file_list,
 left(entab(!input), LineLength)) \ FileLength

 VSetItems(list_vidget, file_list)

 close(input)

 WAttrib("drawop=reverse")
 DrawString(x, y, name_old)
 DrawString(x, y, \nav_file | "")
 WAttrib("drawop=copy")

 name_old := \nav_file

 return

end

procedure file_cb(vidget, value)

 case value[1] of {
 "find @F" : find_file()
 "quit @Q" : exit()
 }

 return

end

procedure find_file()

 WAttrib(nav_window, "canvas=normal")

 return

end

procedure shortcuts(e)

 if &meta then case map(e) of {
 "f" : find_file()
 "q" : exit()
 }

 return

end

#===<<vib:begin>>===
procedure ui_atts()
 return ["size=526,402", "bg=pale gray",
 "label=Browser"]
end

procedure ui(win, cbk)
return vsetup(win, cbk,
 [":Sizer:::0,0,468,402:Browser",],
 ["file:Menu:pull::0,3,36,21:File",file_cb,
 ["find @F","quit @Q"]],
 ["list:List:r::14,44,500,340:",],
 ["menubar:Line:::0,26,525,26:",],
 ["placeholder:Label:::88,7,42,13:file: ",],
)
end
#===<<vib:end>>===

Acknowledgment

In the article on the text-list vidget [1], we
neglected to acknowledge that the original version
was implemented by Jason Peacock under Clint
Jeffery’s direction.

Without his work, Icon’s interface toolkit
would not have this valuable vidget.

Reference

1.“Multiple VIB Interfaces”, Icon Analyst 42, pp.
1-4.

Icon on the Web

Information about Icon is available on the World
Wide Web at

http://www.cs.arizona.edu/icon/

The Icon Analyst 48 / 15

Programming Tips

Avoiding Unnecessary Storage Allocation

An expression such as

 ["red", "blue", "green"]

sometimes is called a “literal
list”. This gives the mistaken
impression that the list is a
constant that is evaluated
when the program is com-
piled. Instead, such an ex-
pression creates a new list
whenever it is encountered
during program execution.

Although it is possible
to detect lists with constant
elements at compilation time,
creating such lists at that time
and putting references to
them in the code could have
disastrous effects. For ex-
ample, in

primaries := ["red", "blue", "green"]

…

put(primaries, "cyan", "magenta", "yellow")

the second expression would modify the contents
of the “constant” list. If the first expression were
evaluated a second time, it would have six ele-
ments, not the apparent three.

A new kind of list whose length could not be
changed has been suggested, but that would add
all kinds of complexity to the language and its
implementation.

When it is known that a list will not be changed
after its creation, repeated re-creation can be
avoided by the simple expedient of assigning it to
a static variable in the initial clause for the proce-
dure:

procedure blend(c)
 static primaries

 initial primaries := ["red", "blue", "green"]
…

instead of

procedure blend(c)
 local primaries

 primaries := ["red", "blue", "green"]
…

If such a list is shared by several procedures, a
global variable can be used instead.

It is, of course, good practice to use static or
global variables for constant values and initialize
them before they are used. But it’s also extra work
and often ignored or overlooked.

It’s also easy to overlook situations in which
the same list is created over and over but never
changed. For examples lists are used for argu-
ments in some dialogs. An example is

TextDialog(
 ["Your chance to", "find a treasure!"],
 ["jewel", "coin"],
 ["emerald", "gold eagle"],
 [10, 12]
)

which produces a dialog that looks like this:

In this example, four “constant” lists are cre-
ated every time the dialog is used. This unneces-
sary list creation can be avoided as follows:

…
static captions, type, choices, widths

initial {
 captions := ["Your chance to", "find a treasure!"]
 type := ["jewel", "coin"]
 choices := ["emerald", "gold eagle"],
 widths := [10, 12]
 }

…

TextDialog(captions, type, choices, widths)

Of course, other structure-creation operations
have the same properties as list creation, but other
kinds of structures are less often used as “con-
stants”.

Don’t expect to improve program perfor-
mance much using this technique. Structure cre-
ation itself is a fast process. The more serious

16 / The Icon Analyst 48

What’s Coming Up

In the next issue of the Analyst, we plan to
have another article in the series on character pat-
terns. This article will focus on an application to
help locate and encode patterns. We’ll be back with
yet another article on versum numbers, this time
on the distances between successive ones — a topic
that motivated much of our work on character
patterns.

We have a backlog of articles for the Graphics
Corner; we’ll try to squeeze one of these in the next
issue.

Subscription Renewal

For many of you, this is the last
issue in your present subscription to
the Analyst. If so, you’ll find a re-
newal form in the center of this issue.
Renew now so that you won’t miss an
issue.

Your prompt renewal helps us by reducing
the number of follow-up notices we have to send.
Knowing where we stand on subscriptions also
lets us plan our budget for the next fiscal year.

The Icon Analyst

Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

Editors

The Icon Analyst is published six times a
year. A one-year subscription is $25 in the United
States, Canada, and Mexico and $35 elsewhere.
To subscribe, contact

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon–project@cs.arizona.edu

and

 Bright Forest Publishers
 Tucson Arizona

© 1998 by Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

All rights reserved.

concern about any kind of unnecessary storage
allocation is that it may impact program perfor-
mance by increasing the amount of time spent in
garbage collection, a relatively slow operation.

In fact, this is an example of what we call
“micro improvements” in program performance.
If, however, you can’t think of anything better to
do, such even small improvements may be worth-
while. There’s a less obvious aspect of making such
improvements in a program: In the process, you

may notice other things about the program that can
lead to more significant improvements.

We plan to have an article in a future issue of
the Analyst about the relative importance of vari-
ous approaches to improving program perfor-
mance.

