
The Icon Analyst 53 / 1

April 1999
Number 53

In this issue …

Weaving Drafts 1
Graphics Corner 4
A Small Programming Problem 10
Built-In Generators 16
Answers to Structure Quiz 19
Quiz — Expression Evaluation 19
What’s Coming Up 20

In-Depth Coverage of the Icon Programming Language

The Icon AnalystThe Icon Analyst

Weaving Drafts

We now know that handwork is a heritage which no
machine can ever take from us; we are adjusting our
needs to this knowledge.

— Marguerite P. Davison [1]

The term draft is used in weaving for any
description of a weave that can be used to produce
it on a loom. For a treadle loom, a draft has five
parts:

threading sequence
treadling sequence
warp color sequence
weft color sequence
tie-up

There are many other aspects of a weave that
we won’t consider here, such as thread thickness.

Draft Formats

Drafts traditionally have been hand-drawn
on grid paper [2]. Most computer weaving pro-
grams display an on-screen grid that is familiar to
weavers, but weaving drafts are stored in propri-
etary formats. There is also a program-indepen-
dent format for exchanging drafts between pro-
grams. We’ll describe it later in this article.

None of these formats is suitable for our ex-

ploration of weaving, which focuses on patterns.
Instead, we use pattern-forms [3], which include
the Painter weaving language repertoire [2,4].

Pattern-Form Drafts

It’s easy enough to represent the five parts of
a draft by strings. The threading and treadling
sequences (T-sequences) can be composed from
characters that label the shafts and treadles, re-
spectively. The warp and weft color sequences (C-
sequences) can be composed from characters that
label colors.

The tie-up is a matrix that can be represented
by, say, concatenated rows composed of zeros and
ones. It’s also necessary to add dimension informa-
tion, since the matrix need not be square.

There is one missing ingredient: the colors
themselves. To be general, we’d need the actual
color values. For our purposes, however, Icon’s
built-in color palettes do nicely. There are two
reasons for this: (1) the number of different colors
in actual weaves is small, and (2) color fidelity is
not necessary for exploring patterns in weaves; in
fact, it is not even achievable in actual weaving.

There is one potential problem with using
palettes. The color palettes span color space in
various ways. No color palette can come even close
to representing, say, 50 shades of blue (although
the grayscale palettes can represent up to 256 shades
of gray). We’ve not seen this kind of problem in
practice, but we’re working on programmer-de-
fined palettes to supplement the built-in ones.
Such defined palettes could handle situations the
built-in ones cannot. Although programmer-de-
fined palettes do not exist yet, they at least give us
an out for now.

The name of the palette from which the color
labels in C-sequences are composed adds a line to
pattern-form drafts. We added a line for the draft
name, making a pattern-form draft seven lines in
all. Figure 1 on the next page shows an example of
a pattern-form draft.

2 / The Icon Analyst 53

Grammar Drafts

We have used grammars to find and charac-
terize patterns in various kinds of strings [3, 5-8].
To use this approach for pattern-form drafts, we
need a corresponding grammar draft. The prob-
lem is that a weaving consists of several relatively
unrelated parts.

The T-sequences naturally go together, since
they often have patterns in common — in fact, in
many cases the two T-sequences are the same:
“tromp as writ” in weaving parlance.

The C-sequences have similar relationships
and use the same labeling characters. But the char-
acters in T- and C-sequences mean different things:
shafts and treadles versus colors. To combine them
all in one grammar invites chaos.

There are also patterns in tie-ups, but they
tend to be two-dimensional in nature and search-
ing for such patterns in a one-dimensional repre-
sentation does not work well.

To keep a draft together in one file, we de-
signed a grammar-draft format that is composed
of three sub-grammars — one for the T-sequences,
one for the C-sequences, and a token grammar in
which the name, tie-up, and palette are hidden
away. The sequence pairs are connected in defini-
tions that use variables not contained in the se-
quences.

A grammar draft is shown in Figure 2 with
long sequences truncated. It is the grammar from
which the pattern-form draft in Figure 1 was de-
rived.

WIFs

WIFs (Weaving Information Files) provide a
program-independent way of specifying weaves.
WIFs are widely used to exchange drafts between
weaving programs <1>, and there are several stand-
alone programs for converting between propri-
etary forms and WIFs <2-5>.

aquadesign name
[[1>8]∗5][[7<1]8∗4]765432[[1>8]∗5][[7<1]8∗4][7<1] threading
[[1>8]∗10] treadling
[G∗20][H∗39][G∗20][G∗19][H∗39][G∗20] warp colors
[0–>80] weft colors
c1 palette
8;8;1001001111000001111000000111000000111001100101000100101000100101 tie-up

Figure 1. A Pattern-Form Draft

name:T–aquadesign.wgr
comment:
axiom:@
genr:1
@–>X;Y
X–>1234567812345678123456781234567812345678765432187654321876543218765432...
Y–>1234567812345678123456781234567812345678123456781234567812345678123456...
end:
name:C–aquadesign.wgr
comment:
axiom:@
genr:1
@–>U;V
U–>GGGGGGGGGGGGGGGGGGGGHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH...
V–>0
end:
name:t–aquadesign.wgr
n–>aquadesign
p–>c1
t–>8;8;1001001111000001111000000111000000111001100101000100101000100101
end:

Figure 2. A Grammar Draft

The Icon Analyst 53 / 3

The WIF format is text-based, very general,
and extensible. Its syntax is based on the Windows
INI format [9], which uses named sections that
contain lists of keywords and associated values.
Figure 3 shows portions of a typical WIF.

WIFs have properties that make them inap-
propriate for direct use in our investigations:

• The format is very verbose; a typical WIF
contains a large amount of redundant infor-
mation.

• Parsing a WIF file is a messy process and not
something to do repeatedly.

• The format provides no mechanism for de-
scribing patterns — it’s just raw data.

On the other hand, WIFs provide a ready
source of material for studying patterns in weaves.
Some WIFs are available on the Web <6-8> and
there is a moderately priced CD-ROM that con-
tains thousands of WIFs [10].

To use WIFs, we need to be able to convert
them to pattern-form drafts. This is the kind of task
for which Icon is well suited. As is typical with
format-conversion programs, the process is messy
and infested with special cases. We won’t list the
program here: It would take up a lot of space
without providing much in the way of insight. We
will, however, include it with the Web material for
this issue of the Analyst, along with a consider-
ably simpler program to convert pattern-form drafts
to WIFs.

Further Articles

We have several articles on weaving in the
works, including

• a weaving case study
• finding patterns in draft sequences
• creating images from drafts
• creating drafts from images
• name and algebraic drafting
• network drafting
• name and algebraic drafting
• sequence drafting
• dobby devices and liftplans
• weavability
• a weaving program

We’re also investigating Jacquard loom tech-
nology and exotic topics like three-dimensional
weaving.

[WIF]
Version=1.1
Date=April 20, 1998
Developers=WIF@mhsoft.com
Source Program=QD WIF
Source Version=0.9.2

[CONTENTS]
Color Palette=yes
Weaving=yes
 …

[COLOR PALETTE]
Entries=16
Form=RGB
Range=0,255

[WEAVING]
Shafts=16
Treadles=25

[THREADING]
1=1
2=2
3=1
4=2
5=3
6=4
 …

[TIEUP]
1=4,5,6,7,8,9,10,11,12,13,14,16
2=1,2,6,11,12,13,14,15
3=1,2,3,4,8,12,16
4=1,2,3,4,5,6,10,15
5=1,2,6,11,14
6=1,2,3,4,5,6,7,8,12,16
 …

[TREADLING]
1=17
2=18
3=17
4=18
5=17
6=18
 …

[COLOR TABLE]
1=192,192,192
2=152,152,152
3=0,0,0
4=176,144,144
5=116,100,152
6=152,100,132
 …

[WARP COLORS]
1=6
2=5
3=3
4=3
5=3
6=8
 …

[WEFT COLORS]
1=14
2=12
3=8
4=14
5=3
6=14
 …

Figure 3. A WIF

4 / The Icon Analyst 53

The situation with respect to weaving is remi-
niscent of versum sequences — the more we ex-
plore, the more we find to explore. Incidentally,
we’re not finished with versum sequences — we’re
just taking a breather. And don’t be surprised to
see a versum weave.

Acknowledgment

We owe thanks to Jane Eisenstein, an experi-
enced handweaver. She uses several weaving pro-
grams for the Macintosh and is the author of QD
WIF for that platform <5>. She has patiently an-
swered our naive questions as we’ve been learning
about weaving. She’s also given us pointers to
other useful resources related to weaving.

References

1. A Handweaver’s Pattern Book, Marguerite P.
Davison, Marguerite P. Davison, Publisher, 1994.

2. “A Weaving Language”, Icon Analyst 51, pp.
5-11.

3. “Character Patterns”, Icon Analyst 49, pp. 1-6.

4. “A Weaving Language”, Icon Analyst 52, pp.
1-3.

5. “Character Patterns”, Icon Analyst 48, pp. 1-7.

6. “Versum Deltas”, Icon Analyst 49, pp. 6-11.

7. “Analyzing Character Patterns”, Icon Analyst
50, pp. 1-7.

8. “Tricky Business — Image Grammars”, Icon
Analyst 50, pp. 14-18.

9. Inside Windows: 3.11 Edition, Jim Boyle, et al.,
New Riders, 1994.

10. Over 7000 Draw Downs in Color, Eleanor Best,
multi-platform CD-ROM, EnGBest@aol.com,1998.

Links

1. WIF Specification:

http://www.mhsoft.com/wif/wif.html

2. WeaveConvert (Windows) for Patternland 5 and
Fiberworks 3:

http://www.blarg.net/~ender/weaveconvert/

3. ptn2wif (Windows and source code) for
WinWeave:

http://www.gac.edu/~max/weaving/ptn2wif/

4. QD WIF (Macintosh) for Macintosh ProWeave ,
WeaveMaker One, WeaveNet, and WeavePoint:

http://www.softweave.com/html/QD_WIF.html

5. WIFCNVT (Windows) for WeaveIt:

http://www.weaveit.com/support.htm

6. Weaving File Exchange:

http://www.wyellowstone.com/users/ww/
weaving.htm#File Exchange

7. Association of Northwestern Weavers Guilds:

ftp://anwg.org/pub/weaves/

8. Maple Hill Software:

http://www.mhsoft.com/wif/files/

Graphics Corner — Changing
Image Colors

There is no room for frivolity where color is concerned.
 – Color Marketing Group [1]

In the last issue of the Analyst [2], we showed
how mutable colors can be used in to create anima-
tions. This article describes a quite different use of
mutable colors — changing colors in an image
interactively.

The Application

The idea is simple — create a copy of an image
in which each color is mutable and provide an
interface through which a user can select a color
and change it. Figures 1 and 2 show the interface
and an example image.

Figure 1. The Application Interface

The Icon Analyst 53 / 5

Figure 2. An Example Image

The palette on the interface contains a cell for
each color in the image. When the user clicks on
cell, a color dialog is presented, as shown in Figure
3.

Figure 3. Color Dialog

Note that the dialog provides information about
the use of the selected color in the image.

When the user changes the color in the dialog,
as shown by the example in Figure 4, that color
changes in the image.

Figure 4. Modified Color Dialog

In Figure 4, the selected color has been changed
to black, the background color for the image, caus-
ing the ornamentation in the center of the image to
disappear. The result is shown in Figure 5.

Figure 5. The Modified Image

If the user dismisses the color dialog with
Cancel rather than Okay, the previous color is
restored.

The application also provides for saving a
changed image and reverting to the original colors.

 Many other features could be added. See the
Extensions section at the end of this article.

The Program

The complete program is shown in Figure 6
on following pages. The comments about the pro-
gram are keyed to the numbered circles in the
listing.

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.

6 / The Icon Analyst 53

link graphics
link interact
link numbers
link tables

global cellsize # size of palette cell
global colors # mutable color list
global count # table of pixel counts
global image_window # window for user image
global mutant # image with mutable colors
global orig_colors # list of original colors
global palette # color selection palette
global panel # palette window
global pixels # number of pixels in image window
global mutant_posx # location of mutant window
global mutant_posy

$define ColorRows 8 # palette rows
$define ColorCols 16 # palette columns
$define FrameWidth 24 # allowance for window–manager frame (ad hoc)

procedure main()
 local atts, vidgets

 atts := ui_atts()

 put(atts, "posx=0", "posy=0") �

 (WOpen ! atts) | stop("∗∗∗ cannot open application window")

 mutant_posx := WAttrib("posx") + WAttrib("width") + FrameWidth
 mutant_posy := WAttrib("posy") �

 vidgets := ui()

 palette := vidgets["palette"]

 cellsize := palette.uw / ColorCols �

 panel := Clone("bg=black", "fg=black", "dx=" || palette.ux, "dy=" || palette.uy)
 Clip(panel, 0, 0, palette.uw, palette.uh) �

 clear_palette()

 GetEvents(vidgets["root"], , shortcuts) �

end

Set up empty palette grid.

procedure clear_palette()
 local x, y

 Fg(panel, "black")
 EraseArea(panel)
 WAttrib(panel, "fillstyle=textured") �

 Pattern(panel, "checkers")
 Bg(panel, "very dark gray")

 every x := 1 + (0 to ColorCols – 1) ∗ cellsize do
 every y := 1 + (0 to ColorRows – 1) ∗ cellsize do
 FillRectangle(panel, x, y, cellsize – 1, cellsize – 1) �

 WAttrib(panel, "fillstyle=solid")
 Bg(panel, "black")

 return

end

Handle File menu.

Figure 6. The Program

� The posx and posy attributes
are added to the attributes VIB pro-
vides for the application window.
The intent is to position the applica-
tion window at the upper-left cor-
ner of the screen. This generally is
not possible, since the window man-
age provides a frame around the
window that must fit on-screen.
Most window managers do the best
they can to position the window as
requested. However, the actual co-
ordinates may not be the same as
the requested ones.

� mutant_posx and mutant_posy
are set to position the window for
the mutable image to the right of
the application window. In general,
it’s not possible to compute the win-
dow manager’s frame width. An ad
hoc constant is used to approximate
it.

� The cell size is computed from
the “usable” size of the region,
which is inside its visual frame. We
assume here that the region size has
been set up in VIB so that this works
out properly.

� A window for the palette grid is
cloned from the application win-
dow and the clipping is set so that
drawing on the grid cannot over-
write areas outside it.

� GetEvents() is used because this
application is entirely event driven.
That is, computation is done only as
a direct result of user requests.
GetEvent() never returns; user ac-
tion causes program termination.

� The cells are filled initially with
a dark checkered background. This
makes it easy to distinguish unused
cells from cells filled with colors,
which are solid.

� Notice that the filled rectangles
are one pixel less on a side than the
cell size. This provides the black
borders around the cells.

The Icon Analyst 53 / 7

procedure file_cb(vidget, value)

 case value[1] of {
 "open @O" : image_open()
 "quit @Q" : quit()
 "revert @R" : image_revert()
 "save @S" : image_save()
 }

 return

end

Open new image.

procedure image_open()
 local i, x, y

 WClose(\image_window) �

 repeat {
 if OpenDialog("Open image:") == "Cancel" then fail
 image_window := WOpen("canvas=hidden", "image=" || dialog_value) | {
 Notice("Cannot open image.") 	

 next
 }
 break
 }

 mutate(image_window) | fail # create the mutant window

 Raise()

 clear_palette() # clear old color cells

 colors := vallist(orig_colors) �

 i := 0

 every y := 1 + (0 to ColorRows – 1) ∗ cellsize do
 every x := 1 + (0 to ColorCols – 1) ∗ cellsize do {
 Fg(panel, colors[i +:= 1]) | break break
 FillRectangle(panel, x, y, cellsize – 1, cellsize – 1)
 }

 return

end

Save current image, which is in the mutant window.

procedure image_save()

 snapshot(\mutant) | { �

 Notice("No image to save.")
 fail
 }

 return

end

Restore original image colors.

procedure image_revert()
 local old, color

 every old := key(orig_colors) do {

 color := orig_colors[old]
 Color(panel, color, old)
 }

Figure 6 (continued). The Program

� Before an image is opened, the
previous image, if any, is closed.
The nonnull test fails if there is not
a previous image.

	 The image is opened with its
canvas hidden. A window for the
mutable image will be created, and
there is no need to produce a dis-
traction by having two windows
visible on screen. If the image can-
not be opened, WOpen() fails and
the user is notified.

 After the mutant window is cre-
ated, Raise() is used to bring the
application window to the front and
make it the “focus“ from which
events are then accepted. (The fo-
cus may not be set by all window
managers.)
� orig_colors is a table created by
mutate(). Its keys are the mutable
color numbers and the correspond-
ing values are the original image
colors. The palette cells are filled
using the mutable colors, which at
this point have the same color val-
ues as those in the image.
� If there is no mutant window, an
attempt to save an image results in
a notification to the user. This can
only happen if the user tries to save
an image before opening one, but
an application needs to handle ab-
errant user actions (not to mention
crazed beta-testers) in a proper way.
The use of fail instead of return here
and in other similar situations is
primarily for documentation pur-
poses and for tracing. It has no ac-
tual affect on program behavior.

 The original color values are in
orig_colors. To revert to them, the
corresponding mutable colors in the
color panel are reset. Changing the
color value associated with a mu-
table color changes the color value
in all windows of an application. It
therefore is not necessary to change
the color values in the mutant win-
dow explicitly.

8 / The Icon Analyst 53

 return

end

Get mutable colors and window from image.

procedure mutate()
 local c, width, height, n, x, y

 WClose(\mutant)

 orig_colors := table()
 count := table(0)

 width := WAttrib(image_window, "width")
 height := WAttrib(image_window, "height")

 pixels := width ∗ height

 mutant := WOpen("width=" || width, "height=" || height,
 "posx=" || mutant_posx, "posy=" || mutant_posy) | {
 Notice("Cannot open mutant window.")
 fail
 }

 every y := 0 to height – 1 do {
 x := 0
 every c := Pixel(image_window, 0, y, width, 1) do {
 if not(n := \orig_colors[c]) then {
 orig_colors[c] := n := NewColor(c) | {
 Notice("Too many colors in image.") �

 WClose(mutant)
 fail
 }
 }
 count[n] +:= 1
 Fg(mutant, n)
 DrawPoint(mutant, x, y) �

 x +:= 1
 }
 }

 return

end

Handle callbacks on the palette.

procedure palette_cb(vidget, e, x, y)
 local color, new

 if e === (&lpress | &mpress | &rpress) then { �

 color := Pixel(x, y, 1, 1) # get pixel color
 if not integer(color) then fail # not mutable
 new := Color(panel, color) # get color
 if ColorDialog(
 "Adjust color (" || count[color] || " pixels, " ||
 frn((100.0 ∗ count[color]) / pixels, , 2) || "%):",
 Color(panel, color),
 track, # procedure to track color changes �

 color # color being mutated
) == "Okay" then new := dialog_value
 Color(panel, color, new)
 Color(mutant, color, new)
 }

Figure 6 (continued). The Program

� NewColor() fails if no more
mutable colors are available.
This means that the image has
too many colors for this appli-
cation. Only 256 colors are
available altogether. Two are
needed for every color in the
image — one for the color itself
and another for its mutable
counterpart. Consequently,
images that can be processed
cannot have more than 128
characters. The actual number
is less in most cases, since black
and white are reserved and the
application interface uses two
other colors. Note that if there
are too many colors, the par-
tially completed mutable win-
dow is closed. Opening an-
other image causes this also,
but it’s better not to leave the
screen cluttered, even tempo-
rarily.

� For every pixel in the im-
age, a corresponding pixel in
the mutant window is drawn.
Drawing an image of more
than trivial size, point by point,
is time-consuming. The prac-
tical size of images for which
this application can be used is
limited.

� The user presses a mouse
button with the mouse pointer
positioned on a cell on the pal-
ette grid to indicate that the
corresponding color is to be
adjusted. Note that if the color
of the pixel on which the user
clicks is not an integer, it is not
a mutable color. This can hap-
pen if the user clicks on an
empty cell or, more likely, ac-
cidentally clicks on a border
pixel between cells. If this hap-
pens, the event is ignored.

� The third argument in a call
of ColorDialog() is a procedure
to call for every change the
user makes to the color. This

The Icon Analyst 53 / 9

 return
end

Quit the application.

procedure quit()

 snapshot(\mutant)

 exit() �

end

Handle keyboard shortcuts.

procedure shortcuts(e)

 if &meta then case(map(e)) of {
 "o" : image_open()
 "q" : quit()
 "r" : image_revert()
 "s" : image_save()
 }

 return

end

Track the color in the color dialog.

procedure track(color, s) �

 Color(panel, color, s)
 Color(mutant, color, s)

 return

end

#===<<vib:begin>>=== modify using vib; do not remove this marker line
procedure ui_atts()
 return ["size=355,225", "bg=pale gray", "label=chameleon"]
end

procedure ui(win, cbk)
return vsetup(win, cbk,
 [":Sizer:::0,0,355,225:chameleon",],
 ["file:Menu:pull::1,0,36,21:File",file_cb,
 ["open @O","save @S","revert @R","quit @Q"]],
 ["menubar:Line:::0,21,357,21:",],
 ["palette:Rect:invisible::19,41,320,160:",palette_cb],
)
end
#===<<vib:end>>=== end of section maintained by vib

Figure 6 (concluded). The Program

allows user changes to be tracked in the mutant
image so the user can see the effect of changes as
they are made and before they become perma-
nent.

� The application should keep track of whether
or not the image has been changed since it was last
saved and offer to save it only if it has changed.

� When the tracking procedure is called, its first
argument is the fourth one provided when

ColorDialog() is called (in this
case, the mutable color being
changed). The second argu-
ment to the tracking function
is the current color from the
dialog. Both the pixels in the
palette grid and the image it-
self are changed.

Extensions

The functionality of the
program described here could
be extended is several ways.
Some suggestions are:

• selection of a color by click-
ing on a pixel in the mutant
image
• palette color sets that can be
saved and loaded
• an undo facility
• freeing colors when the mu-
tant image is closed so that
they can be reused for another
image
• multiple mutant windows
with color transfer between
them.

You probably can think
of other possibilities … contri-
butions to the Icon program
library always are welcome.

Limitations

Recall that mutable colors only
work with monitors set to 8-
bit depth or less and that they
do not work properly in Win-
dows Icon.

Acknowledgment

The images used in the examples in this article and
on the last page were adapted from an “air horse”
created by Laurens Lapré, using his very sophisti-
cated Lparser application <1,2>.

Next Time

In the next Graphics Corner, we’ll return to pat-
terns and describe an application for finding inter-
esting tiles in even the most mundane image.

10 / The Icon Analyst 53

References

1. This remark is from a 1995 press release by The
Color Marketing Group <3> in which they an-
nounced the new color names for 1995, including
Coralando and Cricket. Other new colors this or-
ganization has “created” in recent years include
Vinaigrette, Stetson, Canyon Cloud, Elephant’s
Breath, Highway, Red Haute, and Treasure. The
new colors they announced for 1999 include
Cosmetique Peach, Beignet, Blue Moon, Par Four
Green, Pink for Sure, Hip Hop Yellow, and Mineola
Orange.

2. “Animation — Mutable Colors”, Icon Analyst
52, pp. 11-16.

Links

1. Lparser:

 http://www.xs4all.nl/~ljlapre/lparser.htm

2. Lparser for the Macintosh:

 http://www.geocities.com/CapeCanaveral/9376/
 meshula.html#LParser

3. Color Marketing Group:

 http://www.colormarketing.org/

A Small Programming Problem —
Sorting Digits

 The chief cause of problems is solutions.
 — unknown

The Problem

Late last year we posted the following prob-
lem to members of icon-group:

Write a procedure digsort(i) that returns the
integer that results from sorting the digits of
i, preserving sign. For example, digsort(201)
should return 12 and digsort(–1042) should
return –124. You may assume i is an inte-
ger.

We later had to clarify this with the additional
provision that duplicate digits should be preserved,
so that, for example, digsort(10881) should return
1188. (Without this provision, the problem is es-
sentially trivial — integer(cset(i))).

We received a number of solutions, some
though icon-group, others directly, and we added
a few of our own. Two solutions were erroneous:
They failed to handle zero correctly.

We originally planned to present the results
exactly as received, preserving the author’s style,
variable names, and so on. This approach, how-
ever, made it difficult to compare the solutions, so
we’ve modified the solutions to use similar styles
and names. We’ve also eliminated comments in
the few cases they were provided in favor of out-
of-line remarks. In some cases we’ve combined
very similar solutions.

We’ve not associated authors’ names with
particular solutions (no glory; no embarrassment).
The authors are, however, listed at the end of this
article.

We’ve classified the solutions by the kinds of
data structures and operations that were used.

Basic String and Cset Operations:

Several of the solutions used only basic string
and cset operations.

Solution 1:

procedure digsort(i)
 local c, s

 s := ""

 every c := !"–0123456789" do
 every find(c, i) do
 s ||:= c

 return integer(s)

end

This is about as straightforward as you can
get. It could be made slightly faster, on average, by
handling 0 differently:

 every c := !"–123456789" do
 every find(c, i) do
 s ||:= c

 return integer(s) | 0

This saves looking for zeros in the integer, leaving
s as the empty string only if i is 0. This is handled
by the alternative in the return expression, since
integer() fails and 0 is returned. Note that the
alternative is evaluated only if i is 0; there is no
overhead otherwise.

Incidentally, some solutions similar to this

The Icon Analyst 53 / 11

one used upto(c, i) instead of find(c, i). This requires
converting the string c produced by element gen-
eration to a cset for every call of upto() and hence is
slower.

Solution 2:

procedure digsort(i)
 local c, s

 s := ""
 i := string(i)

 every c := !cset(i) do
 every s ||:= (find(c, i) & c)

 return integer(s)

end

This solution, as simple as it appears, has
several clever aspects. The first is the conversion of
i to a string, so that it doesn’t have to be done in
every call of find(). This solution also uses cset(i) to
remove digits that do not occur in i. For some data,
this may be faster, but it requires the creation of a
cset and conversion back to a string for the element
generation operator. Note that there is an implicit
recognition that "–" occurs before the digits in the
collating sequence (for both ASCII and EBCDIC).
This fact was used in many solutions.

Solution 3:

procedure digsort(i)
 local c, s

 s := ""
 i := string(i)

 every c := !cset(integer(cset(i))) do
 every s ||:= (find(c, i) & c)

 return integer(s)

end

This slight variation on Solution 2 contains an
obscure trick (that is, it’s really clever). The expres-
sion

!cset(integer(cset(i)))

removes any zeros in i by converting all the charac-
ters to an integer. It would be (slightly) faster to use

!integer(cset(i))

since in this case the integer, which contains at
most one instance of every digit in i, is converted
directly from an integer to a string for element

generation rather than via an intermediate cset.
But what about this?

!(i –– '0')

This removes any zeros and produces a cset of the
remaining digits. The result is not the same as that
for the previous expression, however, if i is 0.
Therefore a procedure that uses it might end as
shown in the remarks following Solution 1:

return integer(s) | 0

String Scanning

Solutions that used string scanning were simi-
lar to those that used basic string operations. They
generally were longer, if (perhaps) somewhat easier
to formulate.

Solution 4:

procedure digsort(i)
 local s, c

 s := ""

 i ? {
 every c := !cset(i) do {
 while s ||:= (tab(find(c)) & move(1))
 tab(1)
 }
 }

 return integer(s)

end

Compare this solution to Solution 2.

Solution 5:

procedure digsort(i)
 local s, s1, s2

 s := string(i)
 s2 := ""

 every s1 := !cset(s) do s ? {
 while tab(find(s1)) do
 s2 ||:= move(1)
 }

 return integer(s2)

end

This solution differs from the previous one in
that string scanning is inside the character-genera-
tion loop rather than outside it.

string05.icn

12 / The Icon Analyst 53

Solution 6:

procedure digsort(i)
 local s

 s := ""
 every s ||:= (i ? (tab(find(!cset(&subject))) &
 move(1)))

 return integer(s)

end

Here string scanning is inside the concatena-
tion that is building the result, while the element-
generation operation is inside string scanning. This
formulation seems to us to be a bit strange, but it is
different.

Lists

The solutions that used lists did so to accumu-
late characters or character counts and then sort()
to get them in the right order.

Solution 7:

procedure digsort(i)

 local L, s

 L := list()
 every put(L, !i)

 s := ""
 every s ||:= !sort(L)

 return integer(s)

end

This solution illustrates the basic method —
straightforward and clear.

Solution 8:

procedure digsort(i)
 local L, s

 every put(L := [], !i)

 every (s := "") ||:= !sort(L)

 return integer(s)

end

This solution is essentially the same as the last
one, but it is made slightly shorter, in some sense,
by nesting expressions.

Solution 9:

procedure digsort(i)

 local L, j, k

 L := []
 j := abs(i)
 while j ~= 0 do {
 put(L, 0 ~= j % 10)
 j /:= 10
 }

 every k := !sort(L) do
 j := j ∗ 10 + k

 if i < 0 then j := –j

 return j

end

Surprise: Actual arithmetic!

Solution 10:

procedure digsort(i)
 local L, s

 L := []

 i ? {
 s := tab(any('–+')) | ""
 while put(L, move(1))
 }

 L := sort(L)
 while s ||:= get(L);

 return integer(s);

end

This solution initializes the string of sorted
digits in string scanning. Note that the plus sign is
spurious; an integer (assumed), when converted
to a string, never has a leading plus sign.

Solution 11:

procedure digsort(i)
 local L, j, d, s

 L := list(9, "")

 every d := !abs(i) do
 L[d] ||:= d

 s := ""

 every s ||:= !L

 return if i < 0 then –s else (integer(s) | 0)

end

This solution differs from the preceding ones
by using failure on an out-of-bounds subscript to

The Icon Analyst 53 / 13

dispense with zeros. Since a minus sign would
cause an error, it works on the absolute value.
Notice that unary minus operation converts nu-
meral strings representing integers to integers.

Solution 12:

procedure digsort(i)
 local L, j, s

 L := list(9, 0)

 every L[!abs(i)] +:= 1

 s := ""

 every j := 1 to 9 do
 s ||:= repl(j, L[j])

 return if i < 0 then –s else (integer(s) | 0)

end

This solution is a variant of the preceding one,
counting digits instead of concatenating them one
at a time. Then repl() is used to build the string of
digits. This solution should be faster for large
integers.

Tables

Tables were used for basically the same rea-
sons as lists.

Solution 13:

procedure digsort(i)
 local T, s

 T := table("")

 every s := !i do
 T[s] ||:= s

 s := ""

 every s ||:= T[!cset(i)]

 return integer(s)

end

Notice the similarity between this solution
and Solution 11. Using tables, however, allows a
minus sign to be handled like any other character.

Solution 14:

procedure digsort(i)
 local T, L, d, s

 if i = 0 then return 0

 T := table(0)

 every T[!i] +:= 1

 L := sort(T, 3)

 s := ""

 while d := get(T) do
 s ||:= repl(d, get(L))

 return integer(s)

end

Like Solution 12, this one keeps counts of
characters and uses repl() rather than repeatedly
concatenating digits.

Solution 15:

procedure digsort(i)
 local L, s

 if i = 0 then return 0

 L := table(0)

 every L["0" ~== !i] +:= 1

 L := sort(L, 3)

 s := ""

 while d := get(L) do
 s ||:= repl(d, get(L))

 return integer(s) | 0

end

This solution filters out zeros while counting
other characters. Is it worth the time and trouble?

Solution 16:

procedure digsort(i)
 local T, L, d, s

 T := table(0)

 every T[!i] +:= 1

 delete(T, "0")

 L := sort(T, 3)

 s := ""

 while d := get(L) do
 s ||:= repl(d, get(L))

 return integer(s) | 0

end

This solution counts zeros but removes the
table entry before constructing the final string.

14 / The Icon Analyst 53

The Different

Here are two solutions that are quite different
in character from the others.

Solution 17:

procedure digsort(i)

 return if i < 0 then –digsort1(–i) else digsort1(i)

end

procedure digsort1(i)
 local pt1, pt2

 if i[pt1 := 2 to ∗i] < i[pt2 := 1 to pt1 – 1] then
 return digsort1(i – (i[pt2] – i[pt1]) ∗
 (10 ^ (pt1 – pt2) – 1) ∗ 10 ^ (∗i – pt1))

 return i

end

The author has this to say about the solution:
“This won’t win any brevity or obscurity awards,
but it is another approach“. We’re not so sure about
the obscurity part, at least in the context of Icon.

Solution 18:

procedure digsort(i)
 local j, sw

 i := string(i)

 sw := 1

 while \sw do {
 sw := &null
 every j := 1 to ∗i – 1 do {
 if i[j] >> i[j + 1] then {
 i[j] :=: i[j + 1]
 sw := 1
 }
 }
 }

 return integer(i)

end

We suppose there had to be one actual char-
acter sort. In this case it is the classic bubble sort,
which is one of the least efficient sorting methods,
on average. Note that a minus sign is handled
properly, since string comparison is used.

Evaluation

Clarity and style are subjective. You can make

your own judgement of these. Two more or less
objective measurements can be made: size and
speed.

Size

The procedures all are small, so some mea-
sures that would be meaningful for large programs
are not so meaningful here. For what it’s worth,
here are the sizes measured in terms of non-blank
lines, bytes of source code, and the number of
syntactic tokens. The latter probably is the most
significant measure. The smallest values are un-
derlined.

soln. lines bytes tokens

1 8 162 28
2 8 176 36
3 8 188 40
4 11 220 41
5 10 208 43
6 6 147 30
7 8 152 32
8 6 137 29
9 13 257 58

10 11 207 45
11 9 207 50
12 9 219 54
13 9 175 39
14 11 235 57
15 11 243 59
16 11 232 57
17 10 301 71
18 15 297 60

Speed

We tested the solutions with 5,000 instances
of seven kinds of integers: positive and negative 5-
digit, 10-digit, and 15-digit ones and one of all
zeroes — 35,000 calls in all. Except for the zeros, the
integers were produced at random. The times in
milliseconds from runs on a 233MHz DEC Alpha
are shown in Figure 1 on the next page. The times
for the fastest solutions are underlined.

The apparent anomaly for Solution 15 with all
zeroes is easily explained — it’s the only solution
that tests for zero before doing anything else. It’s
not surprising that the last two solutions did not
fare well. The magnitude of the difference, espe-
cially for Solution 17, was surprising to us — it runs
nearly 154 times slower than Solution 2.

But what about large integers? There are none
for the timings above (the Dec Alpha has 64-bit

The Icon Analyst 53 / 15

words). We tried timing the programs for some
large integers, using 5,000 terms in the versum
sequence for 196. These integers get large quickly.
Their average length (number of digits) is more
than 1,048 and the last one has 2,088 digits. Most of
these numbers are large enough for the quadratic
complexity of conversion between integers and
strings to have a significant impact [1].

Here are the results:

soln. last all

1 1883 3188534
2 233 402050
3 216 380184
4 433 759684
5 266 495000
6 250 506350
7 250 468850
8 250 452734

9 416 782234
10 266 487050
11 233 433734
12 216 399484
13 433 771584
14 250 450917
15 233 439267
16 233 435567
17 ? –
18 343933 –

We didn’t attempt to perform the tests for the
entries that have a dash. We did try Solution 17 for
the last integer. We ran it in the background ex-
pecting it to complete in a large but reasonable
amount of time. It had been running over 25 days
(more than 2×10 9 milliseconds) when its process
was accidentally terminated. You might think it
(or Icon) was in a loop. But we tried a much smaller

Supplementary Material

Supplementary material for this issue of the Analyst, including color images and Web links,
is available on the Web. The URL is

http://www.cs.arizona.edu/icon/analyst/iasub/ia53/

soln 0 5-digit + 5-digit – 10.digit. + 10-digit – 15-digit + 15digit – total

1 650 934 1000 1233 1283 1517 1584 8201
2 250 567 617 850 916 1100 1184 5484
3 300 617 650 850 916 1100 1184 5617
4 400 1167 1333 1933 2116 2650 2850 12449
5 367 1100 1283 1883 2050 2650 2800 12133
6 350 900 1017 1517 1650 2100 2234 9768
7 300 600 667 1017 1066 1400 1467 6517
8 300 600 633 983 1016 1367 1434 6333
9 267 1217 1217 2167 2116 3034 3034 13052

10 450 934 967 1550 1566 2150 2200 9817
11 484 884 833 1200 1166 1517 1517 7601
12 1234 1584 1517 1817 1783 2084 2084 12103
13 434 1084 1217 1750 1883 2367 2500 11235
14 34 1350 1533 2083 2283 2700 2917 12900
15 17 1317 1517 2000 2233 2617 2817 12518
16 450 1317 1533 2033 2266 2600 2817 13016
17 100 4417 4483 35250 35833 131717 133034 344834
18 184 2684 3050 10967 11716 25467 26767 80835

Figure 1. Timings

16 / The Icon Analyst 53

large integer for which Solution 17 ran a very long
time but completed successfully. There is a lesson
here.

Contributors

The following persons contributed solutions
to the digit-sorting problem: Wade Bowmer, Michael
Glass, Ralph Griswold, Nevin Liber, Todd
Proebsting, Gregg Townsend, Ken Walker, Steve
Wampler, and Cheyenne Wills.

Although we’ve not identified the authors of
the particular solutions, it seems only fair to give
Steve Wampler kudos for submitting the fastest
solution.

Reference

1. The Art of Computer Programming, Vol. 2,
Seminumerical Algorithms, Donald E. Knuth,
Addison-Wesley, 1969.

Built-in Generators
If a language doesn’t affect the way you think about
programming, it’s not worth knowing.

— Alan Perlis

One of the defining characteristics of Icon is its
extensive use of sequences — values in order.

Strings are sequences of characters. Lists are
sequences of values that may be of any type. Files
are sequences of characters or lines, depending on
how they are interpreted.

Data objects that are sequences are nothing
new, although in most programming languages the
concept is not stressed. Generators that produce
sequences of values in time are central to computa-
tion in Icon.

Since most programming languages don’t have
generators, programmers who come upon Icon with
experience in other languages often overlook the
possibilities generators offer — or, in an attempt to
understand them in terms of what they already

know, misunderstand them.
Articles about generators and sequences have

appeared in past issues the Analyst [1-4], and
they’ve been used in central ways in articles about
applications such as numerical carpets [5-6]. And
generators have appeared in some context in al-
most every issue of the Analyst. Nevertheless,
generators and sequences have not been given the
coverage they deserve. This article is the first in a
series in which we plan to explore generators and
sequences in depth. We’re starting with this ar-
ticle, which reviews Icon’s built-in generator rep-
ertoire. Most of the material that follows is el-
ementary and designed to provide a foundation
for future articles.

Element Generation

Element generation, !x, is one of the most
versatile operations in Icon’s repertoire.

!x applies to any value that has “elements”.
This covers much territory — strings, lists, records,
sets, tables, and files. In addition, the element
generation operation can be applied to any value
that can be converted to a string, such as a cset.

Strings, lists, and files are sequences of val-
ues and generation from them is from the first
element to the last. Note that element generation
treats files as sequences of lines in the fashion of
read(). Records can be viewed as a sequence of
values in the order their fields are given in the
declaration.

The elements of sets and tables have no in-
herent order, but their values can be generated,
which imposes an order of sorts on them. As noted
in the quiz answers on page 19, the order is not

Downloading Icon Material

Implementations of Icon are available for
downloading via FTP:

ftp.cs.arizona.edu (cd /icon)

The Icon Analyst 53 / 17

random, but it is unpredictable and depends on the
inner workings of the implementation [7,8].

The generation of values from a table is fur-
ther complicated by the fact that a table element
consists of a pair of values, a key and it’s corre-
sponding value (for which we have no better name).

!T generates the values corresponding to the
keys, not the keys themselves. The function key(T)
generates the keys. There probably is a better way
to design element generation for tables, but it’s far
too late now to change anything in the main com-
putational repertoire of Icon.

Integer Generators

There are two ways to generate integers by
fixed increments in increasing or decreasing nu-
merical order. The more familiar is

i to k by j

The function seq(i, j) does the same thing, but
with no limit.

String-Analysis Generators

Three string-analysis functions generate the
positions of substrings within strings: bal(), find(),
and upto().

These functions produce integers in increas-
ing numerical order. The number of values these
functions can produce is, of course, limited.

Keywords

There are five keywords that are generators:

&features
®ions
&storage
&allocated
&collections

The values generated by &features depend on
the features that are available in a particular imple-
mentation, such as co-expressions and graphics.

®ions and &storage generate three values
related to storage utilization, while &allocated and
&collections generate four values related to stor-
age management.

Miscellaneous

function() generates the names of the built-in
functions. The values depend on the platform and
the features supported.

There is one generator in Icon’s graphics rep-
ertoire: Pixel(). It generates the color values of the
pixels in a specified rectangular area. The values
are either strings — comma-separated RGB triples
— or for mutable colors, small negative integers.

Control Structures

There are two control structures for compos-
ing generators from expressions: alternation and
repeated alternation. These control structures are
not generators in and of themselves. Instead they
evaluate expressions in ways that result in genera-
tion.

Alternation, e1 | e2, is one of Icon’s most
useful control structures. It produces the sequence
of e1 followed by the sequence for e2. Note that if
e1 and e2 are not generators but produce only one
value each, their alternation is a generator (that
produces two values).

Repeated alternation, |e, is rarely used and its
potential is easily overlooked. |e repeatedly pro-
duces the sequence produced by e. It can be thought
of as

e | e | e | …

However, repeated alternation treats one case
specially. If e produces no result (fails), |e fails.
This handling of failure is designed to prevent
repeated alternation from going on endlessly with-
out ever producing a result — going over a sort of
evaluation event horizon.

It’s important to realize that an expression in
repeated alternation may produce values for a
while and then fail, terminating the repeated alter-
nation. For example, |read(f) generates lines from f
but terminates when the end of the file is reached
and read(f) fails.

Perhaps the most important use of repeated
alternation is to create a generator from a non-
generator, as in the example above. Another ex-
ample is |?0, which generates an unending se-
quence of real numbers in the range 0.0 to 1.0.

The Rationale for Generators

Why are some operations generators and oth-
ers not?

The general design philosophy for Icon was
to make an operation a generator only if there was
a good reason. This was partly a conservative
attitude toward language design, and it was not
motivated by other considerations, such as pos-

18 / The Icon Analyst 53

sible implementation problems.
The best reason to cast a computation as a

generator is when the computation naturally pro-
duces a sequence of values and it’s necessary to
maintain an internal state to get from one value to
the next. This is the case for element generation,
integer generation, and the string-analysis func-
tions mentioned earlier. Note that where the num-
ber of possible values is limited, a list containing all
of them is an alternative formulation. This, of
course, does not work for generators with a poten-
tially unlimited number of results, such as seq()
and |e. Another advantage of generators is that
values are only produced as needed — a form of
lazy evaluation. And, in practice, it’s often the case
that not all of the possible values are needed.

There are two ways to cast a computation that
does not meet these criteria as a generator. One is
to generalize it so that it does. The other is to just
have the computation done repeatedly.

An example of the first way is the string-
analysis function match(s1, s2), which succeeds if
s1 is an initial substring of s2 and returns the
position i in s2 after s1. In the initial design of Icon,
we considered generalizing match() so that if re-
sumed, it would generate i – 1, i – 2, … 1. We tried
this with disastrous results — straightforward
string analysis produced unexpected results and it
was necessary to use limitation to prevent them.
The lesson here is that we did not have a good
reason for this generalization — nothing clearly
useful to offset the complications.

Casting a computation as a generator simply
by having it do the same operation repeatedly can
have unexpected consequences. Consider this ex-
ample, which takes different actions depending on
whether or not a value read is "end".

if read() == "end" then … else …

If read() were a generator but the value read not
"end", read() would be resumed to read another
line. If no line was "end", the entire file would be
consumed, which probably would not be the in-
tended effect.

The limitation control structure could be used
to avoid this, but if there were many such genera-
tors, programs would have to be littered with
limitations to assure there was no unexpected gen-
eration.

You might argue that programmers shouldn’t
write the kind of code shown above. But a lan-

guage designed with reliance on good program-
ming practice would not get very far.

The other side of the coin is that it is easy
enough to make any non-generator into a genera-
tor using repeated alternation.

Some of Icon’s operations were cast as gen-
erators for reasons other than those stated above.
In the case of the keywords and function(), it was
easier to implement them as generators than to,
say, produce lists of values. This probably was a
mistake from a design viewpoint, but at least these
generators are needed infrequently.

Pixel(x, y, w, h) is a generator for entirely
different reasons. The operation could be formu-
lated (and originally was) to return the color value
of a single pixel. In this formulation, Pixel() would
have to be called many times for a large rectangular
area. But that was not the problem. In a client-
server environment, each call of Pixel() produces a
request to the server. With a slow communication
link, performance could be intolerably bad. As it is
cast, one call of Pixel() requires only one server
request, which produces all the color values in the
rectangle, which then are generated.

References

1. “Generators”, Icon Analyst 3, pp. 8-10.

2. "Result Sequences", Icon Analyst 7, pp. 5-8.

3. “Programming Tips (element generation)”, Icon

Analyst 8, p. 12.

4. “Programming Tips (recursive generators)”,
Icon Analyst 13, pp. 10-12.

5. “Anatomy of a Program — Numerical Carpets”,
Icon Analyst 45, pp. 1-10.

6. “Exploring Carpet Space”, Icon Analyst 47,
pp. 5-10.

7. “The Design and Implementation of Dynamic
Hashing for Sets and Tables in Icon”, William G.
Griswold and Gregg M. Townsend, Software —
Practice & Experience, Vol. 23, No. 4, April 1993, pp.
351-367.

8. Supplementary Information for the Implementation
of Version 8 of Icon, Ralph E. Griswold, Icon Project
Document 112b, The University of Arizona, April
7, 1996.

The Icon Analyst 53 / 19

Answers to Quiz
on Structures

See Icon Analyst 52 for
the quiz questions.

1. False. L[0] is an attempt
to reference an element be-

yond the end of L, which fails.

2. True.

3. They both produce the same results, but the first
leaves L unchanged, while the second removes all
its elements, leaving it empty.

4. It adds a null-valued element to the right end of
L.

5. They all leave L unchanged, although some dif-
fer in intermediate steps.

6. L := sort(set(L)).

7. True.

8. False.

9. False.

10. False. If R has a field named center, they pro-
duce the same results, but if R doesn’t have a field
named center, R.center causes a run-time error,
while R["center"] fails.

11. True.

12. True.

13. False.

14. False; the order is unpredictable but not ran-
dom.

15. ∗sort(S).

16.

procedure elim_str(S)

 every x := !S do
 if type(x) == "string" then delete(S, x)

 return S

end

17. set(R), set(S), set(T), and list(S) cause run-time
errors. table(S) creates a table whose default value
is S.

18. True.

19. False in general.

20.

procedure keyset(T)

 S := set()

 every insert(S, key(T))

 return S

end

21. Values can be obtained from keys, as in T[key(T)].
The converse is not true.

22. True, although this is a property of the imple-
mentation and not specified in the language.

23. False. Although there is no language or imple-
mentation limit on the number of elements in a
table, it must fit in memory, which is limited.

Quiz —
Expression
Evaluation

1. True or false: A repeat
loop only can be termi-
nated by evaluating a
break expression within it.

2. True or false: In

 if e1 then e2 else e3

if e1 is a generator and
produces a result but e2
fails, e1 is resumed.

3. True or false: A case expression can fail.

4. True or false: A case expression can generate a
sequence of values.

5. True or false: A break expression can generate a
sequence of values.

6. What does the following expression do?

i := 1 to 5

7. True or false: The number of results that e1 | e2
can generate is the sum of the number of results

20 / The Icon Analyst 53

What’s Coming Up

Machinery is aggressive. The weaver becomes a web, the
machinist a machine. If you do not use the tools, they use
you. — Ralph Waldo Emerson

In the next issue of the Analyst, we plan to
have a weaving case study, an application for
discovering interesting tiles in images, an article
on animation by image replacement, and another
article on generators and sequences.

We’ll also have answers to the quiz on expres-
sion evaluation and another quiz, probably on
Icon’s preprocessor facility.

The Icon Analyst

Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

Editors

The Icon Analyst is published six times a
year. A one-year subscription is $25 in the United
States, Canada, and Mexico and $35 elsewhere.
To subscribe, contact

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

and

 Bright Forest Publishers
 Tucson Arizona

© 1999 by Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

All rights reserved.

11. What do the following expressions do?

every write((1 to 5) | (5 to 1 by – 1))
every write((1 to 5) + (5 to 1 by – 1))
every write((1 to 5) > (5 to 1 by – 1))

12. What do the following expressions do?

every write(seq() \ 9)
every write((1 to 20) \ 9)
every write(seq() \ (9 | 3))
every write(seq() \ (1 to 5))
every write((seq() \ 9) \ 7)
every write((seq() \ ((1 to 3) | (3 to 1 by –1))))

13. What are the consequences of evaluating the
following expressions?

|(2 = 3)
|2 = 3
2 = |3
|2 = |3

that e1 and e2 can generate separately.

8. True or false: !x can produce an unlimited num-
ber of results.

9. True or false: |?x always produces an unlimited
number of results.

10. What do the following expressions do?

write(every (1 to 5) & 7)
every write((1 to 5) & 7)

