
The Icon Analyst 54 / 1

June 1999
Number 54

In this issue …

Backtracking and Bounded Expressions ..... 1
Analyst Directions ......................................... 3
A Weaving Case Study .................................. 4
Answers to Expression Evaluation Quiz..... 7
Exercises ........................................................... 8
Graphics Corner — Exploring for Tiles ....... 9
Generating Sequences .................................. 14
Subscription Renewal .................................. 15
Quiz ................................................................ 16
What’s Coming Up ....................................... 16

In-Depth Coverage of the Icon Programming Language

The Icon AnalystThe Icon Analyst

Backtracking and Bounded
Expressions

Backtracking

Early artificial intelligence programming lan-
guages that incorporated search and backtracking
facilities did not limit backtracking to previous
computations when a portion of a search failed [1].
This had two unpleasant consequences: (1) the
amount of data that had to be retained to allow
backtracking limited the problems that could be
handled, and (2) unexpected failure could cause
backtracking arbitrarily far back in program ex-
ecution and produce unexpected and sometimes
mysterious results.

In subsequent artificial intelligence languages,
this problem was dealt with by allowing the search
tree to be pruned — portions discarded, freeing up
the associated memory and preventing backtrack-
ing beyond that point [2,3]. Prolog introduced the
cut operator for similar reasons [4].

Limiting Backtracking

Icon deals with this problem in a different

way by limiting backtracking syntactically and
requiring the programmer to explicitly construct
backtracking that has a large scope.

Semicolons, for example, prevent backtrack-
ing to previous expressions. This is in contrast to
conjunction in which there is no such limitation.
Thus, in

e1; e2

once the evaluation of e1 either fails or produces a
result, evaluation continues to e2, but if it fails
backtracking to e1 for possible alternative results
does not occur.

On the other hand, in

e1 & e2

if e1 produces a result but e2 fails, backtracking
occurs into e1 for possible alternative results.

Semicolon Insertion

The Icon compiler inserts a semicolon at the
end of a line if the line ends in a complete expres-
sion and the next line starts with the beginning of



2 / The Icon Analyst 54

an expression. Consequently,

e1; e2; e3; … ; en;

can be written as

e1
e2
e3
…
en

Once the evaluation of a line is complete, evalua-
tion goes on to the next line and failure cannot
cause backtracking upward to previous lines.

Extending Backtracking

Operators (as opposed to control structures)
bind expressions so that backtracking can occur
between them. Conjunction, which performs no
computation, illustrates this:

e1 &
e2 &
e3 &
… &
en

Here conjunction allows backtracking up a “lad-
der” to previous lines. Indentation make this bind-
ing more obvious:

e1 &
   e2 &
      e3 &
                  … &
                    en

The same binding of expressions for the pur-
poses of backtracking applies to all operations, as
in

e1 +
   e2 –
      e3 +
                  … –
                    en

Limitation as Opposed to Binding

By requiring explicit binding to obtain back-
tracking between expressions written on separate
lines, Icon favors limiting expressions to at most
one result. Limiting backtracking has two advan-
tages alluded to earlier: (1) information that must
be kept to allow backtracking can be discarded
once it is no longer needed, and (2) the chances of

unexpected backtracking are reduced.
Limiting backtracking is very natural when

successive expressions are not generators or are
not dependent on the success of successive ones.
An example is

i := j
j := i + k
write(i)
if k > i then write(j)

Note the imperative nature of this code.

Bounded Expressions

Icon goes beyond limiting backtracking be-
tween semicolon-separated expressions (explicit
or implicit). In specific syntactic contexts, expres-
sions are bounded; once their evaluation is com-
plete, backtracking cannot occur into them.

For example in

if e1 then e2 else e3

e1 is bounded, and whether e1 succeeds or fails,
subsequent failure of e2 or e3 (whichever is se-
lected as the result of evaluating e1) does not cause
backtracking into e1. If it did, the control structure
would not do what’s expected of if-then-else.

In the last issue of the Analyst [5], we com-
mented on a principle used in the design of Icon:
Don’t do something unless there is a reason. There
clearly is a reason to bound e1, but is there a reason
to bound e2 and e3? In discussions at the time, one
participant was concerned that “something bad
might happen” if e2 and e3 weren’t bounded. In
the absence of a concrete example of “something
bad”, we followed the design principle, which
might be rephrased as “no gratuitous features”.
Nothing bad happened and if-then-else can be a
generator. This may seen unusual, but it some-
times is useful, as in

if j > i then i to j else j to i

Similar reasoning was applied to other con-
texts for expression evaluation; expressions are
bounded only if there is a good reason to do so.

Here’s a list of syntactic contexts in which
expressions are bounded, as indicated by under-
lining:

case e of {
  e1 : e2
  e3 : e4
      …



The Icon Analyst 54 / 3

  }

every e1 do e2

if e1 then e2 else e3

not e

repeat e

return e

suspend e1 do e2

until e1 do e2

while e1 do e2

{  e1; e2; …; en }

Limitation

The limitation control structure, e1 \ e2, limits
e1  to at most  e2 results. This is, of course, more
general than bounded expressions. Since the value
of e2 can be 1, limitation could have been used to
get the effect bounded expressions, and it would
produce the same result, as in

if e1 \ 1 then e2 else e3

This, however, would be cumbersome and error
prone.

It’s worth noting that e2 is not bounded and
can be a generator, as in

seq() \ (1 to 3)

with is equivalent to

(seq() \ 1) | (seq() \ 2) | (seq() \ 3)

for which the sequence is 1, 1, 2, 1, 2, 3.

References

1. Planner: A Language for Manipulating Models and
Proving Theorems in Robots, C. Hewitt, AI Memo
168, MIT, 1970.

2. Why Conniving is Better than Planning, D. V.
McDermott and G. J. Sussman, AI Memo 255A,
MIT, 1972.

3. The CONNIVER Reference Manual, G. J. Sussman
and D. V. McDermott, AI Memo 259, MIT, 1972.

4. Implementing Prolog — Compiling Logic Programs,
D. H. D. Warren, D.A.I Research Reports 39 and 40,
Department of Artificial Intelligence, University of
Edinburgh, 1977.

Analyst Directions

A new subscriber to the Analyst recently
expressed some disappointment with the content
of the first few issues he received, especially ar-
ticles on things like versum sequences that ap-
peared to have no connection to Icon. Of course, he
entered in the middle of the performance, as it
were.

We try to cover a variety of topics in the
Analyst, ranging from articles about various as-
pects of Icon itself to programming techniques to
applications written in Icon that demonstrate Icon’s
value in such areas.

The Analyst now is ending its ninth year of
publication. Over the years, we’ve covered most
aspects of the language proper in some detail,
including some of its more obscure nooks and
crannies. We’ll still continue to have articles about
the language itself, looking at things from different
perspectives.

At the opposite end of the range, we get into
explorations like versum numbers and weaving
where try to show how programming can be an
integral part of problem solving. We sometimes
get into areas that we had not anticipated when we
started — the long series of articles on versum
numbers being the most notable example. Although
not all such articles feature programming directly,
they are part of a larger picture that does.

To compensate for more space devoted to
graphics and articles that may not be of much
interest to some readers, we’ve increased the size
of the Analyst from 12 pages to 16, and sometimes
to 20 (and without increasing the price of subscrip-
tions).

We’re always interested in what our subscrib-
ers would like to see in the Analyst. We can’t
always oblige, and we won’t repeat material that
already has been covered. In addition, much of
what appears in the Analyst is planned far in
advance. For example, we can see at least a year of
articles related to weaving.

But let us know what you like, don’t like, or
would like to see. We’ll do what we can.

5. “Built-In Generators”, Icon Analyst 53, pp. 16-
18.



4 / The Icon Analyst 54

A Weaving Case Study

        The value of weaving is in the work.
— Lili Blumenau [1]

Having started explorations of weaving, we
decided it would be worthwhile to study a few
weaving drafts in depth. We started with one of
Painter’s built-in weaves [2]. We got more than we
bargained for.

Figure 1 shows the Painter dialog for the draft
and Figure 2 shows the resulting weave.

Figure 1. Painter Weaving Dialog

Figure 2. Weaving Image

It is a shadow weave [3, 4]. Weaves of this type
produce the appearance of shadows (which are
more obvious on actual woven fabrics than in
images) by alternating light and dark threads in
reverse orders in the warp and weft.

The threading and treadling expressions for
shadow weaves typically are the same — “tromp
as writ”, as is the case here. Therefore we need only
consider the threading expression.

The color letters have no meaning in and of

themselves in Painter, but the usual associations
are W for white and K for black.

The threading expression is a (true) palin-
drome. This follows from the fact that the pattern
palindrome operator, |, has very low precedence
and the expression groups like this:

((1–8–2–828 …4363412878214365634128)|,1)

The concatenated 1 at the end converts a pattern
palindrome into a true one. The weave looks better
when repeated if this last character is omitted,
leaving a pattern palindrome. We’ll do that here.

The threading expression consists of a se-
quence of domain runs — “ups and downs” —
between other shaft sequences. This is easier to
understand graphically than in terms of numbers.
Figure 3 shows the threading for the first half of the
sequence. The bar at the top shows the colors.

If we look at the operand of the pattern palin-
drome operator, we see that it has a definite struc-
ture:

1–�–2–�–3–�–4–�–5–�–6–8214363412878214365634128

where the components in circles have their own
structure:

�    =   8
�   =   828
�   =   82128
�   =   8214128
�   =   821434128

Note that these all are true palindromes.
After –6–, the pattern appears to break down,

although there are similarities with the earlier
parts. In fact,

8214363412878214365634128

is equivalent to

82143634128–7–8214365634128

So we have

1–�–2–�–3–�–4–�–5–�–6–�–7–�

Figure 3. The Threading



The Icon Analyst 54 / 5

with the continuation of the palindromes between:

�   =   82143634128
�   =   8214365634128

These palindromes can be represented using
pattern forms, which makes the underlying struc-
ture more evident:

�    =   [!8]
�   =   [8!2]
�   =   [82!1]
�   =   [821!4]
�   =   [8214!3]
�   =   [82143!6]
�   =   [821436!5]

The sequence 8241365 runs not only across
but also down the center of these palindromic
forms — patterns within patterns.

One way to view the overall pattern is as a
sequence of anchors for domain runs, which are
connected by palindromes. Figure 4 shows the
threading draft with the anchors indicated by ver-
tical bars and the palindromes by horizontal bars.

We might ask several questions at this point.
The first ones that come to mind are:

• If we modify this pattern in various ways,
what kinds of weaves result?

• Is the threading pattern somehow special or
just one of a class of patterns that produce
interesting weaves?

• If so, how can this class be characterized?

We’ll start with the first question — it leads to more
than enough to occupy us for now.

We’ll take the domain runs as given and
concentrate on the sequence of anchors and palin-
dromes. For this, it is easier to deal with character
sequences. We’ll retain digits for labeling the shafts
and use the letters A though G to label the palin-
dromes. Thus, the sequence can be represented as

1A2B3C4D5E6F7G

In terms of pattern forms, this is an interleav-
ing:

[1234567~ABCDEFG]

More formally, we can label the anchor se-
quence A and the palindrome sequence P, giving

[A ~ P]

Given transformations τ1 and τ2  on sequences,
we can consider

[τ
1
(A )~ τ

2
(P)] general transformations

One possibility is coupling  the anchors and
the palindromes, that is τ1 ≡ τ2:

[τ1(A )~ τ1(P)] coupled transformations

 An example of this, using our original notation, is
the permutation

6–�–3–�–1–�–4–�–5–�–2–�–7–�

Another possibility is using the identity trans-
formation ι on one but not the other component:

[τ1(A )~ ι(P)] anchor transformations

or

[ι(A )~ τ2(P)] palindrome transformations

Respective examples are the permutations

5–�–4–�–3–�–2–�–1–�–7–�–6–�

and

1–�–2–�–3–�–4–�–5–�–6–�–7–�

We are of course, not limited to permuta-
tions. Examples of transformations that are not
permutations are the coupled transformation

1–�–2–�–3–�–4–�–4–�–3–�–2–�

and this transformation, which increases the length
of the sequence

      1–�–2–�–3–�–4–�–5–�–6–�–7–�–1–�–2–�

Figure 4. Threading Draft Showing Anchors and Palindromes



6 / The Icon Analyst 54

It is, of course, impossible to explore all such
transformations. For permutations alone, there are
14! ≅ 8.7 × 1013 possibilities for the general case.

There are, however, only 7! = 5,040 permuta-
tions for the coupled anchor and palindrome cases.
We tried all the anchor-sequence permutations to
get a feel for how the weaves differ.

No two of the weaves are the same, although
many are so similar that the differences cannot be
detected without detailed examination. All are
visually attractive, at least to us, and the range of
design variations is relatively small. The 8 weaves
in Figure 5 represent the visual extremes. We would
say that the underlying pattern is aesthetically
robust with respect to coupled anchor permuta-
tions.

Notice that there is some difference in the size
of the weaves. This is to be expected, since the
lengths of the domain runs change when the an-
chors do. The size is determined solely by the first
anchor. If the first anchor is i, then the weave is 180
+ 2i threads on a side.

This only touches on the possibilities we’ve
already mentioned. There are many other possi-
bilities, including:

• allowing the threading and treadling se-
quences for a weave to be different — remov-
ing the “tromp as writ” constraint.

• trying different tie-ups

• trying different color sequences — not just
different colors but different warp and weft
color sequences

To go on along these lines, we need a tool for
controlled experimentation. We’ll explore this and
give the results in a later article.

For now, we leave you with the following
program, called shadow, which produces pattern-
form drafts for variations on the original shadow
weave:

link options
link strings

global anchor_indices
global palindrome_indices
global palindrome_basis
global palindromes

procedure main(args)
   local expression, name, opts, tie_up, warp_colors
   local weft_colors, palette, i, anchor_vector
   local palindrome_vector

   opts := options(args, "b:n:t:c:d:p:")

   anchor_vector := \args[1] | "1234567"
   palindrome_vector := \args[2] | anchor_vector

   palindrome_basis := \opts["b"] | "8214365"
   weft_colors := \opts["c"] | "01"

Figure 5. Example Weaves for Anchor-Sequence Permutations

2-3-4-5-6-1-7  2-4-1-3-5-7-6 2-4-3-5-6-7-1 3-5-1-2-4-7-5

3-7-6-5-4-1-2 4-1-3-5-6-7-2 4-2-1-3-5-6-7  7-3-4-2-1-5-6



The Icon Analyst 54 / 7

   warp_colors := \opts["d"] | "10"
   palette := \opts["p"] | "g2"
   name := \opts["n"] | "untitled_shadow_weave"
   tie_up := \opts["t"] |
      "8;8;10101010010101011010100101010110_
       10100101010110101001010101101010"

   anchor_indices := transpose(
      "1234567",
      "1234567",
      anchor_vector
      )
   palindrome_indices := transpose(
      "1234567",
      "1234567",
      palindrome_vector
      )

   palindromes := list(∗palindrome_basis)

   every i := 1 to *palindrome_basis do
      palindromes[i] := "[" || palindrome_basis[1:i] ||
         "!" || palindrome_basis[i] || "]"

   expression := "[" || threading(anchor_indices[1]) ||
       "|]"

   write(name)
   write(expression)
   write(expression)
   write(warp_colors)
   write(weft_colors)
   write(palette)
   write(tie_up)
   write()

end

procedure threading(i)
   local result

   if i > ∗palindrome_basis then return ""

   result := "–[" || anchor_indices[i] || "–[" ||
      palindromes[anchor_indices[i]] ||
         threading(i + 1) || "]]"

   if i = 1 then result := result[2:0]

   return result

end

The command-line options allow the specifi-
cation of non-default values for the draft name,
warp and weft colors, palette, palindrome basis
string, and tie-up. Transformations are specified
by two other optional command-line arguments.
The first is a transformation for the anchor se-
quence and the second a transformation for the
palindromes. If the latter is omitted, it defaults to
the anchor-sequence transformation.

References

1. The Art and Craft of Hand Weaving, Lili Blumenau,
Crown Publishers, 1955.

2. “A Weaving Language”, Icon Analyst 51, pp.
5-11.

3. The Complete Book of Drafting for Handweavers,
Madelyn van der Hoogt, Shuttle Craft Books, 1993.

4. “Putting the Shadow in Shadow Weave”, Donna
Muller, Handwoven, Vol. XIX, No. 4, September/
October 1998, pp. 34-40.

Answers to Expression Evaluation
Quiz

See Icon Analyst 53
for the quiz questions.

1. False; a repeat loop
can be terminated by
return, fail, suspend,
exit(), stop(), or a run-
time error.

2. False.

3. True; by the case ex-
pression failing, the
evaluation of a selected
case clause failing, or

if no case clause is selected.

4. True: If the selected case clause
is a generator, the case clause generates its results.

5. True: break can have an argument expression, as
in

 break 1 to 10

which generates 1, 2, ..., 10 if the break expression
is evaluated.

6. Assigns 1 to i; there is no failure to cause the to
expression to be resumed.

7. True.

8. True in a sense: If x is a file stream that never
terminates.



8 / The Icon Analyst 54

Exercises

1. Assume seq_old is a list of integers.  What does
the following code do?  Does it always terminate? If
it terminates, what does patterns contain?

   patterns := [seq_old]

   repeat {
      seq_new := [ ]
      every put(seq_new, seq_old[!seq_old])
      if lequiv(seq_new, !patterns) then {
         put(patterns, seq_new)
         break
         }
      put(patterns, seq_new)
      seq_old := seq_new
      }

(lequiv(), which is in the Icon program library mod-

ule lists, compares two lists and succeeds if and
only if their elements are the same.)

2. Recently we were trying to explain modular
arithmetic to a non-technical audience. To help get
the idea across, we showed what happens if you
wrap the integers around a circle. Here’s the kind
of diagram we used:

0
1

2

3

4

5
6

7

8

9

10

11

12
13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Write a program that produces diagrams of circles
with equally spaced, numbered points around the
perimeter, such as the one above. Take the number
of points around the circle (modulus) from a com-
mand-line argument. Hint: If you think about the
problem in the right way, placing the labels prop-
erly is not hard.

Your program should produce both image and
PostScript files [1]. A good solution would allow
various parameters, such as the diameter of the
circle, to be specified.

For overkill, provide a visual interface that allows
such diagrams to be designed interactively.

Other things you might explore are

•  adding spokes from the center of the wheel to
the dots on it

• putting the first round of numbers in outlines
circles where the dots now appear

•  different geometric shapes

Reference

1. “From the Library — PostScript Graphics”, Icon
Anlayst 52, pp. 17-20.

9. False. If x is empty, ?x fails and |?x produces no
result.

Note: In the following answers, values written on
separate lines are shown with separating blanks to
save space.

10. The first expression fails, since every fails after
all the results are generated and write() inherits the
failure. The second expression writes

7   7   7   7   7

11.
(a) 1   2   3   4   5   5   4   3   2   1

(b) 6   5   4   3   2   7   6   5   4   3   8   7   6   5   4
9   8   7   6   5   10   9   8   7   6

(c) 1   2   1   3   2   1   4   3   2   1

12.

(a) 1   2   3   4   5   6   7   8   9

(b) 1   2   3   4   5   6   7   8   9

(c) 1   2   3   4   5   6   7   8   9   1   2   3

(d) 1   1   2   1   2   3   1   2   3   4   1   2   3   4   5

(e) 1   2   3   4   5   6   7

(f) 1   1   2   1   2   3   1    2   3   1   2   1

13. The first expression fails. The other three are
“black holes” that never terminate or produce re-
sults.



The Icon Analyst 54 / 9

Graphics Corner

— Exploring for Tiles

The hidden harmony is better than the obvious one.
— Heraclitus, 6th–5th century B.C.

Editors’ Note: The application described in this ar-
ticle was adapted from an earlier one shown in the
Icon graphics programming book [1].

In order to appreciate the images that follow,
you should view colored versions. You can find
them on the Web page for this issue of the Analyst.
See page 10 for the URL.

Background

In a previous article [2], we described the
tilings of motifs (generating tiles) to create repeat
patterns that cover surfaces with designs. Repeat
patterns have been used since prehistoric times to
decorate otherwise drab surfaces. Our environ-
ment abounds in man-made repeat patterns, which
occur most predominantly in clothing and interior
decoration. You may find it instructive to explore
in detail the contents of a room to find as many
examples of such patterns as you can.

With the advent of personal computers and
affordable graphics, repeat patterns have become
in increasing demand for desktop patterns, back-
grounds for Web pages, and surfaces for 3D mod-
els.

The generating tiles for such patterns almost
always are rectangular and come in many forms.
Ones that tile seamlessly — in which no border
between adjacent tiles is evident — are in demand
because they allow the creation of decorations in
which there is an illusion of a pattern larger than its
underlying tile and provide continuous patterned
surfaces without jarring or distracting
discontinuities.

The application described in this article is

designed for discovering interesting tiles in exist-
ing images. It originally was intended to be tool to
find the smallest generating tiles in repeat pat-
terns. It was soon clear that the application had
more interesting capabilities — a small portion of
a non-tiled image often produces an interesting
repeat pattern. It turns out that you can find inter-
esting tiles of this kind in almost any image.

The Application

The idea is to allow the user to select a rectan-
gular area of an image and immediately see what
that selection looks like when it is tiled.

The interface, shown in Figure 1, allows vari-
ous ways of specifying a selection with a precise
location and size.

 Figure 1. The Application Interface

The selection button brings up a dialog for
entering selection information textually. See Fig-
ure 2.

Figure 2. The Selection Dialog

A selection also can be made by clicking and
dragging out a rectangle on the image being ex-
plored. An existing selection can be nudged in one-
pixel increments using the arrow keys. Arrow keys
in combination with the meta key nudge the di-
mensions.

When a selection is made, it is tiled in another
window. Figures 3 shows a source image and

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.



10 / The Icon Analyst 54

Figures 4 and 5 the results of tiling selections from
it.

Figure 3. An Image for Tile Exploration

Figure 4. Tiling of a Selection Near the Center

Figure 5. Tiling of a Selection in the Rigging

Tiling is a fast process. When a selection is
made, the corresponding tiling appears almost
immediately. When a selection is made interac-
tively by dragging out a rectangle, the tiling tracks
it. Unless the selection is large, the tiling tracks the
rectangle as the mouse is dragged. If the selection
is too large for that, the tiling may lag behind the
changing selection and only catch up when the
selection stops changing.

A selection often produces a more interesting
tiling if it is mirrored [3] when tiled. This can be
done using the mirror button show in Figure 1.
Figures 6 show the mirrored tiling for the selection
used in the non-mirrored tiling shown in Figure 5.

Figure 6. A Mirrored Tiling

Suggestions for Exploration

Sometimes interesting patterns can be found
by using dimenions for selections that might not
come about naturally just by dragging out a selec-
tion rectangle by hand.

For example, if the width or height is set to one
pixel, the result is vertical or horizontal stripes
accordingly (provided the other dimension is large
enough). Figure 7 shows the results of a selection
rectangle that is one pixel high and extended the
full width of the tug boat image. In the case of a
detailed image like this one, the result resembles a
complex gradient more than stripes.

Supplementary Material

Supplementary material for this issue of the Analyst, including color images and Web links,
is available on the Web. The URL is

http://www.cs.arizona.edu/icon/analyst/iasub/ia54/



The Icon Analyst 54 / 11

Figure 7. A Gradient Pattern

By increasing the small dimension from one
pixel to several, textured stripes such as those
found in woven fabrics often result. Figure 8 shows
the results of a selection in which the long dimen-
sion is reduced and the height is six pixels.

Figure 8. Textured Stripes

The nature of the source image of course
effects the kinds of tiles that are found. The image
in Figure 9 is, like the tug boat image, from a
photograph. Most of this image is very dark, but
the lights reflected on the water provide ample
hunting ground for tiles.

Figure 9. City Lights Reflected in the Water

Figure 10 shows one such tiling.

Figure 10. Tiling from City Lights

Figure 11 shows another tiling, this time mir-
rored.

Figure 11. Mirrored Tiling from City Lights

Cartoons, which usually don’t have the subtle
gradations of color typically found in photographs
of natural scenes, also can produce interesting
tiles. They usually are more stylized that tilings
from photographs of natural scenes

Figure 12 shows the cartoon from which the
mirrored tilings in Figures 13 and 14 were derived.

 

Figure 12. Cartoon

Downloading Icon Material

Implementations of Icon are available for down-
loading via FTP:

ftp.cs.arizona.edu (cd /icon)



12 / The Icon Analyst 54

Figure 13. Mirrored Tiling from the Cartoon

Figure 14. Mirrored Tiling from the Cartoon

Perhaps surprisingly, patterns make good
material for finding tiles. Figure 15 shows a nu-
merical carpet [4]. Figures 16 and 17 show two
tilings derived from it.

Figure 15. A Numerical Carpet

Figure 16. Tiling from a Numerical Carpet

Figure 17. Tiling from a Numerical Carpet

Text also can be used as a basis for tiling.
Figures 18 and 19 show two examples.

Figure 18. Tiling from Text

Figure 19. Mirrored Tiling of a Letter

Icon on the Web

Information about Icon is available on the
World Wide Web at

http://www.cs.arizona.edu/icon/



The Icon Analyst 54 / 13

Figure 20 shows other tilings obtained by
searching within various images.

      

      

      

      

Figure 20. Various Tilings

Conclusion

To fully appreciate what it’s like to explore for
tiles, you have to do it. It’s especially interesting
when tiles are found interactive by dragging out a
selection rectangle and watching the tiled results.

The application for tile exploration is on the
Web site for this issue of the Analyst so that you
can try it yourself.

In the next issue of the Analyst, we’ll de-
scribed the more interesting aspects of the pro-
gram itself.

References

1. Graphics Programming in Icon, Ralph E. Griswold,
Clinton L. Jeffery, and Gregg M. Townsend , Peer-
to-Peer Communications, Inc., 1998, Plate 13.2.

2. “Graphics Corner”, IconAnalyst 44, pp. 8-9.

3. “Graphics Corner — Seamless Tiling”,
IconAnalyst 45, pp. 10-12.

Generating Sequences

In the last issue of the Analyst, we started a
series of articles on generators and sequences by
reviewing Icon’s repertoire of built-in generators
[1].

In this article, we’ll focus on how sequences
can be produced using only the built-in repertoire
— we’ll save (declared) procedures for a later
article. We’ll also bar co-expressions, which also
will be treated separately.

Several years ago, we posed some problems
related to this subject [2]. We’ll start here with that
approach and then go on to a general model for
writing expressions that produce sequences.

Sequence Generation Problems

All the sequences that follow are integer se-
quences. Sequences can, of course, contain values
of any type, but integer sequences are adequate for
showing principles, and they avoid some distract-
ing complexities associated with values of other
types.

Here are seven infinite sequences. We’ll show
how to write generators for them in the next sec-
tion, but you might give them a try before looking
ahead.

1. The positive integers; 1, 2, 3, …

2. The squares: 4, 9, 16, …

3. The integers raised to their own powers: 1, 4, 27,
256, …

4. The even squares: 4, 16, 36, …

5. The integers with alternating signs: 1 –2, 3, –4, 5,
–6, …

6. The Fibonacci numbers, in which each term is
the sum of the two preceding ones, starting with 1,
1: 1, 1, 2, 3, 5, 8, 13, …

7. The “self-replicating” sequence, with each term
repeated its own number of times: 1, 2, 2, 3, 3, 3, 4,
4, 4, 4, …

Solutions

1. Generating the positive integers is trivial:

4. “Anatomy of a Program — Numerical Carpets”,
IconAnalyst 45, pp. 1-10.



14 / The Icon Analyst 54

seq()

This function provides the basis — a “driver” — for
many other sequences: sequences in which the
values of terms are functions solely of their posi-
tions.   Put another way, seq() indexes the terms in
a sequence.

2. The squares follow immediately from seq():

seq() ^ 2

This introduces the idea of applying an operation
to the results of a generator.

3. Generating the integers raised to their own pow-
ers can be done as follows:

(i := seq()) & (i ^ i)

or cast as mutual evaluation

(i := seq(), i ^ i)

We’ll use mutual evaluation in the following ex-
amples, since it is more compact, especially for
complex expressions.

Note that this example introduces the need
for an auxiliary variable.

4. Generating the even squares can be done by
filtering out the odd ones:

(i := seq(), if i % 2 = 0 then i) ^ 2

Since there is no else clause, if-then fails if its
control expression fails. This generator also can be
cast as

(i := seq(), i % 2 = 0, i) ^ 2

If the comparison fails, the following expression, i,
is not evaluated.

A little insight suggests a simpler expression:

seq(2, 2) ^ 2

5. One way to generate integers with alternating
signs is to use the method of the preceding ex-
ample:

(i := seq(), if i % 2 = 0 then i else –i)

Another formulation maintains a state between
successive results:

(j := –1, seq() ∗ (j ∗:= –1))

The concept of maintaining a state (the value of j in
this example) has more general applicability.

6. Generating the Fibonacci numbers introduces
an initial, finite sequence followed by the rest:

1 | 1 | expr

Recall that the alternation of sequences produces
the concatenation of their results.

The initial values are, however, needed in
expr to start it up, so they need to be assigned to
auxiliary variables:

(i := 1) | (j := 1) | |(k := i + j, j := i, i := k)

7. Generating the self-replicating sequence intro-

The Icon Analyst

Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

Editors

The Icon Analyst is published six times a
year. A one-year subscription is $25 in the United
States, Canada, and Mexico and $35 elsewhere.
To subscribe, contact

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon–project@cs.arizona.edu

and

                     Bright Forest Publishers

                     Tucson Arizona

© 1999 by Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

All rights reserved.



The Icon Analyst 54 / 15

duces the concept of using more than one genera-
tor:

(i := seq(), |i \ i)

A somewhat more cryptic form is:

(i := seq(), (1 to i) & i)

That is, (1 to i) & i generates i copies of i.

A General Model

A schema for generating any sequence is

I  | F
where I  produces an initial, finite sequence (possi-
bly empty) and F generates the rest of the (possibly
infinite) sequence. I  also may set the values of
variables used in F.

The components of F can be given in the form

(i, d, c, r)

or

(i & d & c & r)

where i does initialization, d is a generator that
drives the rest of the expression, c performs some
computation, usually on a result produced by d,
and r produces the results of the expression.

Both c and r may be (finite) generators. (If
either is an infinite generator, no prior components
are resumed and the computation could be cast in
a different way.)

In most situations, some component expres-
sions can be eliminated and the remaining expres-
sions can be collapsed. Figure 1 shows the general

n I F

   i    d    c  r

1. &fail &null i := seq() &null i

2. &fail &null i := seq() i ^:= 2 i

3. (2) &fail &null i := seq() i ^:= i i

4. (2) &fail &null i := seq() if i %2 = 0 i

5. (2) &fail j := –1 i := seq() i ∗:=  (j ∗:= –1) i

6. (i := 1) | (j := 1) &null |(k := i + j, j := i, i := k) &null i

7. (1) &fail &null i :=  seq() &null |i \ i

Figure 1. General Formulations

formulations for the seven sequences shown ear-
lier. The numbers in parentheses refer to the spe-
cific expression given above when there is more
than one.

Next Time

The next article in this thread will be about
using procedures as generators. There will be other
articles on generating sequences that will run in
parallel.

References

1. “Built-In Generators”, Icon Analyst 54, pp.16-
19.

2. “Exercises”, Icon Analyst 12, pp. 1-2.

Subscription Renewal

For many of you, this is the
last issue in your present sub-
scription to the Analyst. If so,
you’ll find a renewal form in the
center of this issue. Renew now
so that you won’t miss an issue.

Your prompt renewal
helps us by reducing the num-
ber of follow-up notices we have
to send. Knowing where we

stand on subscriptions also lets us plan our budget
for the next fiscal year.



16 / The Icon Analyst 54

Quiz

Using only Icon’s built-in rep-
ertoire but no co-expressions,
give expressions that generate
the following sequences.

1. The palindromic integers:

   1, 2, … 9, 11, 22, … 99, 101, …

2. The integers with the order
of successive values reversed:

   2, 1, 4, 3, 6, 5, …

3. The “sawtooth” sequence, which consists of runs
up to each successive integer:

   1, 1, 2, 1, 2, 3, 1, 2, 3, 4, …

4. The “mountain peak” sequence, consists of runs
up to each successive integer and back down to 1:

   1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 4, 3, 2, 1, …

5. The digit-sum sequence, in which the ith term is
the sum of the digits in i:

   1, 2 , 3, …, 9,  1, 2, 3,  …, 9, 10, 2, 3, …, 10, 11, 3, …

6. The “sigma” sequence in which the digit sum of
an integer is replied repeatedly until there is only
one digit (for example, 28 ➛ 10 ➛ 1):

    1, 2 , 3, …, 9,  1, 2, 3,  …, 9, 1, 2, 3, …, 1, 2, 3, …

7. What do the following expressions generate?

(a) seq() \ seq()

(b) (seq() ^ 2) \ seq()

(c) seq() \ (seq() ^ 2)

(d) (seq() ^ 2) \ (seq() ^ 2)

(e) (seq() \ seq()) \ seq()

(f) ((seq() \ seq()) \ seq()) \ seq()

(g) (1 to 10) ^ seq()

(h) seq() | seq()

(i) (–1) ^ seq()

(j) (5 ∗ (seq()) % 9

8. For each of the following sequences, determine
a rule that produces it and give an expression that
generates it.

(a) 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 0, 1, 1, 1, 2, 1, 3, 1, 4,
1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 2, 0, 2, 1, 2, …

What’s Coming Up

The purpose of computing is insight not numbers.
— Richard Hamming

In the next issue of the Analyst we plan to
have the article on animation by image replace-
ment that didn’t make this issue.

We’ll follow up the article on exploring for
tiles with a discussion of some of the more interest-
ing aspects of the program’s implementation.

There will be solutions to the exercises and
answers to the quiz in this issue, as well as another
quiz.

The series of articles on weaving will continue
with one on shadow-weave wallpaper and another
article on looms and weaving drafts.

In the series of articles on generators and
sequences, we'll review co-expressions and pro-
grammer-defined control operations. From the Li-
brary will describe some of the sequence resources
that are available.

(b) 1, 2, 3, 4, 5, 6, 0, 1, 2, 1, 0, 1, 1, 1, 2, 1, 3, 1,
4, 1, 5, 1, 6, 1, 0, 1, 1, 1, 2, 2, 0, 2, 1, 2, …

(c) 1, 1, 2, 3, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 7, 1, 2,
3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, …

(d) 1, 4, 27, 256, 3125, 46656, 823543, 16777216,
387420489, 10000000000, 285311670611,
8916100448256, …

(e) 3, 81, 19683, 4304721, 847288609443,
150094635296999121, …


