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Shaft Arithmetic

Editors’ Note: This article was adapted from one
designed as a tutorial for weavers without a technical
background. We have added program material only near
the end.

Shafts and treadles of looms are numbered for
identification [1]. The numbers of the shafts through
which successive warp threads pass form a se-
quence, as do the numbers of the treadles for
successive picks. Consider the draft shown in Fig-
ure 1, in which the arrows indicate the orientation:

Figure 1. Example Draft

The threading is an upward straight draw.
The sequence is:

1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5,
6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2,
3, 4, 5, 6, 7, 8, 1, 2

The treadling sequence is more complicated:

1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7,
6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 4,
3, 2, 1, 2, 3, 4, 3, 2

These two sequences, in combination with the tie-
up, define the structure of the weave.

Threading and treadling sequences often have
distinctive patterns, as in the repeat for the thread-
ing sequence above. In the case of a repeat, it’s only
necessary to know the basic unit, which we’ll indi-
cate by an overbar:

1, 2, 3, 4, 5, 6,7, 8

Modular Arithmetic

Since looms have a fixed number of shafts and
treadles, the sequences are most easily understood
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in terms of modular arithmetic, sometimes called
clock or wheel arithmetic, in which numbers go
around a circle clockwise, starting with 0. If there
are 8 shafts, there are 8 equally spaced points on the
circle 0 to 7, as shown in Figure 2:
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Figure 2. Arithmetic Modulo 8

The numbers on the inner circle are those that
exist in the modular arithmetic. If we continue
beyond 7, as shown in the outer ring, the numbers
wrap around the wheel. Numbers on the same
spoke are equivalent. For example, 0 and 8 are
equivalent, 1 and 9 are equivalent, 2 and 10 are
equivalent, and so on. Another way to look at it is
that when 9 is introduced into modular arithmetic
with 8 shafts, it becomes 1, and so on.

Shaft Arithmetic

Although modular arithmetic uses the num-
ber 0 as a starting point, most persons count from
1. Shafts and treadles are numbered this way. This
1-based numbering system is easily accommodated
by rotating the wheel counterclockwise by one
position, as shown in Figure 3:
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Figure 3. Shaft Arithmetic Modulo 8

Notice that 1 and 9 are still equivalent, as are
2 and 10, and so on.  0 has gone away, but it will be
back.

For sequences, shafts and treadles are handled
the same way, so we’ll call this shaft arithmetic, with
the understanding that it applies to treadles also.
Of course, most facts about shaft arithmetic hold
for ordinary modular arithmetic.

In shaft arithmetic, an upward straight draw
for 8 shafts is described by the positive integers in
sequence:

1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, …

and wrapped around the shaft circle to produce

1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, …

The point is that an upward straight draw
comes from the most fundamental of all integer
sequences, the positive integers in increasing or-
der. (We’ll discuss downward straight draws later.)

Drafting with Sequences

The idea behind drafting with sequences is
that many sequences have interesting patterns,
which often become more interesting in shaft arith-
metic. In fact, many sequences show repeats when
cast in shaft arithmetic. For example, the shaft
sequence for an upward straight draw for 8 and 10
shafts are represented by

1, 2, 3, 4, 5, 6,7, 8

and

1, 2, 3, 4, 5, 6,7, 8, 9,10

respectively.

Patterns in Sequences

Sequences may produce interesting woven
patterns when they are used for threading and
treadling.

There are a great many well-documented in-
teger sequences. The Fibonacci sequence, which
has many connections in nature, design, and math-
ematics, is one of the best known and most thor-
oughly studied of all integer sequences. The Fi-
bonacci sequence starts with 1 and 1. Then each
successive number (term) is the sum of the preced-
ing two:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

As the sequence continues, the numbers get
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very large. For example, the 50th term in the Fi-
bonacci sequence is more than 12 billion. Shaft
arithmetic brings this sequence under control. For
8 shafts, the result is

1, 1, 2, 3, 5, 8, 5, 5, 2, 7, 1, 8, 1, 1, 2, 3, 5, 8, 5, 5, 2,
7, 1, 8, 1, 1, 2, 3, 5, 8, 5, 5, 2, 7, 1, 8, …

As you can see, there is a repeat, so the entire
sequence can be represented by

1,1, 2, 3, 5, 8, 5, 5, 2,7,1, 8

Patterns in sequences are more easily seen if
they are plotted, as in the grids used in weaving
drafts. For 8 and 12 shafts, the Fibonacci sequence
are shown in Figures 4 and 5:

Figure 4. Fibonacci Sequence for 8 Shafts

Figure 5. Fibonacci Sequence for 12 Shafts

Here are some other simple sequences and
what they look like for various numbers of shafts.

Figure 6. The Squares for 5 Shafts

Figure 7. Fibonacci Cubes for 11 Shafts

Figure 8. Every Third Positive Integer
for 7 Shafts

The patterns such sequences produce in
weaves depend on many factors. To keep things
simple to begin with, we’ll use direct tie-ups and
treadling as drawn in (that is, the same sequence

for the threading and the treadling) [2]. Even in this
very limited framework, interesting woven pat-
terns abound.

Figure 9 shows a drawdown for a few repeats
of the Fibonacci sequence for 4 shafts:

Figure 9. Fibonacci Drawdown for 4 Shafts

The pattern is noticeably different for 8 shafts,
as shown in Figure 10. If you compare the two,
however,  you’ll see commonalities:

Figure 10. Fibonacci Drawdown for 8 Shafts
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A simple sequence that produces interesting
patterns is the “multi” sequence, which starts with
a single 1 and is followed by 2 copies of 2, 3 copies
of 3, and so on:

1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, …

Note that there are no repeats in shaft arithmetic for
this sequence, since the “width” of the repeated
integer blocks constantly increases.

The drawdown for the multi sequence for 4
shafts is shown in Figure 11.

Figure 11. 4-Shaft Multi Sequence Drawdown

One way to produce interesting sequences is
to combine other sequences, such as interleaving
the terms of two sequences. For example, interleav-
ing the positive integers and the Fibonacci se-
quence produces

1, 1, 2, 1, 3, 2, 4, 3, 5, 5, 6, 8, 7, 5, 8, 5, 1, 2, 2, 7, 3,
1, 4, 8, 5, 1, 6, 1, 7, 2, 8, 3, 1, 5, 2, 8, 3, 5, 4, 5, 5, 2,
6, 7, 7, 1, 8, 8 …

A drawdown for 8 shafts is shown in Figure 12.

Figure 12. Interleaved Integer and Fibonacci
Sequences for 8 Shafts

Other tie-ups, as well as threading sequences
and treadling sequences that are different, pro-
duce all kinds of interesting results.

Zero and Negative Integers

There’s one more matter to be dealt with —
zero and negative numbers. Weavers drafting on
the basis of sequence usually just drop such num-
bers or take the absolute values of negative num-
bers. The proper way to deal with these is indicated
by looking at what happens when you have nega-
tive integers in increasing sequence as they cross
over to the positive integers:

…, –7, –6, –5, –4, –3, –2, –1, 0, 1, 2, 3, 4, 5, 6, 7, 8, …

Now think of the modular wheel and what hap-
pens if you wrap this sequence of numbers around
it. See in Figure 13.

Supplementary Material

Supplementary material for this issue of the Analyst, including program material,  images,
and Web links, is available on the Web. The URL is

http://www.cs.arizona.edu/icon/analyst/iasub/ia57/
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Figure 13. Negative Shaft Arithmetic Modulo 8

In other words, –1 becomes 7, –2 becomes 6,
and so on. Note that 0, which we’ve been hiding,
becomes 8.

Perhaps you now see the integer sequence that
produces a downward straight draw:

0, –1, –2, –3, –4, –5, –6, –7, –8, –9, –10, …

All that’s needed to convert a non-positive
remainder to a shaft number is to add it to the
number of shafts. For –1, for example,

8 + (–1) = 7

The Programming View

Icon’s remaindering operation, i % j, produces
the remainder of i divided by j. The sign of the result
is the sign of i. Therefore, –7 / 3 produces –1. But the
common residue (usually just residue) [3] in modular
arithmetic is defined to be the remainder of i di-
vided by j but given between 0 and j – 1. This is what
the wheel shows.

A procedure to produce the residue is

procedure residue(i, j)

   i := i % j

   if i < 0 then i := j + i

   return i

end

This procedure can be modified to give results
with indexing based on a number other than 0:

procedure residue(i, j, k)
   /k := 0

   i := i % j

   if i < k then i := j + i

   return i

end

Since k defaults to 0, if the third argument is
omitted the usual residue is produced, but if k is 1,
we get the shaft residue.

Incidentally, the underlying sequence for an
upward straight draw is given by seq(1), while the
sequence for a downward straight draw is given
by –seq(0).

References

1. “A Weaving Language”, Icon Analyst 51, pp.
5-11.

2. “Dobby Looms and Liftplans”, Icon Analyst
55, pp. 17-20.

3. CRC Concise Encyclopedia of Mathematics, Eric W.
Weisstein, Chapman & Hall/CRC, 1998, p. 281.

Periodic Sequences

A periodic sequence is an infinite sequence in
which a finite subsequence repeats indefinitely.
The digits of the mantissa (see the side-bar on the
next page) of the decimal  expansion of 1/7 provide
an example:

   1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, …

A periodic sequence may have a pre-periodic
part before the repeat, as in the digits of the decimal
expansion of 1/12:

   0, 8, 3, 3, 3, 3 …
Sequences with pre-periodic parts are called

quasi-periodic; those without pre-periodic parts are
call strictly periodic.

There are many mathematical sources of peri-
odic sequences. The main ones are:

• residues of terms of non-periodic sequences

• decimal (and other base) expansions of frac-
tions

• denominators of continued fractions for qua-
dratic irrationals

• samples of periodic functions like sin(x)

There probably are others we haven’t thought of,
and there’s always the miscellaneous category.
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Mantissa

If you look in a dictionary, the definition
you’ll most likely find for mantissa is that it’s the
decimal part of a logarithm.

In mathematics, the term has a more gen-
eral meaning as the fractional part of a real
number [1]:

mantissa( )  x x x= −  
where x   is the floor of x, the largest integer less
than or equal to x.

The first use of the term mantissa in this
way is attributed to Gauss.

A procedure to produce the mantissa of a
real (floating-point) number would be trivial
except for the possibility that the string represen-
tation may be in scientific notation, such as
"2.45e–2".

This is just a messy detail of the kind that
infests programming.  Here’s a procedure:

link numbers

procedure mantissa(r)
   local fpart

   r := real(r)

   fpart := r – floor(r)    # from numbers module

   fpart ?:= {
      tab(upto('.') + 1)
      tab(0)
      }

   fpart ? {
      if fpart := tab(upto('Ee')) then {
         move(1)
         if = "+" then fpart := "0"
         else {
            move(1)
            fpart := repl("0", tab(0) – 1) || fpart
            }
         }
      }

   return "." || fpart

end

Reference

1. CRC Concise Encyclopedia of Mathematics, Eric
W. Weisstein, Chapman & Hall/CRC, 1998, p.
136.

There are many things of interest about peri-
odic sequences: their periods, the values they con-
tain, the patterns of values, and so on. But before
we explore these areas, we need to discuss notation
and the representation of periodic sequences in
data and programs.

Notation and Representation

Sequences usually are written with terms sepa-
rated by commas as shown in preceding examples.
Sometimes other separators, such as blanks, are
used, but commas make the separation of terms
easier to see and we’ll use commas here.

For periodic sequences, it’s conventional to
use a bar over the repeat, as in

1 4 2 8 5 7, , , , ,

and

0 8 3, ,

Like many forms of mathematical notation,
bars over text are typographically difficult. Word
processors and page layout systems generally do
not support them, since they cannot  be composed
from characters, unlike underscores, which come
with font families. (Recall that we used under-
scores to indicate repeated digit patterns in versum
numbers [1].) We’ve had to go to a program specifi-
cally designed for laying out mathematical expres-
sions to provide the examples here.

When representing sequences as strings for
processing by programs, neither overbars nor un-
derscores are available. The string representation
we chose is to enclose repeats in brackets, as in

"[1,4,2,8,5,7]"

and

"0,8,[3]"

Strings are awkward and inefficient to pro-
cess in a program. For finite sequences we usually
use lists, which are sequences by definition and
might have been so named. Since the repeat in a
periodic sequence is finite, we can represent peri-
odic sequences by a pair of lists: a pre-periodic part
(possibly empty) and repeat. A record brings these
together in a single (defined) type:

record perseq(pre, rep)

Examples are

one_seventh := perseq([ ], [1, 4, 2, 8, 5, 7])
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and

one_twelveth := perseq([0, 8], [3])

 Note that a finite sequence can be repre-
sented in this way also by using an empty repeat,
as in

one_eighth := perseq([1, 2, 5 ], [ ])

It’s worth mentioning that for sequences con-
sisting of single digits, strings could be used in
place of lists, as in

one_twelveth_s := perseq("01", "3")

Several operations apply to both strings and
lists. For example,

!one_twelveth

and

!one_twelveth_s

generate equivalent results, although the first pro-
duces integers and the latter one-character strings,
which in numerical contexts are converted to inte-
gers automatically.

Although strings require less memory than
lists, there are potential pitfalls and we’ll generally
avoid this “shortcut”.

There is another possibility for representing
the periodic part  of a sequence — as a list whose
last element points to the list itself. Thus,

one_seventh_p := [1, 4, 2, 8, 5, 7]
put(one_seventh_p, one_seventh_p)

can be visualized as shown in Figure 1.

1 2 8 5 74

Figure 1. A Looping Structure

Programs that process such a  representation
need to take it into account, as in this procedure,
which generates the elements of a repeat:

procedure genelem(rep)
   local x

   repeat {
      every x := !rep do {
         if type(x) == "list" then {
            rep := x
            break next # go to repeat loop
            }
         else suspend x
      break # exit if finite

      }

end

There is no need for this extra complexity in
our consideration of periodic sequences, but the
representation is useful in more general contexts,
which we’ll discuss in a later article on “packet
sequences”.

Next Time

In the next article on periodic sequences, we’ll
explore the role of modular arithmetic in the cre-
ation of periodic sequences. See the article Shaft
Arithmetic, which begins on page 1, for a hint of
what’s in store.

Reference

1. “Versum Factors”, Icon Analyst 40, p. 9-14.

Finding Repeats

Given a finite portion of a sequence that is
known to be periodic or that might be, how do you
find the repeat?

In the first place, the problem is not well
defined. For example, given the terms

0, 1, 2, 3, 4, 5, 6, 7

it might seem obvious that the next term is 8.
However, if this sequence is the initial portion of
the nonnegative integers mod 8, the next term is 0.
The next term could, of course, be anything.

Even though the problem is not well defined,
it’s still possible to make useful guesses.

The method for finding a possible repeat is
not conceptually difficult. You just try initial sub-
sequences until one, when repeated, matches the
rest of the sequence. If there is none, you remove
the initial term and add it to a sequence for a pre-
periodic part (initially empty) and start over. Even-
tually this process terminates, either with a pos-
sible repeat or with all the terms in the pre-periodic
part. Here’s a procedure:

link lists

record perseq(pre, rep)

procedure repeater(seq, ratio, limit)
   local init, i, prefix, results, segment, span

   /ratio := 2
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   /limit := 0.75

   results := copy(seq)

   prefix := [ ]

   repeat {
      span := ∗results / ratio
      every i := 1 to span do {
         segment := results[1+:i] | next
         if lequiv(lextend(segment, ∗results), results) then
            return perseq(prefix, segment)
         }
      put(prefix, get(results)) | # first term to prefix
         return perseq(prefix, results)
      if ∗prefix > limit ∗ ∗seq then return perseq(seq, [ ])
      }

end

The argument sequence is copied, so that it is
not modified. The list prefix holds the potential
pre-periodic part.

The variable ratio determines how long the
repeat can be as a fraction of the length of the
sequence and is designed to allow a reasonable
determination of a repeat. The default, 2, ensures
that the original sequence has at least two full
repeats.

The variable limit prevents a very long a pre-
periodic part with a short repeat at the end, which
usually is erroneous.

In the repeat loop, initial subsequences from
1 to the allowed maximum are tried. For each, the

subsequence is extended by repeating to the length
of the sequence using lextend() from the lists mod-
ule of the Icon program library.

If the two lists are equivalent, using lequiv(),
also from the lists module, a possible repeat has
been found and the procedure return with a record
containing the pre-periodic part and the repeat.

If the two lists are not equal, the initial term of
the current sequence is removed, appended to the
pre-periodic part, and the loop is repeated. If the
sequence is exhausted without finding a repeat,
the procedure returns a record with all of the
original sequence in the pre-periodic part and an
empty repeat.

The procedure lextend() is a list version of the
weaving procedure Extend() [1]:

procedure lextend(L, i)
   local result

   result := copy(L)

   until ∗result >= i do
      result |||:= L

   result := result[1+:i]

   return result

end

We’ll come back to lequiv() later.
Figure 1 shows output from an instrumented

version of repeater().

pre-periodic part: [ ]
remaining terms: [1,10,3,5,1,1,3,5,3,1,1,10,1,1,3,5,3,1,1,10,1]

searching for repeat

trial segment: [1]
extension: [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] no match
trial segment: [1,10]
extension: [1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1] no match
trial segment: [1,10,3]
extension: [1,10,3,1,10,3,1,10,3,1,10,3,1,10,3,1,10,3,1,10,3] no match

…

trial segment: [1,10,3,5,1,1,3,5,3]
extension: [1,10,3,5,1,1,3,5,3,1,10,3,5,1,1,3,5,3,1,10,3] no match
trial segment: [1,10,3,5,1,1,3,5,3,1]
extension: [1,10,3,5,1,1,3,5,3,1,1,10,3,5,1,1,3,5,3,1,1] no match

attempt to find repeat failed

Figure 1. Finding a Repeat
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moving initial term to pre-periodic part

pre-periodic part: [1]
remaining terms: [10,3,5,1,1,3,5,3,1,1,10,1,1,3,5,3,1,1,10,1]

searching for repeat

trial segment: [10]
extension: [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10] no match
trial segment: [10,3]
extension: [10,3,10,3,10,3,10,3,10,3,10,3,10,3,10,3,10,3,10,3] no match
trial segment: [10,3,5]
extension: [10,3,5,10,3,5,10,3,5,10,3,5,10,3,5,10,3,5,10,3] no match

…

trial segment: [10,3,5,1,1,3,5,3,1]
extension: [10,3,5,1,1,3,5,3,1,10,3,5,1,1,3,5,3,1,10,3] no match
trial segment: [10,3,5,1,1,3,5,3,1,1]
extension: [10,3,5,1,1,3,5,3,1,1,10,3,5,1,1,3,5,3,1,1] no match

attempt to find repeat failed

moving initial term to pre-periodic part

pre-periodic part: [1,10]
remaining terms: [3,5,1,1,3,5,3,1,1,10,1,1,3,5,3,1,1,10,1]

searching for repeat

trial segment: [3]
extension: [3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3] no match
trial segment: [3,5]
extension: [3,5,3,5,3,5,3,5,3,5,3,5,3,5,3,5,3,5,3] no match
trial segment: [3,5,1]
extension: [3,5,1,3,5,1,3,5,1,3,5,1,3,5,1,3,5,1,3] no match

…

trial segment: [3,5,1,1,3,5,3,1]
extension: [3,5,1,1,3,5,3,1,3,5,1,1,3,5,3,1,3,5,1] no match
trial segment: [3,5,1,1,3,5,3,1,1]
extension: [3,5,1,1,3,5,3,1,1,3,5,1,1,3,5,3,1,1,3] no match

attempt to find repeat failed

moving initial term to pre-periodic part

pre-periodic part: [1,10,3]
remaining terms: [5,1,1,3,5,3,1,1,10,1,1,3,5,3,1,1,10,1]

searching for repeat

trial segment: [5]
extension: [5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5] no match
trial segment: [5,1]
extension: [5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1] no match
trial segment: [5,1,1]
extension: [5,1,1,5,1,1,5,1,1,5,1,1,5,1,1,5,1,1] no match

…

trial segment: [5,1,1,3,5,3,1,1]
extension: [5,1,1,3,5,3,1,1,5,1,1,3,5,3,1,1,5,1] no match
trial segment: [5,1,1,3,5,3,1,1,10]
extension: [5,1,1,3,5,3,1,1,10,5,1,1,3,5,3,1,1,10] no match

attempt to find repeat failed

Figure 1 (continued). Finding a Repeat
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As we mentioned earlier, the problem of find-
ing a repeat is not well defined. The procedure may
fail to find a repeat because there are not enough
terms. More serious, perhaps, is a ”false positive”
in which a potential repeat is found but it is not a
repeat in a longer portion of the entire sequence.

Neither of these problems can be avoided
altogether, so it is well to treat the results with

reservations.

Performance Issues

A brute-force approach like this can be very
slow, especially for long sequences in which no
repeat is found. As mentioned earlier, this may
occur even when there is a repeat if the sequence
given does not have enough terms. This is a caution

moving initial term to pre-periodic part

pre-periodic part: [1,10,3]
remaining terms: [5,1,1,3,5,3,1,1,10,1,1,3,5,3,1,1,10,1]

searching for repeat

trial segment: [5]
extension: [5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5] no match
trial segment: [5,1]
extension: [5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1] no match
trial segment: [5,1,1]
extension: [5,1,1,5,1,1,5,1,1,5,1,1,5,1,1,5,1,1] no match

…

trial segment: [5,1,1,3,5,3,1,1]
extension: [5,1,1,3,5,3,1,1,5,1,1,3,5,3,1,1,5,1] no match
trial segment: [5,1,1,3,5,3,1,1,10]
extension: [5,1,1,3,5,3,1,1,10,5,1,1,3,5,3,1,1,10] no match

attempt to find repeat failed

moving initial term to pre-periodic part

pre-periodic part: [1,10,3,5]
remaining terms: [1,1,3,5,3,1,1,10,1,1,3,5,3,1,1,10,1]

searching for repeat

trial segment: [1]
extension: [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] no match
trial segment: [1,1]
extension: [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] no match
trial segment: [1,1,3]
extension: [1,1,3,1,1,3,1,1,3,1,1,3,1,1,3,1,1] no match
trial segment: [1,1,3,5]
extension: [1,1,3,5,1,1,3,5,1,1,3,5,1,1,3,5,1] no match
trial segment: [1,1,3,5,3]
extension: [1,1,3,5,3,1,1,3,5,3,1,1,3,5,3,1,1] no match
trial segment: [1,1,3,5,3,1]
extension: [1,1,3,5,3,1,1,1,3,5,3,1,1,1,3,5,3] no match
trial segment: [1,1,3,5,3,1,1]
extension: [1,1,3,5,3,1,1,1,1,3,5,3,1,1,1,1,3] no match
trial segment: [1,1,3,5,3,1,1,10]
extension: [1,1,3,5,3,1,1,10,1,1,3,5,3,1,1,10,1] match

found repeat

pre-periodic part: [1,10,3,5]
repeat: [1,1,3,5,3,1,1,10]

done

Figure 1 (concluded). Finding a Repeat



The Icon Analyst 57 / 11

to the user to provide an adequate numbers of
terms. The downside of this is that if there is no
repeat, the procedure takes even longer.

If you look at Figure 1, you no doubt will see
ways to improve the performance of the proce-
dure. Suggestions are welcome. Send e-mail to

icon-analyst@cs.arizona.edu

Hidden in the library code is a source of
inefficiency that has nothing to do with repeater().
The procedure lequiv() is designed to handle lists
in their most general form, in which list elements
can be of any type, included structures:

procedure lequiv(x,y)
   local i

   if x === y then return y
   if type(x) == type(y) == "list" then {
      if ∗x ~= ∗y then fail
      every i := 1 to ∗x do
         if not lequiv(x[i], y[i]) then fail
      return y
     }

end

For lists of numbers, this generality is not
needed and the following somewhat faster proce-
dure will do:

procedure seqequiv(seq1, seq2)
   local i

      every i := 1 to ∗seq1 do
         if seq1[i] ~= seq2[i] then fail

      return seq2

end

This improvement is, of course, minor com-
pared to the combinatorial nature of the problem.

Reference

1. “A Weaving Language”, Icon Analyst 51, pp.
5-11.

Name Drafting

Many handweavers simply weave from the
large number of drafts that are available in books
and magazines about weaving. These weavers may
make minor modifications, but the designs they
weave are the creations of others.

The measure of “real” handweavers is the
desire and ability to create their own designs.

Weavers who have woven only from the drafts
of others often come to the point where they want
to design their own drafts — to become “real”
handweavers. But how to start?

A type of weaving known as name drafting
often is recommended for this situation. (Name
drafting also is known as name code drafting, code
drafting, commemorative drafting, and personal-
ized design.)

Although name drafting is naive in concept,
as you’ll see, it does provide an easy bridge be-
tween copying the work of others and creating
new designs.

Mapping Strings into Draft Sequences

The basic idea is simple: A string — a word, or
more often, a phrase or sentence — is coded to
make shaft and treadling sequences. Such drafts
usually are treadled as draw in, with the same
sequence used for both the threading and trea-
dling, so we’ll just refer to threading sequences
here.

The coding assigns a shaft number to each
character of the selected string. Although any
method of associating shafts with characters could
be used, only a few appear in the literature [1-6]
and weavers generally are instructed to use one of
these. Three codings that commonly are used for
four shafts are:

ABCDEFG shaft 1
HIJKLMN shaft 2
OPQRSTU shaft 3
VWXYZ shaft 4

ABCDEF shaft 1
GHIJKL shaft 2
MNOPQR shaft 3
STUVWXYZ shaft 4

AEIMQUY shaft 1
BFJNRVZ shaft 2
CGKOSW shaft 3
DHLPTX shaft 4

Downloading Icon Material

Implementations of Icon are available for down-
loading via FTP:

ftp.cs.arizona.edu (cd /icon)
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Using a specified coding formula is an ex-
ample of the dominating role of rote among unso-
phisticated weavers. It also is telling that only
letters are considered and that upper- and lower-
case letters always are taken to be equivalent. This
is akin to the problem of a person who is not
familiar with computing and has trouble with the
fact that a blank is just a much character as X.
Surprisingly, to this day this problem exists with
beginning computer science students.

One problem in choosing a mapping between
characters and shaft numbers is whether some
shafts will be underutilized or not used at all. There
are strong statistical patterns in the frequency in
which characters appear in written text (usually
considered only in terms of letters). Average fre-
quencies vary with the subject and the language.
It’s well known that in English, e is the most
commonly used letter and q and z are the least.

Letter frequency is an important aspect of
some kinds of cryptography and we’ll discuss it in
more detail in that context in an upcoming article.

The mapping can be chosen to try to balance
shaft usage, but any predefined mapping can be
defeated by a particular string — not to mention
the fact that the string chosen may not contain as
many different characters as there are shafts to be
used. In practice, strings are chosen to work around
such problems.

Modifying Sequences for Weaving

Name drafts usually employ a kind of weav-
ing called overshot [7-8] in which a pattern is woven
over a background texture. A technical require-
ment of overshot is that the shaft numbers alter-
nate between odd and even. This problem is solved
by adding “incidentals” where necessary to break
odd and even pairs that arise from the coding.

The result usually is better if this is done in a
systematic way. OddEvenPDCO{} in Icon Ana-
lyst 55 [9] works nicely (and corresponds to what
name drafters usually do, although the directions
for doing it are often are given on a case-by-case
basis and fail to reveal a general method). The idea
is simple: When a prohibited pair occurs, insert a
shaft number one greater than the first member of
the pair, wrapping around where necessary using
shaft arithmetic (see the article that starts on page
1).

Thus, for four shafts, the sequence

1, 1, 2, 3, 4, 4, 3, 3, 1

becomes
1, 2, 1, 2, 3, 4, 1, 4, 3, 4, 3, 4 1

In practice, weavers often make other modifi-
cations to produce more attractive weaves after
small trial weaves (called samples). We won’t get
into that here, since there is no system to it.

Implementing Name Drafting

To implement name drafting, we generalized
the conventional interpretation of characters to
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include all characters, not just letters. Making up-
per- and lowercase letters equivalent or disregard-
ing some characters is done by applying an appro-
priate function to the chosen string. For example,

string := map(string)

maps uppercase letters to lowercase ones, leaving
all other characters unchanged. There are many
other relevant uses of map(), including transposi-
tions [10].

Other functions may be useful, such as

string := cset(string)

which removes duplicate characters and puts the
results in lexical order.

The Icon program library module strings con-
tains several procedures that may be useful in this
context:

compress(s, c) compresses runs of characters
in c that occur in s to a single character.

csort(s) sorts the characters of s but does
not remove duplicates.

deletec(s, c) deletes characters in c from s.

fchars(s) orders the characters in s according
to decreasing frequency of occurrence.

ochars(s) places the unique characters of s in
the order in which they first occur.

Procedures can be written to produce various
other effects, including adapting the mapping to
the string chosen to balance shaft usage.

The next step is to assign a positive integer to
each distinct character of the string. Here’s a proce-
dure. Note that it assigns integers in the order in
which characters occur.

procedure shaftmap(s)
   local j, map_table

   map_table := table()

   j := 0

   every /map_table[!s] := ( j +:= 1)

   return map_table

end

The table returned then can be used for the
actual mapping. Notice that at this point, the result
is independent of the number of shafts. When the
draft is created, shaft arithmetic is applied to bring
the values in range.

The mapping table then can be applied to any
string. This procedure generates the shaft num-
bers:

procedure genshafts(s, tbl)

   suspend tbl[!s]

end

The two processes can be combined:

procedure genmapshafts(s1, s2)

   suspend genshafts(s1, shaftmap(s2))

end

Other Aspects of Name Drafting

Name drafts usually are reflected about their
centers to add symmetry and increase the visual
appeal of the resulting weaves.

As mentioned earlier, name drafting usually
is done using an overshot weave. In overshot
weaves, the tie-up usually is a twill, which, in its
simplest form, produces a diagonal surface effect
as shown in Figure 1.

Figure 1. A Twill

The particular twill tie-up used may have a
dramatic effect on a weave produced by a name
draft. We don’t have space here to explore twills,
but we’ll get to them in a later article.

Name Drafting in Perspective

Certainly name drafting is an ad hoc mecha-
nism for producing threading and treadling se-
quences. Other mechanisms are easy to imagine. In
fact, one of the main subjects we’ll treat in upcom-
ing issues of the Analyst is drafting based on
integer sequences. Name drafting is just one way
of getting an integer sequence.  See the article Shaft
Arithmetic that begins on page 1 for examples.

To weavers, however, name drafting can serve
a real purpose, which is indicated by the alterna-
tive term “commemorative drafting”. The string
chosen may have a meaning that is personal to the
weaver, resulting in a weave embodying this mean-
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ing. This aspect of name drafting is sometimes
forgotten, however. A recent article on name draft-
ing [6] described the author’s attempts to find a
phrase that produced an attractive weave, finally
settling on “The Random House Dictionary” as the
result of glancing at a nearby bookshelf. An attrac-
tive weave, yes. A special meaning? Hardly (even
according to the author).

Next Time

As mentioned above, we’ll explore twills in
the future issue of the Analyst. In the meantime,
we’ll leave you with the name-drafted images in
Figure 2. Don’t try to figure out the strings used. To
have any hope of deciphering a name draft, you
need to know the tie-up used. We’ll “reveal all” in
the next article.
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Variations on Versum Sequences

There have been 18 Analyst articles on versum
sequences, those sequences that result from re-
peatedly adding the reversal of a number to itself
[1-18]. It’s been a year since the last article, not
because we lack material but because we had other
things to cover and thought a respite from versum
sequences was in order.

This article doesn’t include anything from
our older unpublished versum material but rather
introduces some variations on the reverse-addi-
tion process.

One variation is characterized by “reverse,
add, and then add j” where j is a fixed integer. For
example, with the seed 196, adding 7 produces this
sequence:

894 1279101088
1399 10080120816

11337 71882228824
84655 114764457648

140310 961518925066
153358 1622048740242

1006716 4042527142510
7182724 4194944394921

11455548 5489878889842
96010966 7979767679694

162912042 12949535359498
403131310 102444888954426
416262621 726904777398634
542525242 1163798554808268
785050494 9791883113781886

      …

The procedure versumseq(i) from the genrfncs
module of the Icon program library was originally
designed to generate the ordinary versum se-
quence. It can easily be generalized to take j as a
second argument:

procedure versumseq(i, j)

   /i := 196

   /j := 0

   repeat {
      i +:= reverse(i) + j
      suspend i
      }

end

Note that i defaults to the infamous 196, while
j defaults to 0, so that if the second argument in a
call of versumseq() is omitted, the ordinary versum

sequence is generated.
There are seveal questions we might ask about

this generalization to versum sequences:

• How do such sequences depend on the value
of j?

• What happens if j is negative?

• Do such sequences contain palindromes in
the fashion of regular versum sequences?

One of the featured sequences in The Encyclo-
pedia of Integer Sequences [19] <1> is characterized
by “reverse, add, then sort” (RATS).  For example,
starting with the seed 1, the sequence is:

2 12333445
4 66666677
8 133333444

16 556667777
77 1233334444

145 5566667777
668 12333334444

1345 55666667777
6677 123333334444

13444 556666667777
55778 1233333334444

133345 5566666667777
666677 12333333334444

1333444 55666666667777
5567777 123333333334444

      …

A procedure to generate such sequences is
simple:

procedure ratsseq(i)

   /i := 196

   repeat {
      i +:= reverse(i)
      i := integer(csort(i))
      suspend i
      }

end

The procedure csort(), from the strings module of
the Icon program library, sorts the characters of a
string.

RATS sequences raise all kinds of questions,
such as:

• Do they ever contain repdigit terms (terms
consisting entirely of one digit)?

• Are terms ever pandigital (containing at least
one of every digit except, in this case, 0)?
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This procedure can be generalized to allow an
optional unary operation to be specified:

procedure versumopseq(i, p)

   /i := 196

   /p := csort

   repeat {
      i +:= reverse(i)
      i := integer(p(i))
      suspend i
      }

end

A further generalization allows for opera-
tions with more than one argument:

procedure versumopseq(i, p, args[ ])

   /i := 196

   /p := ochars

   push(args)  # make room for first argument

   repeat {
      i +:= reverse(i)
      args[1] := args  # make i first argument
      i := integer(p ! args)
      suspend i
      }

end

For example, versumopseq(1, rotate, 1) rotates the
reversal left one digit and produces the following
sequence:

2 219991
4 199034
8 300256

61 522599
77 5178241

541 6069566
866 27291721

5341 109934
7766 498355

44431 522491
78755 167167

345421 289289
699644 2722711

1466401 8949833
5130422 23393311
3707377 47326433

14444501 7888078
49889422 65969651
23883167 16666078
37327391         …

Reduction in the numbers of digits occurs when
zeros are shifted into leading positions.

Here we might ask if there is a limit to the size
of terms.

Incidentally, procedure versumopseq() sub-
sumes ratsseq(), since versumopseq(i, csort)
peforms the required operation.

Note that versumopseq(), as written,  does
not check that p is a valid operation.

There are many other possible variations on
the reverse-addition process, such as adding the
number of digits to the result or adding the term
number to the result.

But what is the point of all this? There are
infinitely many variations. Ordinary versum se-
quences are of interest because of palindromes.
What about the others?

If you look at recent Analyst articles on weav-
ing, you’ll see the emergence of sequences as an
important tool in drafting interesting weaves. Do
versum sequences produce interesting weaves?
Do variations on versum sequences produce inter-
esting weaves? In a related question, do the resi-
dues of versum sequences yield periodic sequences?

We’ll address these question in future ar-
ticles. For now, we’ll leave you with some weaves
based on versum sequences, both ordinary and
with variations, as shown in Figure 1.
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Answers to Quiz on
Pointer Semantics

See Icon Analyst 56,
page 17, for the questions.

1.
(a)

L :=[ ]
put(L, L)

(b)

L1 := [ ]
put(L1, L1)
L2 := [L1]

(c) Same as (b) — just drawn differently

(d)

L2 := [ ]
L1 := [L2]
put(L2, L2, L1)

2.

(a)

(b)

(c)

L

L1

L2

(d)

In these diagrams, [ ] indicates an empty list.
It’s very easy to make mistakes when work-

ing with pointers, especially when the structures
involve loops.

There’s a very useful procedure in the Icon
program library for situations like this: ximage().
We described it in detail in an early From the
Library article [1]. Here’s a program that shows the
successive structures in question 2(d):

link ximage

procedure main()

   L1 := list(5, 1)
   write(ximage(L1))
   write()
   push(L1, [ ], L1)
   write(ximage(L1))
   write()
   L1[1] := 0
   write(ximage(L1))
   write()
   pull(L1)
   write(ximage(L1))

end

The output of this program is:

L1 := list(5,1)

L1 := list(7,1)
   L1[1] := L1
   L1[2] := L5 := list(0)

L1 := list(7,1)
   L1[1] := 0
   L1[2] := L5 := list(0)

L1 := list(6,1)
   L1[1] := 0
   L1[2] := L5 := list(0)

Note that the output of ximage() is in the form of
executable expressions that can be used to build
the structures.

Reference

1. “From the Library — Structure Images”, Icon
Analyst 25, pp. 1-5.
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From the Library —
Rational Arithmetic

A rational number is just a fraction, the ratio
of two integers, p/q, where p and q are integers and
q  ≠ 0.

Many numerical computations can be done
using floating-point approximations to rational
numbers. For example, the value of

46368.0 / 75025.0

is approximately 0.6180339887, which is quite close
to 46368/75025 numerically.

However, you cannot recover 46368/75025
with any certainty from the floating-point value
shown above. Several other fractions, such as
121393/196418, give the same floating point value.

For exact computations involving fractions,
the Icon program library provides the module
rational.

Data Representation

As in all cases like this, it is necessary to
provide a standard representation of rational num-
bers as strings — if only for input and output. The
form used for rational numbers consists of two
integers separated by slashes and surrounded by
parentheses, as in "(46368/75025)". The parenthe-
ses isolate rationals in strings from any surround-
ing string context in which they may be placed. The
integers may be signed, as in "(–46368/75025)".

For computation in programs, rational num-
bers are represented as records:

record rational(numer, demon, sign)

The sign is 1 or –1 depending on whether the
rational number as a whole is positive or negative.
Using 1 and –1 allows sign computation by multi-
plication.

Records for rationals produced by the proce-
dures in rational always are in a canonical form in
which the numerator and denominator are posi-
tive and reduced to lowest terms (that is, with no
common divisor grater than 1). For example, "(6/–
14)" is converted to

rational(3, 7, –1)

The module rational contains the following
procedures for converting between types:

rat2str(r) convert rational to string

str2rat(s) convert string to rational

rat2real(r) convert rational  to real (float-
   ing-point)

real2rat(x) convert real (floating-point) to
   rational

There are five procedures for performing ra-
tional arithmetic:

addrat(r1, r2) add rationals

divrat(r1, r2) divide rationals

mpyrat(r1, r2) multiply rationals

negrat(r) form negative of rational

reciprat(r) form reciprocal of rational

In addition, ratred(r) performs error checking
and reduces a rational to its lowest terms.

Problems with Zero

Zero is not allowed as a denominator in ratio-
nal numbers since division by zero is undefined. A
zero denominator may come about from conver-
sion of a string or by division (and, equivalently,
forming a reciprocal). If a zero appears for a de-
nominator, a user-defined run-time error occurs.

Zero is allowed as a numerator, but 0/n has
the same value for all n ≠ 0. Consequently, if a zero
appears for a numerator, rational(0, 1, 1) is pro-
duced.

Problems with User-Supplied Rationals

Although the procedures in the module ratio-
nal always produce values in canonical form, there
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What’s Coming Up

We had expected to have an article on weavable
color patterns for this issue of the Analyst, but we
ran out of space and time. This article has high
priority for the next issue.

We’ll continue the series on periodic sequences
with ones that result from modular arithmetic.

We’ve been planning a series of articles on
“classical” cryptography for some time. That’s on
the table for the next issue.

In From the Library, we’ll continue the survey
of the basic modules in the Icon program library.

is nothing to prevent a user from creating a rational
record that is not in canonical form or is erroneous.
Possible examples are

rational(5, 50, 1)
rational(–5, –2, –1)
rational(0, 0, 1)
rational(2.5, 3.2, 1)
rational(3, 7)
rational("10x", 5, 1)

Handling all possible cases is messy. The
details are relegated to ratred(), which is called by
other procedures in rational to make sure their
arguments are legal and in proper form.

Example Procedures

Typical procedures are:

procedure addrat(r1, r2)
   local denom, numer, div, sign

   r1 := ratred(r1)
   r2 := ratred(r2)

   denom := r1.denom ∗ r2.denom
   numer := r1.sign ∗ r1.numer ∗ r2.denom +
      r2.sign ∗ r2.numer ∗ r1.denom

   if numer = 0 then return rational(0, 1, 1)

   if numer ∗ demon >= 0 then sign := 1
      else sign := –1

   numer := abs(numer)
   denom := abs(denom)

   div := gcd(numer, denom)

   return rational(numer / div, denom / div, sign)

end

procedure str2rat(s)
   local div, numer, denom, sign

   s ? {
      ="(" &
      numer := integer(tab(upto('/'))) &
      move(1) &
      denom := integer(tab(upto(')'))) &
      pos(–1)
      } | fail

   if denom = 0 then runerr(510, 0))
   if numer = 0 then return rational(0, 1, 1)

   if numer ∗ denom >= 0 then sign := 1
      else sign := –1

   numer := abs(numer)
   denom := abs(denom)

   div := gcd(numer, denom)

   return rational(numer / div, denom / div, sign)

end

New Version of rational.icn

As often happens, writing articles about pro-
grams results in their revision. The current version
of the module rational is on the Web site for this
issue of the Analyst.


