
The Icon Analyst 61 / 1

In-Depth Coverage of the Icon Programming Language and Applications

August 2000
Number 61

In this issue

The Final Year of the Analyst 1
Tricky Business ... 1
Fractal Sequences .. 2
Tie-Ups and T-Sequences 5
Continued Fractions for Quadratic
 Irrationals ... 9
Creating Weavable Color Patterns 15
What’s Coming Up 20

The Final Year of the Analyst

With this issue, we are entering the eleventh
year of publication of the Analyst. This is far
longer than we could have imagined when we
started.

In recent years, as we’ve covered most aspects
of Icon and its implementation, we’ve moved more
toward application areas for which Icon is apt.

There is no shortage of material for future
Analyst articles, but it has become increasingly
demanding and oppressive to develop and present
material that is essentially work in progress in-
stead of presenting material already familiar to us.

At the same time, our subscriber base has
diminished, which is quite natural under the cir-
cumstances. As a result, the amount of time and
effort to produce the Analyst is expended for
fewer and fewer readers.

For these reasons, as well as interests in other
things, we’ve decided that this will be the last year
of the Analyst — the final issue, 66, is scheduled
for June 2001.

In this final year, we expect to finish the series
of articles on sequences and to cover most of the
remaining material we have on topics related to
weaving. We won’t be able to resist starting some-

thing new that we can’t finish, just as other on-
going topics such as program visualization and
versum sequences certainly will be left hanging.
But this would be the case however long the Ana-
lyst lasted.

We greatly appreciate the loyalty of our sub-
scribers, many of whom have been with us since
the first issue. Thank you for making this a fun
adventure.

If your subscription to the Analyst expires
before the last issue, you’ll get a renewal notice
with the subscription charge reduced according to
the number of issues remaining.

Refunds will be made for unfilled portions of
subscriptions.

Tricky Business

When we were preparing an article on pat-
terns in sequences, we wanted to indicate variable
terms that took on different values instead of being
constant. The kind of thing we wanted was

[1,X,4,1,4,X,1]

That’s easy enough to do for any particular
case, but we wanted the capability in a program
that could be used to produce many such patterns.

The lists module of the Icon program library
has a procedure, limage(), that does almost what
we wanted:

procedure limage(L)
 local result

 result := ""

 every result ||:= image(!L) || ","

 return ("[" || result[1:–1] || "]") | "[]"

end

For example, if

sequence := [1,2,4,6,4,2,1]

2 / The Icon Analyst 61

then limage(sequence) produces the string

[1,2,4,6,4,2,1]

However, if

sequence := [1,"X",4,"Y",4,"X",1]

then limage(sequence) produces the string

[1,"X",4,"Y",4,"X",1]

with quotation marks we didn’t want.
The quotation marks come from the use of

image(), which serves two purposes: (1) It makes
limage() safe for values of any type (otherwise a
value of a type that can’t be converted to a string
would result in a run-time error when concat-
enated) and (2) It gives the user information about
the types of the values in the list.

Our first thought was to write a customized
version of limage() for our purposes. But then we
had a better thought: Change the value of image to
1, so that when it’s applied to string values, no
quotes are produced. So we wrote

image := 1
result := limage(sequence)

and the string assigned to result is what we wanted:

[1,X,4,Y,4,X,1]

Of course we didn’t want to leave the value of
image like that — it might be needed somewhere
else. We could have saved the value of image
before calling limage() and restored it after, but an
easier way is to use proc() to assign the built-in
function back to image:

image := 1
result := limage(sequence)
image := proc("image", 0)

Fractal Sequences

The term fractal is used in a variety of ways,
formally and informally. It generally is under-
stood that a fractal exhibits self similarity — that it
appears the same at any scale.

This concept can be applied to integer se-
quences with respect to the magnitude and posi-
tion of terms, various patterns, and so forth.

For example, Hofstadter’s chaotic sequence
[1-2], which is produced by the nested recurrence

 q(i) = 1 i = 1, 2
 q(i) = q(i – q(i – 1)) + q(i – q(i – 2)) i > 2

shows self similarity as can be seen in Figure 1.

Figure 1. Hofstadter’s Chaotic Sequence

In this sequence, sections of wide variations
tailing off to minor variations double in length. The
magnitude of the variations roughly doubles also.
Within a section, you can see articulation of the
preceeding section. Despite its tantalizing structure,
this sequence is not strictly fractal.

Kimberling Fractal Sequences

Clark Kimberling has a precise definition of
what he considers to be fractal integer sequences [3].
First, a Kimberling fractal sequence must be infini-
tive, which means that every positive integer occurs
in it an infinite number of times.

An infinitive sequence {xn} has an associative
array, a(i,j), whose values are the jth indices for
which xn = i for i, j = 1, 2, 3, … .

{x
n
} is a fractal sequence if the following two

conditions hold:
1. If xn = i+1, then there is an m < n such that xm = i.

 2. If h < i, then for every j there is exactly one k such
that a(i,j) < a(h,k) < a(i,j+1).

We think there must be a simpler (or at least
clearer) way to state this, but we don’t have suffi-
cient interest to puzzle it out.

Such sequences have the property that if you
strike out the first instance of every value, the result-
ing sequence is the same as the original (such se-
quences are, of course, infinite, which allows the
concept of “same as” after deleting terms). An ex-
ample of such a sequence is

1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 3, 2, 1, 3, …

Striking out the first instance of every term,

1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 3, 2, 1, 3, …

produces
1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 3, …

The Icon Analyst 61 / 3

which is the same as the original sequence, as far as
it goes.

There are two operations that when applied
to fractal sequences yield fractal sequences: upper
and lower trimming. Upper trimming is the “strike
out” operation illustrated above. Lower trimming
consists of subtracting 1 from every term and dis-
carding 0s. Here are programmer-defined control
operations for trimming sequences:

procedure UpperTrimPDCO(L)
 local done, i

 done := set()

 while i := @L[1] do {
 if not member(done, i) then
 insert(done, i)
 else suspend i
 }

end

procedure LowerTrimPDCO(L)
 local i

 while i := @L[1] do {
 i –:= 1
 if i ~= 0 then suspend i
 }

end

Signature Sequences

An interesting class of Kimberling fractal se-
quences consists of signature sequences for irratio-
nal numbers. The signature sequence of the irratio-
nal number x is obtained by putting the numbers

i + j × x i, j = 1, 2, 3, …
in increasing order. Then the values of i for these
numbers is the signature sequence for x, which
we’ll denote by S(x).

Here’s the signature sequence for φ, the golden
mean:

 1, 2, 1, 3, 2, 4, 1, 3, 5, 2, 4, 1, 6, 3, 5, 2, 7, 4, 1, 6, 3, 8,
 5, 2, 7, 4, 9, 1, 6, 3, 8, 5, 10, 2, 7, 4, 9, 1, 6, 11, …

A grid plot gives a better idea of the structure
of the sequence, which is typical of signature se-
quences. See Figure 2.

Figure 2. S(φ φ φ φ φ)

Upper trimming and lower trimming of a
signature sequence leave the sequence unchanged.

Here’s a procedure for producing signature
sequences:

record entry(value, i, j)

procedure signaseq(x, limit)
 local result, i, j

 /limit := 100

The Icon Analyst

Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

Editors

The Icon Analyst is published six times a
year. A one-year subscription is $25 in the United
States, Canada, and Mexico and $35 elsewhere.
To subscribe, contact

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon–analyst@cs.arizona.edu

and

 Bright Forest Publishers
 Tucson Arizona

© 2000 by Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

All rights reserved.

4 / The Icon Analyst 61

 result := []

 every j := 1 to limit do
 every i := 1 to limit do
 put(result, entry(i + j ∗ x, i, j))

 return sortf(result, 1)

end

Notice the use of sortf() to sort the result by the first
field of its records.

Signature Sequences in Weave Design

We started to explore fractal sequences as the
result of an assignment for Complex Weavers’
Mathematics and Textiles Study Group [4]. Three
examples of weave patterns that we have pro-
duced so far are shown in Figures 3 through 5. All
use residue sequences [5] from signature sequences.

Figure 3. S(e)Threading, S(φφφφφ) Treadling

Figure 4. S(π π π π π) Threading and Treadling

Figure 5. S(e) Threading, S(π π π π π) Treadling

More to Come

There are kinds fractal sequences other than
Kimberling’s. We’ll consider one of these in a subse-
quent article.

References

1. Gödel, Escher, Bach: An Eternal Golden Braid, Dou-
glas R. Hofstadter, Basic Books, 1979, pp. 137-138.

2. “Procedures with Memory”, Icon Analyst 21,
pp. 8-11.

3. CRC Concise Encyclopedia of Mathematics, Eric W.
Weisstein, Chapman & Hall/CRC, 1999, pp. 674.

The Icon Analyst 61 / 5

Tie-Ups and T-Sequences

Tie-ups control the way that sheds of warp
threads are formed during weaving for successive
picks of weft threads [1].

Tie-ups cannot be taken in isolation. The other
factors that determine the pattern of interlacement
are the T-sequences — the threading sequence of
warp threads through the shafts and the treadling
sequence that determines which shafts are raised
via the tie-up.

The tie-ups used in this article are chosen to
illustrate principles without regard for float length
or structural integrity. Except for the twill examples,
the tie-ups used here are not appropriate for actual
weaving.

The simplest T-sequences are straight draws
that go though shaft and treadle numbers in succes-
sion and then repeat. There are two kinds of straight
draws: upward with ascending numbers and down-
ward with descending numbers. We’ll use the sym-
bols and for these, respectively.

Different combinations of straight draws repli-
cate the tie-up in different orientations as shown in
Figures 1 through 4. Note the arrows in the upper-
left of Figure 1 that indicate increasing values for the
different components of the draft. For example,
“upward” for the treadling sequence is from right to
left.

Figure 1. Draws

Figure 2. Draws

Figure 3. Draws

Figure 4. Draws

Other commonly used T-sequences go up and
then down () or down and then up ().
These are called a wave draws.

4. http://complex-weavers.org/study20.htm

5. “Residue Sequences”, Icon Analyst 58, pp. 4-6.

6 / The Icon Analyst 61

Figures 5 and 6 show patterns resulting from
wave draws.

Figure 5. Draws

Figure 6. Draws

Notice that the drawdown pattern in Figure 6
is the same as in Figure 5, but offset horizontally
and vertically.

So far, we’ve only shown patterns of inter-
lacement that result from a tie-up designed to

indicate orientation. Figures 7 though 9 show the
patterns that result from a /2/2 twill with different
combinations of draws.

Figure 7. Draws with /2/2 Twill

Figure 8. Draws with /2/2 Twill

Figure 9. Draws with /2/2 Twill

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.

The Icon Analyst 61 / 7

If the tie-up is not square, the patterns depend
on symmetries in the tie-up. For example, the
pattern for a /2/2 twill with an 8× 12 tie-up for
straight draws is the same as for an 8 ×8 tie-up. See
Figure 10.

Figure 10. Draws with 8 ×××××12 /2/2 Twill

If, however, the tie-up is asymmetric, the
pattern becomes more complex. See Figures 11 and
12.

Figure 11. Draws with 8 ××××× 12 /1/4/3 Twill

Figure 12. Draws with 8 ×××××12 /3/2/1/2 Twill

These drawdown patterns result from repli-
cating the tie-up that does not tile seamlessly with
itself. The cause of the pattern, however, may not
be readily apparent to the eye.

As a final illustration of the interaction be-
tween tie-ups and T-sequences, consider the re-
sults for a motif tie-up and two combinations of
draws as shown in Figures 13 and 14.

Figure 13. Draws with a Motif Tie-Up

Supplementary Material

Supplementary material for this issue of the Analyst, including images, is available on the
Web. The URL is

http://www.cs.arizona.edu/icon/analyst/iasub/ia61/

8 / The Icon Analyst 61

Figure 14. Draws with a Motif Tie-Up

Implementing T-Sequences

In future articles, we’ll explore T-sequences in
more detail. The ones shown in this article consist
of simple segments that are repeated. Much more
complex sequences are used in weaving, including
ones that do not repeat. We’ll need good methods
of constructing such sequences.

There are two possible approaches: (1) “ac-
tive” sequences whose values are produced as
needed by generators, and (2) “passive” sequences
that are stored in data structures.

Generating Sequences

We’ve described the ways that sequences can
be generated in many previous Analyst articles.

There usually are several ways that the same
sequence can be generated. For example, an up-
ward straight draw can be generated by

|(1 to Shafts)

or

residue(seq(1), Shafts, 1)

where Shafts is the number of shafts.
The first expression implements a literal in-

terpretation of an upward straight draw, using
repeated alternation to repeat the segment indefi-
nitely. The second expression uses knowledge
about residue sequences [2].

Downward straight draws are only slightly
more complicated:

|(Shafts to 1 by –1)

or

residue(–seq(0), Shafts, 1)

The expressions above generate unending se-
quences. Limitation can be used to “fit” them to a
given draft, as in

|(Shafts to 1 by –1) \ Width

where Width is the number of warp threads.
Wave sequences, although simple, suggest

what is involved in more complex T-sequences.
A straightforward approach to generating a

wave sequence is

|((1 to Shafts – 1) | (Shafts to 2 by – 1))

This expression takes into account that the top and
bottom values are not duplicated.

Of course, wave sequences are palindromic.
Therefore we can use a programmer-defined con-
trol operation [3] to generate them:

|PatternPalinPDCO{1 to Shafts}

The procedure name is long and ugly, but this
expression captures the idea.

Data Structures

The natural data type to use for stored se-
quences is the list. For example, the following list
serves as the basic unit of an 8-shaft upward straight
draw.

[1, 2, 3, 4, 5, 6, 7, 8]

Using procedures in the lists module of the
Icon Program library, the unit can be replicated
using lrepl() or extended by repetition using
lextend().

Another procedure, lreflect(), can be used to
create wave sequences.

Strings provide another way of representing
sequences. For example, "12345678" could be used
as the basic unit for an 8-shaft upward straight
draw.

If the number of shafts is greater than nine, it’s
necessary to encode numbers as characters, as in
"123456789a" for a 10-shaft upward straight draw.
(We used "a" rather than "0" to stand for 10 to avoid
possible misinterpretations.)

The main advantages of representing se-
quences as strings are the small amount of memory
they require and the ability to use string pattern
matching to analyze them. The disadvantages are

The Icon Analyst 61 / 9

the need to encode numbers by characters, the
limited number of characters available, and the
processing time involved when actual numbers
are needed. For T-sequences, lists usually are pref-
erable to strings.

Generators and Data Objects

Generators can be used to construct data ob-
jects that contain sequences. For example, the list
for the basic unit of an upward straight draw might
be constructed as follows:

up := []

every put(up, 1 to Shafts)

Conversely, the unary operator ! generates
the elements of a list, as in

!up

This operator is polymorphous and works
just was well for strings.

Comments

Since the interactions of tie-ups and T-se-
quences are so complex, weavers tend to design
using variations of drafts that are known to pro-
duce attractive results and good fabric integrity.

Actual weaving is time-consuming and labor
intensive. Historically, experienced and creative
weavers have designed on paper. Changing a tie-
up or T-sequence on a paper draft requires that the
drawdown be redone to see the resulting interlace-
ment pattern.

 During weaving, planned treadling patterns
may be changed as the fabric emerges. The thread-
ing, however, is done in advance and fixed during
weaving. On floor looms, the tie-up is done in
advance and although it can be changed during
weaving, the process is difficult and time consum-
ing. Table looms, which do not have tie-ups or
treadles, use levers to select the shafts to be raised
for every pick. Table looms are more versatile than
floor looms in this respect.

The emergence of weaving programs has
greatly expanded the design possibilities for weav-
ers. A change can to a tie-up or T-sequence can be
made easily and the results reflected in the draw-
down almost immediately.

Weaving programs have many powerful fea-
tures, but they are designed around conventional
approaches to weave design.

In an upcoming series of articles, we’ll de-
scribe a weaving program written in Icon that uses
a novel approach to design and focuses on the use
of sequences.

References

1. “A Weaving Language”, Icon Analyst 51, pp.
5-11.

2. “Residue Sequences”, Icon Analyst 58, pp. 4-6.

3. “From the Library — Programmer-Defined Con-
trol Operations”, Icon Analyst 56, pp. 3-4.

Continued Fractions for Quadratic
Irrationals

The mathematical phenomenon always devel-
ops out of simple arithmetic, so useful in every-
day life, out of numbers, those weapons of the
gods: the gods are there, behind the wall, at
play with numbers.

 — Le Corbusier

In this article, we’ll start to explore continued-
fraction sequences for quadratic irrationals. To put
this subject in perspective, Figure 1 shows a classi-
fication of real numbers with parenthetical notes
about their continued-fraction sequences.

reals

irrationals
(infinite)

rationals
(finite)

integers

algebraic transcendental
(nonperiodic)

quadratic
(periodic)

other
(nonperiodic)

reduced
(purely periodic)

square roots
(special)

other

Figure 1. Classification of Reals

Integers have no continued fractions as such.
A rational number is, of course, the ratio of two
nonzero integers. Rationals have finite continued-
fraction sequences. Real numbers that are not inte-
gers or rationals are, by exclusion, called irrational.
All irrational numbers have infinite continued-

10 / The Icon Analyst 61

fraction sequences.
Irrationals, in turn, are divided into two cat-

egories. One category consists of the algebraic num-
bers, which are real roots of polynomial equations
of the form

Again by exclusion, all other irrationals are called
transcendental. Examples of transcendental num-
bers are π and e. Transcendental numbers have
non-periodic continued-fraction sequences, al-
though some are known to have patterns [1].

For purposes of studying continued-fraction
sequences, algebraic irrationals are divided into
two categories, quadratic and “other”. Quadratic
irrationals have the form

a b
c

+

where a, b, and c are integers and b is positive and
not a perfect square.

The division of algebraic irrationals into qua-
dratic and “other” is important, because quadratic
irrationals have periodic continued-fraction se-
quences and no other real numbers do.

The “other” category includes solutions of
higher-order algebraic equations. Very little is
known about their continued-fraction sequences
except that they are not periodic. For example, it’s
not even known if the terms in the continued-
fraction sequence for 23 , which begins

1, 3, 1, 5, 1, 1, 4, 1, …
are bounded. Furthermore, there are no known
methods for attacking such problems.

Under quadratic irrationals, there are three
categories according to the nature of their contin-
ued-fraction sequences. Reduced irrationals, which
have special root properties that are important for
other reasons, have purely periodic continued-
fraction sequences — that is, they have no pre-
periodic terms before the repeat.

Continued-fraction sequences for square roots
have a particularly interesting form that we’ll de-
scribe later. The “other” category contains every-
thing else and at present we have no plans to
explore it.

Rational Approximations to Square Roots

In order to compute continued-fractions se-
quences for quadratic irrationals, we need better
rational approximations to them than provided by
floating-point arithmetic [1].

Calculating Square Roots by Hand

RULE. — Separate the number into periods of two
figures each, beginning at units.

Find the greatest square in the left-hand period,
and write its root for the first figure of the required root.

Square this root, subtract the result from the left-
hand period, and annex to the remainder the next period
for a new dividend.

Double the root already found, with a cipher an-
nexed, for a trial divisor, and by it divide the dividend.
The quotient, or quotient diminished, will be the second
figure of the root. Add to the trial divisor the figure last
found, multiply this complete divisor by the figure of the
root found, subtract the product from the dividend, and
to the remainder annex the next period for the next
dividend.

Proceed in this manner until all the periods have
been used thus. The result will be the square root sought.

Editor’s Note:
The quotation above is from a late 19th

century algebra text book [1]. When I took
algebra (which was a bit later), we were taught
the method above for extracting square roots
and a similar but more complicated method for
extracting cube roots — and had to do seem-
ingly endless examples in class. I could not see
any sense to it; we got no understanding and
only (mostly incorrect) results. Granted it gave
integer results for perfect squares, but it seemed
to me just like a way to fill hours that the teacher
otherwise would have had to lecture.

It was depressing to learn later that a far
better method of approximating square roots
was known to the Babylonians.

With hand-held calculators now widely
available and affordable, I suppose that taking
roots long hand is no longer taught in high
schools. I hope not.

However, the built-in root-extraction func-
tions of even the best hand-held calculators are
not good enough for applications like comput-
ing continued-fraction sequences.

— reg

Reference

1. High School Algebra, William J. Milne, Ameri-
can Book Co., NY, 1892, pp. 181-182.

The Icon Analyst 61 / 11

The idea behind most methods of obtaining
good rational approximations to real numbers is to
find a way to bound the specified number above
and below and then to bring the bounds closer and
closer to the specified number.

For an example, consider 13 . First note that if
x = 13 , x2 = 13, and x = 13/x. If we have a number
x' that is close to 13 , then 13 will be close to half
way between x' and 13/x'.

Suppose we pick x' = 3 for our first approxi-
mation. The number half way between 3 and 3/13
is (3 + 13/3)/2 = 11/3. (It’s important to reduce the
result to lowest terms; otherwise the numerators
and denominators get huge very quickly.) This is
our second approximation. We continue with the
number half way between 11/3 and 13/(11/3),
which reduced to lowest terms, is 119/33. As this
process continues, successive approximations get
closer and closer to 13 .

Picking a good first approximation is easy —
integer(sqrt(x)), which is, in fact, 3 for x = 13. The
first few rational approximations to 13 are:

3/1
11/3
119/33
14159/3927
200477279/55602393
40191139395243839/11147016454528647

Here’s a procedure that generates successively
better rational approximations for square roots:

link rational

procedure sqrtapprox(i)
 local x, half

 half := rational(1, 2, 1)

 x := rational(integer(sqrt(i)), 1, 1)

 i := rational(i, 1, 1)

 repeat {
 suspend x
 x := mpyrat(half, addrat(x, divrat(i, x, 1), 1))
 }

end

Of course, we can get a better first approxima-
tion by using more of the accuracy of sqrt(x). For
example,

x := rational(integer(sqrt(i ∗ 2 ^ 30)), 2 ^ 15, 1)

Quadratic Signatures

Not only are the continued-fraction sequences
for quadratic irrationals periodic, but there is a
one-to-one correspondence between quadratic
irrationals and periodic sequences. Thus, every
periodic sequence corresponds to a unique qua-
dratic irrational.

Among other things, this means that every
periodic sequence, of whatever origin, can be rep-
resented by three integers — the a, b, and c in

a b
c

+

This does not imply that a three-integer “qua-
dratic signature” for a periodic sequence is in any
sense simpler or shorter than the sequence. The
integers may be very large.

We’ll denote the quadratic signature of a qua-
dratic irrational by <a, b, c>. Given a quadratic
signature, we can compute its continued-fraction
sequence as described in Reference 1 and find its
repeat as described in Reference 2. A complete
procedure is:

link approx
link genrfncs
link periodic
link rational

procedure sig2cf(a, b, c, limit)
 local n, m, j, rat, seq, results, line

 /limit := 5 ∗ (log(b) ∗ sqrt(b))

 every rat := sqrtapprox(b) do {
 seq := []
 rat := divrat(addrat(rational(a, 1, 1), rat),
 rational(c, 1, 1))
 every j := cfseq(rat.numer, rat.denom) \ limit do
 put(seq, j)
 results := repeater(seq, 1.5)
 if ∗results[2] ~= 0 then break
 }

 return results

end

The procedure sqrtapprox() is in the module approx,
the procedure cfseq() is in the module genrfncs,
and the procedure repeater() is in the module
periodic.

There’s a problem with the procedure above:
the number of terms needed to get the repeat.
Although it’s known that there will be a repeat, it’s

12 / The Icon Analyst 61

length can only be approximated The default ap-
proximation comes from a bound on the length of
continued-fraction sequences for square roots..

Determining the quadratic signature for a
periodic sequence is not so straightforward.

One approach is to work with the continued
fraction for the sequence. Consider the sequence 1 2, .
Its continued fraction is

Grouping the terms at the end

we see the parenthesized portion is just x, so

x

x

= +
+

1
1

2
1

Now we have a closed form. Simplifying, we get

2 2 1 02x x− − =
By the quadratic formula, we get

x = ±1 3
2

So the quadratic signature for 1 2, is <1, 3, 2> (the
positive root).

Although this method works for purely peri-
odic sequences in general, the algebraic manipula-
tions become tedious for long sequences.

There is an easier way using convergents,
which we’ve already implemented [1]. If the ith
convergent is denoted by

p
q

i

i

then for a purely periodic sequence with period n,
the corresponding quadratic equation is

q x p q x pn n n n
2

1 1− − −− −() = 0

so by the quadratic formula, the quadratic signa-
ture is

< p qn n− −1 , ()p q q pn n n n− +− −1
2

14 , 2qn>

Note that

b a q pn n= + −
2

14

Here’s a program that computes the qua-
dratic signature of a purely periodic sequence
whose repeat is read from standard input.

link converge

procedure main()
 local conv, seq, convergents, p1, p2, q1, q2, a

 seq := []

 convergents := []

 while put(seq, read())

 every conv := converge(seq) do
 put(convergents, conv)

 p2 := convergents[–1][1] # last convergent
 q2 := convergents[–1][2]
 p1 := convergents[–2][1] # next-to-last
 q1 := convergents[–2][2]

 # Calculate values for (a + sqrt(b)) / c.

 writes("<", a := p2 – q1, ",")
 writes(x ^ 2 + 4 ∗ q2 ∗ p1, ",")
 write(2 ∗ q2, ">")

end

Sequences for Square Roots

The continued-fraction sequences for square
roots, where a = 0 and c = 1, have a particularly
interesting form.

We can characterize square roots of positive
integers that are not perfect squares by

n = 1, 2, … ; 1 ≤ m ≤ 2n

(If m = 2n + 1, this expression reduces to a perfect
square, .)

The continued fraction sequence for
has the form

where, as indicated, the part of the repeat prior to
2n is a palindrome. Such palindromes may or may
not have a middle term. Furthermore, 1 ≤ ai ≤ n. If
there is a middle term, it can be as large as n, but
other terms in such palindromes apparently are
less than n (the largest we’ve found is about 0.7n).

Figure 2 on the next page lists the palin-

The Icon Analyst 61 / 13

n m palindrome

1 1
1 2 1
2 1
2 2 2
2 3 1,1,1
2 4 1
3 1
3 2 3
3 3 2
3 4 1,1,1,1
3 5 1,2,1
3 6 1
4 1
4 2 4
4 3 2,1,3,1,2
4 4 2
4 5 1,1,2,1,1
4 6 1,2,4,2,1
4 7 1,3,1
4 8 1
5 1
5 2 5
5 3 3,2,3
5 4 2,1,1,2
5 5 2
5 6 1,1,3,5,3,1,1
5 7 1,1,1
5 8 1,2,1
5 9 1,4,1
5 10 1
6 1
6 2 6
6 3 4
6 4 3
6 5 2,2
6 6 2
6 7 1,1,3,1,5,1,3,1,1
6 8 1,1,1,2,1,1,1
6 9 1,2,2,2,1
6 10 1,3,1,1,2,6,2,1,1,3,1
6 11 1,5,1
6 12 1
7 1
7 2 7
7 3 4,1,2,1,4
7 4 3,1,1,3
7 5 2,1,6,1,2
7 6 2,2,2
7 7 2
7 8 1,1,4,1,1
7 9 1,1,1,1,1,1
7 10 1,2,7,2,1
7 11 1,2,1
7 12 1,4,3,1,2,2,1,3,4,1
7 13 1,6,1
7 14 1
8 1
8 2 8
8 3 5,2,1,1,7,1,1,2,5
8 4 4
8 5 3,3,1,4,1,3,3
8 6 2,1,2,1,2
8 7 2,2,1,7,1,2,2
8 8 2
8 9 1,1,5,5,1,1
8 10 1,1,1,1
8 11 1,1,1
8 12 1,2,1,1,5,4,5,1,1,2,1
8 13 1,3,2,3,1
8 14 1,4,1
8 15 1,7,1
8 16 1
9 1
9 2 9
9 3 6
9 4 4,1,1,4
9 5 3,1,1,1,8,1,1,1,3
9 6 3
9 7 2,1,1,1,2
9 8 2,3,3,2

n m palindrome

9 9 2
9 10 1,1,5,1,5,1,1
9 11 1,1,2,4,2,1,1
9 12 1,1,1,4,6,4,1,1,1
9 13 1,2,3,1,1,5,1,8,1,5,1,1,3,2,1
9 14 1,2,1
9 15 1,3,1
9 16 1,5,1,1,1,1,1,1,5,1
9 17 1,8,1
9 18 1

10 1
10 2 10
10 3 6,1,2,1,1,9,1,1,2,1,6
10 4 5
10 5 4
10 6 3,2,1,1,1,1,2,3
10 7 2,1,9,1,2
10 8 2,1,1,4,1,1,2
10 9 2,3,1,2,4,1,6,6,1,4,2,1,3,2
10 10 2
10 11 1,1,6,1,1
10 12 1,1,2,1,1
10 13 1,1,1,2,2,1,1,1
10 14 1,2,10,2,1
10 15 1,2,1,1,1,1,1,2,1
10 16 1,3,2,1,4,1,2,3,1
10 17 1,4,2,4,1
10 18 1,6,3,2,10,2,3,6,1
10 19 1,9,1
10 20 1
11 1
11 2 11
11 3 7,2,1,1,1,3,1,4,1,3,1,1,1,2,7
11 4 5,1,1,5
11 5 4,2,4
11 6 3,1,2,2,7,11,7,2,2,1,3
11 7 3,5,3
11 8 2,1,3,1,6,1,3,1,2
11 9 2,2
11 10 2,4,11,4,2
11 11 2
11 12 1,1,7,5,1,1,1,2,1,1,1,5,7,1,1
11 13 1,1,2,1,3,1,10,1,3,1,2,1,1
11 14 1,1,1,1,1,1,1
11 15 1,1,1
11 16 1,2,2,1,1,2,2,1
11 17 1,2,1
11 18 1,3,1,3,7,1,1,2,11,2,1,1,7,3,1,3,1
11 19 1,4,1
11 20 1,6,1
11 21 1,10,1
11 22 1
12 1
12 2 12
12 3 8
12 4 6
12 5 4,1,5,3,3,5,1,4
12 6 4
12 7 3,2,7,1,3,4,1,1,1,11,1,1,1,4,3,1,7,2,3
12 8 3
12 9 2,1,2,2,2,1,2
12 10 2,2,3,1,2,1,3,2,2
12 11 2,4,2
12 12 2
12 13 1,1,7,1,5,2,1,1,1,1,2,5,1,7,1,1
12 14 1,1,3,12,3,1,1
12 15 1,1,1,1,3,1,1,1,1
12 16 1,1,1,5,1,1,1
12 17 1,2,4,1,2,1,4,2,1
12 18 1,2,1,2,12,2,1,2,1
12 19 1,3,3,2,1,1,7,1,11,1,7,1,1,2,3,3,1
12 20 1,4,6,4,1
12 21 1,5,2,5,1
12 22 1,7,1,1,1,2,4,1,3,2,12,2,3,1,4,2,1,1,1,7,1
12 23 1,11,1
12 24 1
13 1
13 2 13
13 3 8,1,2,2,1,1,3,6,3,1,1,2,2,1,8
13 4 6,1,1,6

n m palindrome

13 5 5,4,5
13 6 4,2,1,2,4
13 7 3,1,3
13 8 3,3,2,8,2,3,3
13 9 2,1,12,1,2
13 10 2,1,1,1,3,5,13,5,3,1,1,1,2
13 11 2,2,2
13 12 2,4,1,8,6,1,1,1,1,2,2,1,1,1,1,6,8,1,4,2
13 13 2
13 14 1,1,8,1,1
13 15 1,1,3,2,1,2,1,2,3,1,1
13 16 1,1,1,1
13 17 1,1,1,3,4,3,1,1,1
13 18 1,2,13,2,1
13 19 1,2,2,6,2,2,1
13 20 1,2,1
13 21 1,3,1,1,1,2,2,2,1,1,1,3,1
13 22 1,4,1,1,3,2,2,13,2,2,3,1,1,4,1
13 23 1,5,1
13 24 1,8,3,2,1,3,3,1,2,3,8,1
13 25 1,12,1
13 26 1
14 1
14 2 14
14 3 9,2,1,2,2,5,4,1,1,13,1,1,4,5,2,2,1,2,9
14 4 7
14 5 5,1,1,1,2,1,8,1,2,1,1,1,5
14 6 4,1,2,2,1,4
14 7 4
14 8 3,1,1,6,1,1,3
14 9 3,6,1,4,1,6,3
14 10 2,1,5,14,5,1,2
14 11 2,1,1,2,1,1,2
14 12 2,2,1,2,2
14 13 2,5,3,2,3,5,2
14 14 2
14 15 1,1,9,5,1,2,2,1,1,4,3,1,13,1,3,4,1,1,2,2,1,5,9,1,1
14 16 1,1,3,1,1,1,6,1,1,1,3,1,1
14 17 1,1,2,6,1,8,1,6,2,1,1
14 18 1,1,1,2,3,1,4,9,1,1,5,3,14,3,5,1,1,9,4,1,3,2,1,1,1
14 19 1,1,1
14 20 1,2,3,2,1
14 21 1,2,1,2,1,1,9,4,9,1,1,2,1,2,1
14 22 1,3,3,1
14 23 1,3,1
14 24 1,4,1
14 25 1,6,2,6,1
14 26 1,8,1
14 27 1,13,1
14 28 1
15 1
15 2 15
15 3 10
15 4 7,1,1,7
15 5 6
15 6 5
15 7 4,3,7,3,4
15 8 3,1,3,1,1,1,1,3,1,3
15 9 3,2,1,2,1,2,3
15 10 3
15 11 2,1,3,5,1,6,1,5,3,1,2
15 12 2,1,1,7,10,7,1,1,2
15 13 2,2,1,14,1,2,2
15 14 2,5,1,2,4,15,4,2,1,5,2
15 15 2
15 16 1,1,9,1,5,3,3,1,1,3,3,5,1,9,1,1
15 17 1,1,3,1,14,1,3,1,1
15 18 1,1,2,3,15,3,2,1,1
15 19 1,1,1,1,1,2,1,5,1,1,9,1,6,1,9,1,1,5,1,2,1,1,1,1,1
15 20 1,1,1,7,6,7,1,1,1
15 21 1,2,5,1,14,1,5,2,1
15 22 1,2,1,1,9,1,9,1,1,2,1
15 23 1,2,1
15 24 1,3,1,1,5,1,3,10,3,1,5,1,1,3,1
15 25 1,4,3,3,4,1
15 26 1,5,2,1,2,2,15,2,2,1,2,5,1
15 27 1,6,1
15 28 1,9,1,1,1,2,1,7,4,2,2,2,4,7,1,2,1,1,1,9,1
15 29 1,14,1
15 30 1

Figure 2. Palindromes for n m2 +

14 / The Icon Analyst 61

dromes though n = 15.
One natural question is whether there are any

interesting patterns in the palindromic parts of
such sequences. Indeed there are. Here are some
that depend on m:

m palindrome for n m2 +
1 empty
2 n
n/2 4 n even
n 2
2n – 1 1, n – 1, 1
2n 1

These and other relationships can be proved.
The idea is to convert the continued fraction to a
quadratic equation and find its positive root.

Consider, for example, the case for m = 1, that
is n2 1+ . The palindromes in Figure 2 strongly
suggest that the palindromic part is empty and that
the continued fraction sequence is n n, 2 . This con-
tinued-fraction sequence corresponds to the con-
tinued fraction

Now we use some insight (a “trick”). We’d like to
make the right-hand side of the continued fraction
uniform so that it can be interpreted as a recursive
structure. To get this, we add n to both sides, giving

Now, grouping terms

we see the expression in parentheses is the same as
the whole left-hand side. So we can substitute the
right-hand side for it:

This simplifies to

x2 – n2 – 1 = 0
or

x = n2 1+

which proves our conjecture.
This approach works in general, although the

algebra quickly gets out of hand as the lengths of
continued-fraction sequences increase. We’ll have
more to say about this from a programming stand-
point later.

What’s to Come?

The palindromic parts of continued-fraction
sequences for square roots provide a veritable gar-
den of patterns. There are all kinds of questions one
might ask, such as

• Are there palindromes that never occur?

• Some palindromes appear infinitely often for
different values on n. Do all?

• What kinds of patterns appear in the palin-
dromes and how to they depend on n and m?

• How do we find such relationships?

• Are there any patterns to the lengths of the
palindromes?

• Are there any patterns to the central terms in
odd-length palindromes?

• Is there anything special about first terms? Sec-
ond terms? Terms in other positions?

• How large can the terms be?

• Do factors and primes enter into the patterns in
the palindromes?

We recall writing the first article on versum
numbers with no expectation that there would be
more than one or two subsequent articles. Then we
discovered a wealth of material, which led to 15
articles in all and could have gone on indefinitely if
we’d not decided it was time to get on to other things.

The patterns in the palindromic parts of the
continued-fraction sequences for square roots ap-
pear to offer more promise than those related to
versum numbers. But with only five issues of the
Analyst to go, we can’t be led too far down the
(pattern) garden path.

References

1. “Continued Fractions”, Icon Analyst 60, pp. 1-5.

The Icon Analyst 61 / 15

2. “Finding Repeats”, Icon Analyst 57, pp. 7-11.

Creating Weavable Color Patterns

In previous articles on weavable color pat-
terns [1-3], we described how to determine if a
color pattern is weavable and, if so, how to create
a draft for it.

In this article, we’ll look at weavable color
patterns from a different perspective: how to cre-
ate color patterns that are guaranteed to be
weavable. This article is a precursor to an article on
an interactive application for creating weavable
color patterns.

Much of the material that follows is basic and
in some cases obvious. We’re presenting it here to
provide a foundation for what follows.

We’ll treat color patterns as i× j arrays of
rectangular colored cells. An array in which every
column and row is labeled with a different color is
called nonredundant.

One question is how many cells are needed to
create a weavable pattern that has k different col-
ors. Obviously, this can be done with a 1 × k or k×1
pattern: a single row or column with a cell for each
different color. This case, however, is degenerate
and uninteresting.

In general, to have k colors in a nonredundant
array, there must be i + j = k columns and rows with
different colors assigned to each one. If i + j > k,
more complex patterns are possible, but we’ll stick
to the minimum size to begin with and look at the
case of redundant arrays with duplicate color as-
signments later.

For nonredundant arrays, k is partitioned into
two parts. There are k – 2 non-degenerate size com-
binations, given by

i = k – j 2 ≤ j ≤ k – 2

Since these arrays have i × j cells, the largest array
occurs for i = j or i = j ± 1, depending on whether k
is even or odd.

Suppose we have eight colors and a 4 ×4 array
as shown in Figure 1.

A B C D

E

F

G

H

Figure 1. A 4 ××××× 4 Array

It is obvious that it’s possible to have all k
colors in such an array. Figure 2 shows one such
pattern.

A B C D

E

F

G

H

EA

B F

G C

H D

Figure 2. An 8-Color 4 ×××××4 Pattern

The remaining cells in Figure 2 can be colored in any
of the ways the column and row labels allow. Since
there are eight cells of unspecified color, there are 28

= 256 possible patterns based on Figure 2.
For k a multiple of four and i = j = k / 2, it is

possible to assign colors to cells so that each color
occurs k / 4 times (i × j = k2 / 4). Here is a coloring
algorithm for constructing such color-balanced pat-
terns:

• For each odd-numbered row, assign alternate
cells the column color and the row colors.

• For each even-numbered row, assign alter-
nate cells the row and column colors.

Figure 3 on the next page shows the result for a 4 ×4
array.

Downloading Icon Material

Implementations of Icon are available for down-
loading via FTP:

ftp.cs.arizona.edu (cd /icon)

16 / The Icon Analyst 61

A B C D

E

F

G

H

EA

B F

G

C

H D

E

F D

GA C

HB

Figure 3. A Balanced 4 ××××× 4 Color Pattern

For other array shapes, color balance is not
possible, but the coloring algorithm given above
assures k-colored patterns.

The patterns produced by this algorithm can
be quite attractive. See Figure 4 for an example, but
also view the color image on the Web page for this
issue of the Analyst.

Figure 4. An Algorithmic Pattern

Implementing the algorithm to produce, say,
image strings for such patterns is straightforward.
Here’s a procedure that produces an image string
for a k-colored pattern using the column and row
keys from a palette given as arguments:

procedure kcolor(cols, rows, palette)
 local i, j, ims

 ims := ∗cols || "," || palette || ","

 every j := 1 to ∗rows do
 every i := 1 to ∗cols by 2 do

 ims ||:= if j % 2 = 1 then cols[i] || rows[j]
 else rows[j] || cols[i + 1]

 return ims

end

This procedure is straightforward, if a bit un-
interesting. There is a more interesting (aka ob-
scure) approach that is based on the pattern of
characters produced by the algorithm.

Odd- and even-numbered rows have different
but complementary patterns. In Figure 3, the strings
for the odd-numbered rows are AECE and AGCG,
respectively, while for the even-numbered rows,
they are FBFD and HBHD. These strings are colla-
tions (interleavings) of characters from strings of
column and row labelings. The odd-numbered rows
can be produced by

collate("AC", "EE")

and

collate("AC", "GG")

respectively, while the even-numbered rows can be
produced by

collate("FF", "BD")

and

collate("HH", "BD")

It’s clear that this pattern of construction general-
izes for larger patterns.

The arguments of collate() are of two forms:
replications and alternate characters (decollations)
of the column and row strings.

Here’s a procedure that produces image strings
using this approach:

link strings

procedure kcolor(cols, rows, palette)
 local i, j, ims, width, height

 ims := ∗cols || "," || palette || ","

 width := ∗cols
 height := ∗rows

 every i := 1 to ∗rows by 2 do
 ims ||:= collate(decollate(cols, i),
 repl(rows[i], ∗cols / 2)) ||
 collate(repl(rows[i + 1], ∗cols / 2),
 decollate(cols, i + 1))

 return ims

end

The Icon Analyst 61 / 17

The procedures collate() and decollate() are from
the strings module in the Icon program library.
The result produced by decollate() is the odd- or
even-numbered characters of its first argument
depending on the parity of its second argument.

There’s a catch. The procedure above only
works for patterns in which the number of col-
umns, i, is even. We can fix this by adding an extra,
dummy column if i is odd and then trimming off
the unwanted portions during the construction
process. (If the number of rows is odd, the loop
bound assures the correct number of rows.) Figure
5 shows how a 3×4 pattern can be carved out of a
4×4 pattern.

A B C D

E

F

G

H

EA

B F

G

C

H D

E

F D

GA C

HB

Figure 5. A 3 ×××××4 Pattern Within a 4 ××××× 4 Pattern

The label of the added column is, of course, irrel-
evant.

Here’s a procedure that implements the ap-
proach described above.

procedure kcolor(cols, rows, palette)
 local i, j, ims, width

 ims := ∗cols || "," || palette || ","

 width := ∗col

 if ∗cols % 2 ~= 0 then cols ||:= "~" # dummy

 every i := 1 to ∗rows by 2 do
 ims ||:= left(collate(decollate(cols, i),
 repl(rows[i], ∗cols / 2)), width) ||
 left(collate(repl(rows[i + 1], ∗cols / 2),
 decollate(cols, i + 1)), width)

 return ims

end

Suppose you encountered this procedure
when, say, strolling in a park. Would you have any
clue as to what it’s for?

Transformations that Preserve
Weavability

Given a weavable color pattern, there are
several kinds of changes that can be made to it that
preserve weavability:

1. duplicating existing rows and columns

2. deleting rows and columns

3. rearranging rows and columns

4. rotating the pattern in 90º increments

5. flipping the pattern horizontally, vertically,
or diagonally

6. adding solid-colored rows and columns
These changes do not require knowledge of the
colors assigned to columns and rows. Here are two
that do:

7. adding a column whose cells are colored
either with the new column color or their
corresponding row colors, and similarly for
rows

8. setting the color of a cell to the color of its
column or row

One of the consequences of 1 and 3 is that the
mirror symmetry [4] of a weavable pattern is
weavable.

A Program for Experimenting

We put together a simple program for experi-
menting with various transformations that pre-
serve weavability.

The program allows the user to specify trans-
formations interactively, but user input is taken
from the command line instead of from a visual
interface. This design is somewhat crude, but it’s
easier than building an application with a visual
interface. A visual interface can be added later if
desired.

Although user input comes from the com-
mand line, dialogs are used to request information
from the user. This avoids command-line input
with complicated syntax.

User Input

Commands are one-character strings that are
chosen to have mnemonic value where possible.
For example, s means save, q means quit, and >
means rotate 90º clockwise. (The use of one-charac-
ter commands also facilitates conversion to a pro-
gram with a visual interface, where the characters

18 / The Icon Analyst 61

are keyboard shortcuts.)

Data Representation

Patterns are represented by image strings and
changes are made to a pattern by making changes
to its image string. To facilitate manipulation of
image strings, image records are used [5].

A window displaying the pattern is drawn
from the current image string.

Program Structure

The main procedure contains a loop in which
user commands are read and processed. A case
expression selects a procedure that carries out the
command.

Program Listing

Here’s a listing of selected portions of the
program. The complete program is on the Web site
for this issue of the Analyst.

link graphics
link imrutils
link imsutils
link imxform
link interact
link lists

global imr # image string record
global pattern # image window
global stack # saved image string records

procedure main()
 local command

 stack := []

 while command := read() do {
 "!" : shuffle_cols()
 ":" : shuffle_rows()
 "$" : swap_cols()
 "#" : swap_rows()
 "=" : colscaleimr()
 "∗" : rowscaleimr()
 "+" : zoom_in()
 "–" : zoom_out()
 "h" : flip_horizontal()
 "v" : flip_vertical()
 "/" : flip_left()
 "\\" : flip_right()
 "|" : r180()
 "<" : rccw()
 ">" : rcw()
 "i" : info()
 "l" : load_pattern()

 "m" : mirror()
 "q" : exit()
 "r" : read_ims()
 "s" : snapshot()
 "u" : undo()
 "w" : write_ims()

…
 default : Notice("Invalid command.")
 }
 }

end

procedure ScaleDialog(length)
 local slist

 if OpenDialog("Scaling list:") == "Cancel" then fail

 slist := []

 dialog_value ? {
 while tab(upto(&digits)) do
 put(slist, tab(many(&digits)))
 }

 if ∗slist = 0 then slist := list(length, 2) else
 slist := lextend(slist, length)

 return slist

end

procedure check_imr()

 push(stack, \imr) | {
 Notice("No image.")
 fail
 }

 return

end

procedure colscaleimr()
 local row, pixels, i, width, slist

 check_imr() | fail

 slist := ScaleDialog(imr.width) | fail

 pixels := ""

 width := 0

 every width +:= !slist

 imr.pixels ? {
 while row := move(imr.width) do
 every i := 1 to imr.width do
 pixels ||:= repl(row[i], slist[i])
 }

 imr.pixels := pixels
 imr.width := width

The Icon Analyst 61 / 19

 redraw()

 return

end

procedure flip_horizontal()

 check_imr() | fail

 imr := imrfliph(imr)

 redraw()

 return

end

procedure info()

 check_imr() | fail

 Notice("Size=" || imr.width || "x" ||
 ∗imr.pixels / imr.width, "Colors=" ||
 ∗cset(imr.pixels))

 return

end

procedure load_pattern()

 repeat {
 if OpenDialog("Load image:") == "Cancel"
 then fail
 WClose(\pattern)
 pattern := WOpen("image=" || dialog_value) | {
 Notice("Cannot open image: ", dialog_value)
 next
 }
 break
 }

 imr := imstoimr(Capture(pattern))

 return

end

procedure mirror()
 local pixels, row

 pixels := ""

 imr.pixels ? {
 while row := move(imr.width) do
 pixels ||:= row || reverse(row)
 }

 imr.pixels := ""

 pixels ? {
 while imr.pixels := move(imr.width) ||

 imr.pixels
 }

 imr.pixels := pixels || imr.pixels

 imr.width ∗:= 2

 redraw()

 return

end

procedure read_ims()
 local input

 repeat {
 if OpenDialog("Read image string:") == "Cancel"
 then fail
 input := open(dialog_value) | {
 Notice("Cannot read image string file.")
 next
 }
 imr := imstoimr(input) | {
 Notice("Invalid image string.")
 next
 }
 break
 }

 close(input)

 redraw()

end

procedure redraw()

 WAttrib(pattern, "width=" || imr.width)
 WAttrib(pattern, "height=" ||
 (∗imr.pixels / imr.width))

 imrdraw(pattern, 0, 0, imr)

 return

end
…

Comments

The structure of the program makes it easy to
add features experimentally, although as you can
see, the limitation to one-character commands even-
tually leads to unintuitive labeling of operations.

One of the most interesting operations is “scal-
ing” (= and ∗), in which the user can specify dupli-
cation of each column or row by values given in a
dialog box. Figure 6 shows a pattern created using
scaling and mirroring. Again, see the color version
on the Web site for this issue of the Analyst.

20 / The Icon Analyst 61

Figure 6. A Weavable Color Pattern

Next Time

In the next article on weavable color patterns,
we’ll describe an application that allows the user to
construct weavable color patterns interactively,
but inways different from those described in this
article.

References

1. “Weavable Color Patterns”, Icon Analyst 58,
pp. 7-10.

2. “Weavable Color Patterns”, Icon Analyst 59,
pp. 10-15.

3. “Drafting Weavable Color Patterns”, Icon Ana-
lyst 60, pp. 6-9.

4. “Graphics Corner — Seamless Tiling”, Icon
Analyst 45, pp. 10-12.

5. “Graphics Corner — Fun with Image Strings”,
Icon Analyst 50, pp. 10-13.

Perhaps if we wrote programs from childhood
on, as adults we’d be able to read them. How-
ever, reading a program is not like reading a
book, it is more like being a psychiatrist to a
recumbent patient.

— Alan Perlis

What’s Coming Up

With only five more issues of the Analyst
remaining, we’ve revised our plans for future ar-
ticles. We don’t have everything thought out yet,
but there are some articles we plan to include that
may cause the exclusion of articles we’d planned
earlier.

We didn’t finish the planned article on de-
rived tie-ups in time for this issue, but we expect to
have it in a future issue, along with articles on
geometric and motif tie-ups. The article on adap-
tive name drafting is problematical at this time.

We ran out of room before completing the
article on polygram substitution, but it’s sched-
uled for the next issue and we expect to conclude
the series on classical cryptography in subsequent
issues.

In the series of articles on sequences, we’ll
continue with continued fractions and fractal se-
quences. We also expect to have articles on base
expansions of fractions, as well as articles on packet
sequences and template sequences.

We have one more article on creating weavable
color patterns that could turn into two articles
depending on how our work in that area goes.

We also hope to have one final article on
versum sequences that puts the problem in per-
spective. We’ll also try to work in another article
on digit patterns in primes.

We have some new subjects staged, including
one called “Sigma Quest”.

