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Solving Square-Root Palindromes

In the last article on square-root palindromes
[1], we investigated constant square-root palin-
dromes (those in which all terms are the same)
using a combination of programs, guesses, and
deduction.

In this article, we’ll take a different approach:
solving continued fractions to get data from which
to derive more information about square-root pal-
indromes.

In a previous article [2], we showed a method
for solving continued fractions for square roots.
These continued fractions are infinite, repeating a
sequence of coefficients as in

where the subsequent coefficients are 1, 2, 3, 2, 1,
2n, repeatedly.

In order to solve such continued fractions, a
closed form is needed. This is obtained by adding
n to both sides of the equation.

Now the second 2n coefficient is the same as
the entire continued fraction, and x + n can be
substituted for it:

Now it’s merely a matter of algebraic manipu-
lation to solve for x. The result is an equation of the
form

x = ± 

It’s the “merely” part that’s the sticker. For all
but trivial continued fractions, the algebra is te-
dious, time-consuming, and error-prone if done by
hand. (Try solving the continued fraction above if
you have doubts about this.)

We use Mathematica [3] to solve continued
fractions. Figure 1 shows the Mathematica display
for the example above.

Figure 1. Mathematica Display

At the top is the continued fraction to be
solved. At the bottom are the solutions; we want
the positive one. Note that the coefficient of n2 in
the numerator is the same as in the denominator.
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Therefore the form is

as we want, namely m = (16 + 46n)/33.
Notice that there are three parameters in this

expression, as there are for other continued frac-
tions with constant terms. The general form is

m = (a + bn)/c

Note also that a, b, and c are the coefficients of n0,
n1, and n2.

In order to get a solution, m must be an
integer. This is a Diophantine equation; one that
must have solutions in the integers [4-6]. This
particular equation is a linear Diophantine equa-
tion in the variables m and n. Rewriting, we have

cm – bn = a

Such equations may or may not have solu-
tions in the integers. An equation that does not
have a solution in the integers is

10m – 6n = 1

This is easy to see because the left-hand side is
even and the right-hand side odd. (This equation
is the solution for the palindrome 3 2, which there-
fore is not a square-root palindrome.)

For linear Diophantine equations to have a
solution, the greatest common divisor of b and c
must evenly divide a [7]. In Icon terms, this is

if a % gcd(b, c) = 0 then … #solution

Diophantine equations have been studied
extensively. The most famous Diophantine equa-

Diophantus

Diophantus is a somewhat mysterious
figure in the annals of mathematics. Unlike
most mathematicians who have had a major
impact, the time Diophantus lived is not
known. Based on sources he cited and sources
that cited him, he could have lived anywhere
from the second century B.C. to the fourth
century A.D. Most authorities place his birth
at around 200 A.D. It was known that he was
a Greek who lived in Alexandria, the great
center of mathematical learning.

Diophantus, often called the father of
algebra, was remarkable in that his form of
mathematical thought was entirely different
from others of his time. He invented new
mathematical notations and wrote exten-
sively, although much of his work is lost.

tion appears in Fermat’s Last Theorem, which
states that there are no nonzero integer solutions to

an + bn = cn

for n > 2.
There is an algorithm for solving linear

Diophantine equations and there are methods for
other special cases [8]. It is, however, known that
no general solution method for Diophantine equa-
tions can exist.

Diophantine equations are an area of number
theory for which intelligent guessing and trial-
and-error are recommended [4].

Although there is an algorithm for solving
linear Diophantine equations, we’ll have to deal
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j = 1: k a b c
1 0 2 1
2 1 2 2
3 1 4 3
4 2 6 5
5 3 10 8
6 5 16 13
7 8 26 21

j = 3: k a b c
1 0 2 3
2 1 6 10
3 3 20 33
4 10 66 109
5 33 218 360
6 109 720 1189
7 360 2378 3927

j = 5: k a b c
1 0 2 5
2 1 10 26
3 5 52 135
4 26 270 701
5 135 1402 3640
6 701 7280 18901
7 3640 37802 98145

Examination of this data suggests the follow-
ing formulas:

ak = bk–1/2
bk = 2ck–1

ck = jck–1 + ck–2

If these formulas are correct, all we need to com-
pute values for any k are the values for k = 1 and 2.
Here they are:

a1 = 0 b1 = 2 c1 = j
a2 = 1 b2 = 2j c2 = j2 + 1

Here is a procedure for generating continued-
fraction solutions for j k, k odd:

procedure oddson(j)
   local alist, blist, clist, i

   alist := [0, 1]
   blist := [2, 2 ∗ j]
   clist := [ j, j ^ 2 + 1]

   suspend "a=" || alist[1] || ", b=" || blist[1] ||
      ", c=" || clist[1]
   suspend "a=" || alist[2] || ", b=" || blist[2] ||
      ", c=" || clist[2]

   repeat {
      put(alist, blist[–1] / 2)
      put(blist, 2 ∗ clist[–1])
      put(clist, j ∗ clist[–1] + clist[–2])

with more complicated equations later on, and
hence we will use the trial-and-error method (with-
out intelligent guessing).

The basic code for solving linear Diophantine
equations by trial-and-error is:

…
if a % gcd(b, c) ~= 0 then fail

every i := seq() do {
   k := a + b ∗ i
   if n % c ~= 0 then next # no solution yet
   m := k / c # first solution
   break
   }

…

Although it’s known that if the divisibility
condition is satisfied, there is a solution, it’s down-
right scary to write an endless loop. Furthermore,
the solution may be very far out. Defensive pro-
gramming suggests that there should be a limit on
the loop.

In the case of general Diophantine equations
in which there is no test to assure a solution, the
situation is, of course, even more problematical.

Linear Diophantine equations result from
continued fractions in which all the coefficients are
constants. If the coefficients are variable, the re-
sults are more complex, as shown in Figure 2.

Figure 2. A Continued Fraction with Variables

We’ll return to this later. First we’ll explore
constant square-root palindromes, in which all the
coefficients are constant and the same.

Constant Square-Root Palindromes

These palindromes were explored in the pre-
vious article on square-root palindromes [1]. Here
we’ll see what comes from looking at the problem
in a slightly different way — in terms of the a, b,
and c coefficients described in the previous sec-
tion.

We’ll start by looking at some coefficients for
j k, j odd:



4 / The Icon Analyst 64

   clist := [ j / 2, j ^ 2 + 1]

   suspend "a=" || alist[1] || ", b=" || blist[1] ||
      ", c=" || clist[1]
   suspend "a=" || alist[2] || ", b=" || blist[2] ||
      ", c=" || clist[2]

   count := 2

   repeat {
      count +:= 1
      put(alist, clist[–2])
      if count % 2 = 1 then
         put(blist, clist[–1])
      else
         put(blist, 4 ∗ clist[–1])
      put(clist, k / 2 ∗ blist[–1] + clist[–2])
      suspend "a="  || alist[–1] || ", b=" ||
         blist[–1] || ", c=" || clist[–1]
      get(alist) # remove debris
      get(blist)
      get(clist)
      }

end

The next question is, given the values for a, b,
and c in the solution of a continued fraction, how
do we get formulas for n and m in ?

From the previous article, we know that for j
odd, the formulas have the form

n = Ai – B
m = Ci – D

(We’ve used uppercase letters to avoid confusion
with the parameters a, b, and c.)

Thus, successive values of n differ by A and
successive values of m differ by C. Inspection shows
that A = c and C = b.  If I is the value of the iteration
variable that gives the first solution in the trail-
and-error method of solving Diophantine equa-
tions, then B = c – I and D = (a + bI)/c. Murky?  Trust
us.

From the previous article, we also know that
for j even, the formulas have the form

n = Ei + j/2
m = Fi + 1

Here also, E = c and F = b. Trust us.
Here are procedures to produce the formulas

for j odd and j even:

procedure mnodd(a, b, c)
   local i, n, m

      suspend "a="  || alist[–1] || ", b=" ||
         blist[–1] || ", c=" || clist[–1]
      get(alist) # remove debris
      get(blist)
      get(clist)
      }

end

Next, we’ll look at j k, j even:

j = 2: k a b c
1 0 1 1
2 1 4 5
3 1 5 6
4 5 24 29
5 6 29 35
6 29 140 169
7 35 169 204

j = 4: k a b c
1 0 1 2
2 1 8 17
3 2 17 36
4 17 144 305
5 36 305 646
6 305 2584 5473
7 646 5473 11592

j = 6: k a b c
1 0 1 3
2 1 12 37
3 3 37 114
4 37 456 1405
5 114 1405 4329
6 1405 17316 53353
7 4329 53353 164388

Examination of this data suggests the follow-
ing formulas:

ak = ck–2

b
k
 = c

k–1 k odd
   = 4ck–1 k even

ck = jck–1/2 + ck–2

Again, assuming these formulas are correct, all we
need to compute values for any k are the values for
k = 1 and 2. Here they are:

a1 = 0 b1 = 1 c1 = j /2
a2 = 1 b2 = 2j c2 = j2 + 1

Here is a procedure for generating continued-
fraction solutions for j k, k even:

procedure evenson(j)
   local alist, blist, clist, i, count

   alist := [0, 1]
   blist := [1, 2 ∗ j]
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   if a % gcd(b, c) ~= 0 then fail

   every i := seq() do {           # scary … be a cowboy
      n := a + b ∗ i
      if (n % c) ~= 0 then next
      m := n / c
      write("n:=", c, "∗i–", c – i)
      write("m:=", b, "∗i–", b – m)
      exit()
      }

end

procedure mneven(a, b, c, j)
   local i, n, m

   if a % gcd(b, c) ~= 0 then fail

   every i := seq() do {           # scary … be a cowboy
      n := a + b ∗ i
      if (n % c) ~= 0 then next
      m := n / c
      write("n:=", c, "∗i+", j / 2)
      write("m:=", b, "∗i+1")
      exit()
      }

end

Note that mneven() requires j as an argument,
while mnodd() does not.

We’ve made a lot of conjectures along the
way. The good news is that the procedures above
produce verifiably correct results for a wide range
of values.

Other Palindromes with Constant
Coefficients

We can apply the methods above to other
specific square root palindromes, such as 1, 2, 3, 4,
5, 4, 3, 2, 1 as shown in Figure 3.

Figure 3. The Palindrome 1, 2, 3, 4, 5, 4, 3, 2, 1

This palindrome has the equations

n = 10105i – 5280
m = 14102i – 7368

One of the problems with using Mathematica
is entering and editing complicated expressions.
This can be mechanized by creating the text form
Mathematica uses internally.

The Mathematica text form for the solution of
the palindrome 1, 2, 3, 4, 5, 4, 3, 2, 1 is

\!\(Solve[ n + x == 2\ n +
       1\/\(1 +
            1\/\(2 +
                1\/\(3 +
                    1\/\(4 +
                        1\/\(5 +
                            1\/\(4 +
                                1\/\(3 +
                                    1\/\(2 +
                                        1\/\(1 +
                                            1\/\(n + x
\)\)\)\)\)\)\)\)\)\), x]\)

This is hardly a pretty sight, but internal data
formats rarely are.

Experiment shows that blanks and newlines
are optional. It’s not necessary to understand the
syntax (as far as we know, it’s not documented).
For our purposes, it’s enough to see what the basic
segment for a coefficient is; the rest can be copied
without understanding it.

Here’s a program that outputs Mathematica
text for solving a square-root palindrome, which is
input one coefficient per line:

procedure main()
   local head, pre, post, nfact, tail, count, k

   head := "\\!\\(Solve[ n + x == 2\\ n + "
   pre := "1\\/\\("
   post := " +"
   nfact := "1\\/\\(n + x\\)"
   tail := ", x]\\)"

   writes(head)

   count := 0

   while k := read() do {
      writes(pre, k, post)
      count +:= 1
      }

   writes(nfact)
   writes(repl("\\)", count)) # closing parentheses
   write(tail)

end

All that is necessary is to run this program
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with the desired palindrome (the program does
not check that it is a palindrome) and import the
result into Mathematica.

There probably is some limit to the size of
continued fractions Mathematica can handle, if only
the amount of memory available to it. We, how-
ever, have not exceeded this limit so far.

Note that the input to this program need not
consist of integers. This allows for entering palin-
dromes with variable coefficients, such as k, j, k, j,
k, j, k.

Next Time

As you can guess, the next article on square-
root palindromes will deal with coefficients that
are variables. This will lead us to complex Diophan-
tine equations and a variety of programming chal-
lenges.
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Periodic Sequence Curios

In reading about periodic sequences, we’ve
come across a couple of curiosities that we’d like to
pass on to you.

A Sequence with A Curious Period
Pattern

Given the sequence of powers of two,  2, 4, 8,
16, 32, 64, 128, 256, … the units digits cycle with the
pattern 2, 4, 8, 6.

The tens digits are periodic also, as are the
hundreds digits, and so on.

The period is always 4 × 5n–1, where n is the
position of the digit from the right. Notice the
period increases very rapidly with n.

There are other patterns in the powers-of-two
sequence. See Reference 1.

A Sequence Whose Period is Impervious
to the Values its Initial Terms

The following recurrence is due to Morton
Brown:

 xn = |xn–1|– xn–2

The sequence it produces is claimed to have
period 9 for any initial values for x1 and x2 — even
real values. (This is not true if both x1 and x2 are 0.)

Here’s a procedure; give it a try.

procedure brown9(x1, x2)
   local t

   repeat {
      t := abs(x2) – x1
      suspend t
      x1 := x2
      x2 := t
      }

end

Can you prove the conjecture (aside from the
problem with zero initial values)?  We’ve seen a
proof, and it is not elementary.

Reference

1. Excursions in Number Theory, C. Stanley Ogilvy
and John T. Anderson, Dover, 1966, pp. 89-90.

Understanding T-Sequences II

In the first article on understanding T-se-
quences [1], we showed some simple examples
and developed a set of operations that could be
used to describe and construct these sequences,
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Although this form is descriptive and easily
understood, there are technical problems with a
binary operator used in this way. For example, if
the operators group as (1 → 8) → 2, (1 → 8)
produces a sequence. How can this be the first
operand for the second operator?

An n-ary operation is more appropriate, as in

→ (1, 8, 2)

This form has the advantage of emphasizing the
fact that the argument is a sequence. We will con-
tinue to use the notation i →  j, although it means
the same thing as → (i, j)

The sequence in Figure 1 then can be de-
scribed by

→ (1, 8, 2, 5, 1, 6, 3, 8, 1, 8, 4, 8, 2)

Here’s another example from the previous
article:

, 7 → 2, 

Using connected runs, this sequence can be
described by

→ (8, 5, 8, 1, 4, 1)

We think connected runs better capture the
essence of the sequence than the  concatenation of
palindromes and runs. Furthermore, connected
runs clearly show palindromes.

We have not made provisions for an incre-
ment other than 1 for connected runs. We have
never seen an example, and the complications of
specifying an increment seem out of proportion to
their potential value.

More Examples

Figure 2 shows six T-sequences with struc-
tures that cannot be described adequately by the
operations developed so far. Some of these se-
quences are too long to allow a full repeat to be
shown. Ellipses indicate this.

Motif Along a Path

It is evident that the sequence in Figure 2a
consists of the concatenation of instances of a short
sequence offset by different amounts. We’ll call the
short sequence a motif, although in general, motifs
need not be short.

The motif in Figure 2a can be described in
several ways, including

For reference, here are those operations:

i  j run
i repeat

S ⇒  i extension
S , T concatenation

open palindrome
 i closed palindrome

horizontal reflection

S vertical reflection

In this article, we’ll look at a few  T-sequences
that are more complicated and add operations for
describing and constructing them.

Before we do that, however, there is a gener-
alization of one of the operations above that we
want to introduce.

Connected Runs

In many T-sequences, there are connected
runs between inflection points at which the runs
change from up to down or vice versa. Figure 1
shows an example.

Figure 1. A Connected Run

The sequence in this figure can be described
as the concatenation of runs or, in places, palin-
dromes. Here is a description of this sequence in
terms of concatenated runs.

1 → 8, 7 →  2, 3 → 5, 4 → 1, 2 → 6, 5 → 3,
   4  → 8, 7 → 1, 2 → 8, 7 → 4, 5 → 8, 7 → 2

The problem with using concatenated runs is
that it obscures the structure of the sequence and
requires arbitrary decisions as to whether inflec-
tion points belong to upward runs or downward
runs. For example, the two runs at the beginning
could be

1 → 8, 7 → 2

or

1 → 7, 8 → 2

A better method, which captures the struc-
ture of the sequence, is to use the inflection points
in a connected run operation

1 →  8 →  2
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Figure 2. Example T-Sequences

                        a                                             b                              c                    d                  e                     f

      …   …
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M = 1 → 3, 3 → 1

To describe concatenations of a motif at vari-
ous offsets, we’ll use the notation

M @ P

where P is a path, a sequence of offsets at which M
is placed.

The path for Figure 2a is

P = 1 4, 4, 7
2, 10 →

3
19, 4, 22 →

3
37,  7, 4

2

This path is shown in Figure 3.

Figure 3. Path for the Motif in Figure 2a

Notice that the differences between succes-
sive different positions P are multiples of 3, the
bound on M. The basic path can be written as

P' = 1
4
, 2, 3

2
, 4 →7, 2, 8 → 13,  3, 2

2

When P' is scaled by β(M) the result is P.
Scaling for T-sequences is not simply a matter

of multiplying the terms by the scaling factor, since
T-sequences are 1-based, not 0-based as is ordi-
nary arithmetic. A term i is scaled by k as follows:

i' = k (i – 1) + 1

We’ll use the notation

S  ×  i

for scaling a sequence.
Scaling has the effect of simplifying the struc-

ture of sequences such as the one in Figure 2a,
which may be written as

M @ (P' × β(M))

The T-sequence in Figure 2b also is a motif
along a path. It’s a bit more difficult to identify its
motif than it is for the one in Figure 2a, although it
is simpler than the one in Figure 2a:

M = → (1, 3, 1)

Aside: We are relying here on visual analysis
to determine the structure of T-sequences. Our
ultimate goal is to determine T-sequence structure
automatically. We have that planned for the final
issue of the Analyst.

The path in Figure 2b is a simple run reflected
to form a palindrome (the entire sequence is too
long to show in Figure 2b):

→  (1, 25, 1)

The entire sequence can be given by

S = 

Notice that this is different from

T = (→ (1,  3, 1)) @ (→ (1,  25, 1))

because of the handling of the term at the point of
reflection in a palindrome.

Figure 2c also is a motif along a path, although
the motif is more difficult to identify than in the
preceding cases. It is

M = → (1, 2, 1, 3, 1, 4, 1)

The path is again a simple run,

P = 1 → 13

so the entire sequence is simply

S = → (1, 2, 1, 3, 1, 4, 1)  @ (1 → 13)

Collation

The argument of the connected run in the
motif in the preceding example,

1, 2, 1, 3, 1, 4, 1

also can be viewed as the collation or interleaving of
the terms of two sequences,

1 3

and

2 →  4

We’ll use the notation

S ~ T

for the collation of S and T. In the result, the first
term comes from S, the second from T, the third
from S, and so on cyclically, stopping when one of
the sequences runs out. When terms are taken one
by one from sequences in order, the collation is
simple. We’ll take up more complex collations in
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the next article on T-sequences.
 Therefore the sequence above can be written

as

1 3 ~ (2 →  4)

The simple collation of several sequences is
given by

~(S1, S2, S3, …, Sn)
The first term of the result comes from S1, the
second from S2, and so, continuing cyclically after
Sn with S1, and so on. The process stops when any
sequence runs out.

Collation plays an important part in the struc-
ture of many T-sequences and is the main subject of
the remaining examples.

In Figure 2d, it is easy to see that there are two
distinct sequences, a lower one, L, on shafts 1
through 8 and upper one, U, on shafts 9 and 10. It’s
also clear that terms from these two sequences
alternate. The entire sequence is

S = U ~ L

It remains to determine L and U with L con-
sisting of the odd-numbered terms and U the even.
U is easy:

U = 
38

There is not a problem if there are too many re-
peats, since the collation will terminate when L
does and give the correct length.

L is considerably more complicated. It is shown
in Figure 4.

Figure 4. The Lower Sequence in Figure 2d

This sequence can be described by

T = →(8, 5, 8, 1, 4, 1)
V  = →(8, 1)
W = →(1, 4, 1)
L =  , W

The sequence in Figure 2e also is a simple
collation. The upper sequence, U, can be consid-
ered to be a motif along a path:

U = 1 8  @ (→ (4, 12, 4))

(the complete palindrome is too long to show in
Figure 2e).

The lower sequence is a repeat,

L = 

and the entire sequence is

S = L ~ U

The sequence U can be considered in another
way as 8 replications of each term in → (4, 12, 4).

We’ll use the notation

i

to indicate the sequence resulting from i replica-
tion of each term in S.

In this view,

U =  8

Note that although adjacent duplicate terms
may cause structural problems in weaving, in this
case the duplicate terms in U subsequently are
separated by collation.

Figure 2f can be viewed in several ways. One
way is as a collation of a sequence on shafts 1 and
2 with another sequence on the remaining shafts.
(Note that some shafts are unused. This is a com-
mon occurrence when design is done for a loom
that has more shafts than are needed.)

Another view of the sequence is as motif

M = 1, 2

along the path illustrated in Figure 5.

Figure 5. The Path in Figure 2f

The path is a repeat of a collation

R = ~(L, U, U)

where

L = 1
17

and

U = 11 3, 13, 11 2, 7
5

This in turn can be viewed as

U = ( 6
3, 7 , 6

2, 4
5) × β(M)

So the entire sequence can be composed from
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M = 1, 2
R = ~(L, U, U)
S =  M @ R 2

Summary

In this article we’ve introduced the following
operations on T-Sequences:

→ S connected runs
M @ P motif along a path
S  ×  i scaling
~(S1, S2, S3, …, Sn) collation
S

i
term repetition

Implementing the Operations

Here are procedures that implement these
operations. They make use of some of the proce-
dures in Reference 1.

procedure srun(args[ ])
   local lseq, i, j

   lseq := [ ]

   i := get(args) | return lseq

   while j := get(args) do {
      lseq |||:= sruns(i, j)
      pull(lseq)
      i := j
      }

   put(lseq, i)

   return lseq

end

procedure sruns(i, j, k)
   local lseq

   /k := 1
   if j < i then k:= –k

   lseq := [ ]

   every put(lseq, i to j by k)

   return lseq

end

Note that srun() also handles the case of just two
arguments provided the increment is 1.

This procedure implements simple collation:

procedure scollate(args[ ])
   local lseq, i

   args := copyargs ! args

   lseq := [ ]

   repeat
      every i := 1 to ∗args do
         put(lseq, get(args[i])) | break break

   return lseq

end

The procedure copyargs() copies a list while
promoting its elements to lists if necessary:

procedure copyargs(args[])
   local new_args

   new_args := [ ]

   every put(new_args, copy(spromote(!args)))

   return new_args

end

Here’s a procedure to place a motif along a
path:

procedure splace(x1, x2)
   local lseq, i

   x1 := copy(spromote(x1))

   x2 := spromote(x2)

   lseq := [ ]

   every i := !x2 do
      every put(lseq, !x1 + i – 1)

   return lseq

end

The following procedure performs scaling:

procedure sscale(x, i)
   local lseq, j

   lseq := copy(spromote(x))

   every j := 1 to ∗lseq do
       lseq[j] := (lseq[j] – 1) ∗ i + 1

   return lseq

end

Finally, this procedure implements term rep-
etition:

procedure srepl(x, i)
   local lseq, j

   lseq := [ ]



12 / The Icon Analyst 64

   every j := !spromote(x) do
      every 1 to i do
         put(lseq, j)

   return lseq

end

Procedures for Constructing the Example
Sequences

The following procedures construct the T-
sequences shown in Figure 2.

procedure fig2a()
   local M, P

   M := sconcat(srun(1, 3), srun(3, 1))

   P := sconcat(
      srepeat(1, 4),
      4,
      srepeat(7, 2),
      sruns(10, 19, 3),
      4,
      sruns(22, 37, 3),
      7,
      srepeat(4, 2)
      )

   return splace(M, P)

end

procedure fig2b()
   local M, P

   M := srun(1, 3, 1)

   P := srun(1, 25)

   return scpal(splace(M, P))

end

procedure fig2c()
   local M, P

   M := srun(1, 2, 1, 3, 1, 4, 1)

   P := srun(1, 13)

   return splace(M, P)

end

procedure fig2d()
   local  U, T, V, W, L

   U := srepeat(srun(9, 10), 38)

   T := srun(8, 5, 8, 1, 4, 1)

   V := srun(8, 1)

   W := srun(1, 4, 1)

   L := sconcat(
      scpal(sconcat(T, V)),
      W
      )

   return scollate(U, L)

end

procedure fig2e()
   local L, U

   U := sdupl(srun(4, 12, 4), 8)

   L := srepeat(sopal(sconcat(1, srun(3,1), 3)), 25)

   return scollate(L, U)

end

procedure fig2f()
   local R, L, U, M

   L := srepeat(1, 11)

   M := sconcat(1, 2)

   U := sscale(
      sconcat(
         srepeat(6, 3),
         7,
         srepeat(6, 2),
         srepeat(4, 5)
         ),
      sbound ! M
      )

   R := scollate(L, U, U)

   return splace(M, srepeat(R, 2))

end

Next Time

We are not finished with collation — not by a
long shot. In the next article on T-sequences, we’ll
generalize collation to allow the specification of
how terms are taken from different sequences.

We’ll also make use of the fact that many
collations, such as the ones in this article, are on
disjoint sets of shafts.

In addition, we will explore the generaliza-
tion of integer operands to sequences.

Reference

1. “Understanding T-Sequences”, Icon Analyst
63, pp. 1-7.
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Graphics Corner —
Image Permutations

Editors’ Note: This article was inspired by  an
article by Bill Jones for the Complex Weavers Math-
ematics and Textiles Study Group [1].

Permutations

A permutation is a rearrangement in the or-
der of n distinct objects. The objects may be any-
thing, but for notational and programming conve-
nience, it is easiest to deal with the positive integers
from 1 to n. These integers can be considered as
labels for the actual objects.

Note: In mathematical parlance, a transposi-
tion is the exchange in position of two objects. All
permutations can be achieved by a sequence of
transpositions. In view of this difference in termi-
nology, transposition ciphers [2] might better be
called permutation ciphers.

Several different notations are used for de-
scribing permutations. A commonly used one has
two lines, the first to label the positions and the
second to indicate what objects go into those posi-
tions, as in

Thus object 3 goes to position 1, object 1 to position
2, object 2 to position 3, and so on.

The positions are implicit in the permutation
and we can omit the positions and just give this
permutation as 3  1  2  6  5  4.

The n! permutations of length n form the
symmetric group Sn. The identity permutation for
this group is one that does not change the order of
the objects to which it applies. In our notation, it is
just 1  2  3 …  n.

The period of a permutation is number of
successive applications of it to a sequence to get
back to where the original sequence. For the ex-
ample above, if we start with the objects in numeri-
cal order, the permutation applied successively
produces

1   2   3   4   5   6 original
3   1   2   6   5   4 1
2   3   1   4   5   6 2
1   2   3   6   5   4 3
3   1   2   4   5   6 4
2   3   1   6   5   4 5
1   2   3   4   5   6 6

So the period of this permutation is 6. It doesn’t
matter what the original order is — the period is
always 6.  Here, for example, are the results start-
ing with the permutation itself.

3   1   2   6   5   4 original
2   3   1   4   5   6 1
1   2   3   6   5   4 2
3   1   2   4   5   6 3
2   3   1   6   5   4 4
1   2   3   4   5   6 5
3   1   2   6   5   4 6

Permutations can be factored into cycles of
objects that permute together independently of
other objects. For example, the permutation above
has cycles 3  1  2,  6  4, and 5. This is written

(3  1  2) (6 4) (5)

The period of a permutation is the least com-
mon multiple of the periods of its cycles. The cycle
(3  1  2) has period 3, the cycle (6  4) has period 2, and
the cycle (5) has length 1, so the period of the
permutation is lcm(1, 2, 3) = 6.

The cyclic form of the identity permutation is
(1) (2) (3) … (n) and, of course, it has period 1.

Every permutation has an inverse permuta-
tion that undoes its result. The inverse of 3  1  2  6
5  4 is 2  3  1  6  5  4. Note that  6  4 is its own inverse.
More generally, any cycle with period 2 is its own
inverse.

Implementation

The natural data structure for representing
permutations is the list. Here’s a procedure that
produces the identity permutation:

procedure pident(i)
   local p

   p := [ ]

   every put(p, 1 to i)

   return p

end

Note that the result is the same as for  srun(1, i) from
T-sequences [3].

The following procedure applies a permuta-
tion:

procedure permute(objects, p)
   local result
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   result := [ ]

   every put(result, objects[!p])

   return result

end

The inverse of a permutation can be obtained
as follows:

procedure pinvert(p)
   local inverse, i

   inverse := list(∗p)

   every i := 1 to ∗p do
      inverse[p[i]] := i

   return inverse

end

The cycles of a permutation can be computed
by starting with any value in the permutation and
collecting the values it leads to until the original
value is found. These values are removed along the
way and the process continues until there is noth-
ing left.

procedure cycles(p)
   local indices, cycle, cycles, i

   cycles := [ ] # list of cycles

   indices := set()

   every insert(indices, 1 to ∗p)

   repeat {
      i := !indices | break
      delete(indices, i)
      cycle := [i]
      repeat {
         i := integer(p[i])
         delete(indices, i)
         if i = !cycle then break # done with cycle
         else put(cycle, i) # new member of cycle
         }
      put(cycles, cycle)
      }

   return cycles

end

Notice that a packet sequence is returned [4].
From this, it is easy to compute the period of

a permutation:

procedure permperiod(p)
   local lengths

   lengths := [ ]

   every put(lengths, ∗!cycles(p))

   return lcml ! lengths

end

The procedure lcml() is from the Icon pro-
gram library module numbers:

procedure lcml(L[ ])
   local i, j

   i := get(L) | fail

   while j := get(L) do
      i := lcm(i, j)

   return i

end

where lcm() is from the same module:

procedure lcm(i, j)

   if (i =  0) | (j = 0) then return 0

   return abs(i ∗ j) / gcd(i, j)

end

The following procedures generate all the
permutations of n objects in lexicographical order:

procedure permutations(i)

   suspend permutations_(pident(i))

end

procedure permutations_(p)
   local i

   if ∗p = 0 then return [ ]

   suspend [p[i := 1 to ∗p]] |||
      permutataions_(p[1:i] ||| p[i+1:0])

end

MultiReduce

The permutation that inspired this article is
called MultiReduce. MultiReduce uses permuta-
tions of the columns and rows of an image to
“quarter” it. First, all the even-numbered columns
are moved to the left half, while all the odd-num-
bered columns are moved to the right half. For an
image 20 columns wide, the permutation is

   20 18 16 14 12 10 8 6 4 2 19 17 15 13 11 9 7 5 3 1

Then the same thing is done to the rows to
move the even-numbered row to the top half and
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the odd-numbered rows to the bottom half.
Figure 1 shows an example image and the

result of applying MultiReduce to it:

   
→

   

Figure 1. MultiReduce Applied to an Image

The process then is repeated, again and again.
As the permutation is applied repeatedly, the im-
age gets sliced and diced to the point that the
pattern becomes very fine-grained.

Figure 2 shows the images after 19 and 20
applications of MultiReduce.

          

Figure 2. Further Applications of MultiReduce

No pixels are discarded, however; they are
just rearranged. Since all permutations have a pe-
riod, repeated application must eventually pro-
duce the original image. The image above is square
and hence the period for the combined horizontal
and vertical permutations is the same as the period
for the horizontal/vertical permutation by itself.
In this case, the period is 40. Figure 3 shows the last
two permutations before the original image reap-
pears.

          

Figure 3. The Last Two Permutations

It seems remarkable that the next image should
be the same as the original.

Choosing Images for MultiReduce

Simple images generally produce more inter-
esting results than complex ones, although there

are exceptions.
Generally speaking, photo-realistic images

with many different colors do not produce inter-
esting results. What seems to matter most is the
degree of organization in the image — a concept
that eludes precise definition but nonetheless is
understandable. For example, images composed
completely at random, which have little aesthetic
appeal, produce more of their kind. (If they don’t,
the original image wasn’t really random.) On the
other hand, the application of MultiReduce
to symmetric images often produces attractive re-
sults. This is due, at least in part, to the fact that
MultiReduce preserves symmetry to some extent.
Figure 4 shows an example from an article on
program visualization [5]:

Figure 4. A Symmetric Image

Almost all the 156 MultiReduce permutations of
this image are attractive — for example, they would
make interesting decorative tiles.

Large images tend to produce more interest-
ing results under MultiReduce than small images.
This is due in large part to the fact that large images
disintegrate into pixel dust less quickly than small
images.

By the nature of MultiReduce, its application
to images consisting of vertical or horizontal stripes
produces vertical or horizontal stripes, respec-
tively, usually with many interesting variations on
the original images. (Permuting the columns of
horizontal stripes has no effect, nor does permut-
ing the rows of vertical stripes.) Checks, plaids,
and so forth also are good candidates.

The Significance of Image Size

The size of an image strongly affects the pe-
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riod —  the number of successive applications of a
permutation necessary to produce the original im-
age. If the period is very large, it may be impractical
to get all the images, and sometimes the most
interesting images occur near the end of the period.
Figure 5 shows an image from an earlier Analyst
Graphics Corner [6] and the results of the
penultimate application of MultiReduce.

      

Figure 5. Unicorn Fantasies

If the period is small, on the other hand, there
may not be enough images to be worthwhile.

For square images, the period for  MultiReduce
increases, on average, with the size, but by no
means in a regular fashion. For example, the pe-
riod for a 100 × 100 pixel image is 30, but for a 128
× 128 pixel image, it is 7. Figure 6 shows a histo-
gram of MultiReduce periods for square images of
sizes 1 to 500:
500

1
1            500

Figure 6. MultiReduce Periods

For images that are not square, the period,
which is the least common multiple of the vertical
and horizontal periods, can be very large. For
example, the period for an 80 × 84 image is 3,198.

Variations on MultiReduce

The basic MultiReduce permutation is 2 × 2;
that is, it divides the image in half, horizontally and
vertically on each application. Other divisions,
such as 1 × 2, 2 × 3, 4 × 4, and so on, produce differ-
ent images that are no less interesting.

Figures 7 through 10 show the first permuta-
tion of the image in Figure 4 for different variations
on MultiReduce.

Figure 7. 2 ××××× 2 MultiReduce

Figure 8. 1 ××××× 2 MultiReduce

Figure 9. 2 × × × × × 3 MultiReduce
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Figure 10. 4 ××××× 3 MultiReduce

MultiReduce and Weavability

Permutations preserve weavability in the
sense we described in a recent Analyst article [7].
That is, if an image is weavable, any permutation of
it is also. Conversely, if an image is not weavable,
then neither is any permutation of it.

A permutation of a weavable image requires
the same loom resources — shafts and treadles —
as the original image.

Permutations can be viewed as pattern gen-
erators and hence as tools for weave design.

Figure 11 shows some examples of
MultiReduce applied to a weavable image that is
used as a border for Web pages related to weaving
[8]. The original image is at the upper left.

      

      

Figure 11. MultiReduce Applied to
 a Weavable Image

Other Permutations

The number of different permutations of n
objects becomes astronomical as n gets large. To
make any sense of it, it’s necessary to focus on kinds

of permutations. Some, like reversal and rotation,
may be useful  for some purposes but not produce
much in the way of variety.

One kind of permutation we’ve tried per-
mutes blocks of pixels while leaving the pixels
within a block unchanged. For example, a 32-
column image might be divided into 4 blocks of 8
columns each, labeled A, B, C, and D:

     A                 B                     C                     D
1 2 … 7 8      9 10 … 15 16     17 18  … 23 24      25 26 … 31 32

These blocks then might have the permutation B D
C A, putting columns 9 through 16 first, followed
by columns 25 through 32, and so on.

The blocks, of course, need not be of the same
length and the number of blocks may vary.

Such block permutations, involving only a
few “objects”, have short periods. The best results
for this kind of permutation occur for images that
are themselves “blocky” or at least rectilinear.

Figure 12 shows some block permutations
applied to the Web page image shown in the last
section:

      

Figure 12. Block Permutations Applied to a
Weavable Image

An extension of this idea would be to specify
(nontrivial) permutations within the blocks.

Mutations

Permutations rearrange objects. A more gen-
eral form of “mutation” allows deletion and/or
duplication of objects as well. The permutation
notation extends naturally to mutations. For ex-
ample, suppose there are 9 columns in an image.
Then the mutation

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-



18 / The Icon Analyst 64

9 8 7 6 6 5 4 3 2

reverses the order of the columns, while duplicat-
ing 6 and discarding 1. The mutation

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

magnifies the image by 2, while

1 3 5 7 9

deletes the even-numbered columns.
Aside from using mutations to describe such

image manipulations, we can’t think of a use for
them. Can you?

Animated Permutations on the Web

We’ve shown a few permutations here, but
most permutations have periods that are too long
to allow all the images to be shown on a printed
page.

Another approach is to bundle the images for
a permutation as an animation. We’ve done this for
a few images and put the results on a Web page for
this issue of the Analyst.

More Ideas

Here are some ideas for further investiga-
tions:

• Investigate the inverses of MultiReduce per-
mutations. The first result of an inverse ap-
plied to an image would be the penultimate
result of the MultiReduce permutation —
which provides an easy way to get to the
images near the end of the MultiReduce pe-
riod.

• Apply permutations directly to threading and
treadling sequences. This doesn’t require as
much mechanism as image manipulation.
We’ve looked over weaving programs that
we know about and have not found any such
facility.

• Add an element of randomness into the cre-

ation of permutations.

• Apply different permutations in succession
rather than using the same one repeatedly.

• Investigate applications of the kinds of per-
mutations used in change ringing [9-10].

• Design a language for describing/implement-
ing the design of permutations. Now there’s a
challenge.
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Imagine Our Surprise

In previous articles, we have discussed func-
tions and procedures as values [1,2]; their uses and
hazards.

Most Icon programmers have encountered
bugs resulting from using a variable that is the
name of a function for other purposes.

We frequently use main(args) to get the com-
mand-line arguments when a program is executed.
But args() is a function and using args as a param-
eter to main overloads its initial function value
with a list of command-line arguments, making
the function args() unavailable. This usually goes
unnoticed, since args() is rarely used.

The typical reason for such conflicts is that in
the design of Icon,  function names were chosen  for
their mnemonic values and hence also likely to be
used for other purposes by a programmer.

Most Icon programmers know the names of
commonly used functions and hence avoid using
these names for other purposes. It’s the infrequently
used functions that cause the most trouble.

There is a subtler aspect of this problem that
we’ll illustrate by an example.

In the kaleidoscope program [3,4], there is a
slider that controls the speed of the display. The
slider position is used to set the delay that is
inserted between successive drawings, using
WDelay().

Here’s a sketch of the code

global delay
…

# initialization
…

   delay := 0 # start with fastest drawing
…

# drawing loop
…

   WDelay(delay)
…

# speed callback

procedure speed_cb(vidget, value)

   delay := sqrt(value)

   return

end

This code looks perfectly reasonable on the

face of it. It does not work, however. Changing the
value of delay has no effect on the speed of the
display. In fact, the display runs at the maximum
speed regardless of the value of delay. Mysterious.

Poring over the code reveals no problem. In
fact, the code itself is perfectly correct. What is
going on?

WDelay() is an Icon procedure, not a built-in
function. It flushes pending output and then uses
the built-in function delay() to effect the actual
delay.

Eureka! The use of the variable delay in the
program overloads its initial function value with a
numerical value.

If this caused the program to crash, the source
of the problem would be easier to locate. But a
numerical value applied to an argument list selects
(or attempts to select) one of the arguments by
position.

Suppose the value of delay is set to 50. The call
delay(i) in WDelay() is equivalent to 50(i), which
fails. The failure goes unnoticed and there is no
delay regardless of the value set.

Simply changing the name from delay to, say,
delayval, as we did in the article on the kaleido-
scope application, fixes the problem.

We’ve seen several instances of this specific
problem. Novice Icon programmers who are un-
able to find the source of their program malfunc-
tion typically assume it’s a bug in Icon itself.

The reason why this problem is serious is that
a good portion of Icon’s graphic facilities are writ-
ten as Icon procedures. (If WDelay() were a built-in
function, the problem described above would not
occur.)

The severity of the problem can be reduced by
using code such as this at the beginning of the
procedure WDelay():

   local delay

   initial delay := proc("delay", 0)

This  fixes the problem described above, but what

Downloading Icon Material

Implementations of Icon are available for down-
loading via FTP:

ftp.cs.arizona.edu (cd /icon)
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What’s Coming Up

In programming, as in everything else, to be in
error is to be reborn.

— Alan Perlis

With only two issues of the Analyst left, we
are running out of options.

We expect to have one more article on solu-
tions of square-root palindromes.We also have an
article in the works on their terms and the distribu-
tion of terms and another on their lengths.

In addition, we have two more articles on T-
sequences, one on generalizing from integer argu-
ments to sequence arguments and another on the
analysis of T-sequences.

Beyond that, it’s whatever fits or tickles our
fancy.

about other function names in other procedures?
It’s not practical or even desirable to “protect”

the names of all built-in functions that are used in
all procedures.

We settled for an uncomfortable compromise
based on problems that have actually occurred. At
present, delay, image, and type are “protected” in
graphics procedures that are part of the main rep-
ertoire and in the vidgets.

The Icon Analyst

Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

Editors

The Icon Analyst is published six times a
year. A one-year subscription is $25 in the United
States, Canada, and Mexico and $35 elsewhere.
To subscribe, contact

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon–analyst@cs.arizona.edu

and

                     Bright Forest Publishers
                     Tucson Arizona

© 2001 by Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

All rights reserved.

There are lessons here, of course: about lan-
guage design, about the choice of function names,
about writing procedures, and about the impact of
obscure problems.

The one things we wish is that the Icon trans-
lator would provide warning messages when the
names of built-in functions are declared as local
variables
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