
The Icon Analyst 66 / 1

June 2001
Number 66

In-Depth Coverage of the Icon Programming Language and Applications

In this issue

The Last Issue of the Analyst 1
Spectra Sequences ... 1
Modular Expansion .. 4
T-Sequence Analysis 5
Tricky Business ... 11
Color-and-Weave .. 15
Befriending a Sequence 18

The Last Issue of the Analyst

This is the last issue of the Icon Analyst. 11
years, 66 issues, 917 pages.

As we’ve said before, when we started, we
had no way to know where the Analyst would go
or how long it would last.

In theory, the Analyst could go on indefi-
nitely — or at least until it ran out of readers and
editors. In practice, as much fun and rewarding as
it has been, the Analyst takes too much time —
time we prefer to spend on other things.

We want to thank you, our readers, for your
interest and loyalty to the Analyst. Many of you
were charter subscribers and have been with us for
all 11 years — you are a special group.

A few of you have subscriptions that run
beyond this last issue. If you are one of these
persons, you’ll find enclosed information on how
to get a refund or otherwise use your balance.

Spectra Sequences

Given an irrational number α, the integer
sequence dαt , d2αt , d3αt , … , where dxt is the floor
x, is called the spectrum sequence of α. For example,
the spectrum sequence of π is 3, 6, 9, 12, 15, 18, 21,
25, 28, 31, 34 … and the spectrum sequence of e is

2, 5, 8, 10, 13, 16, 19, 21, 24, 27, 29, … .
We’ll denote the spectrum sequence of x by

S(x).
Generating spectra sequences is easy:

procedure spectseq(r)

 suspend integer(seq() ∗ r)

end

Beatty Sequences

A very interesting case occurs for two posi-
tive irrational numbers α and β such that

1/α + 1/β = 1

Then S(α) and S(β) together contain all the positive
integers without repetition. These are called Beatty
sequences after Samuel Beatty, who discovered their
remarkable property.

Note: This formulation is by Weisstein [1].
Superficially this gives the impression that α and β
are independent. However, given α, β = α/(α – 1).
Similarly, given β, α = β/(β – 1). It would seem
more straightforward to say that, given a positive
irrational number α, S(α) and S(α /(α – 1)) are
Beatty sequences that together contain all the posi-
tive integers without repetition. The catch is that α
must be greater than 1; otherwise β is negative.

Here are procedures for generating the Beatty
sequences of the first (α) and second (α/(α – 1))
kind:

procedure beatty1seq(r)

 if r < 1.0 then fail

 suspend integer(seq() ∗ r)

end

procedure beatty2seq(r)

 if r < 1.0 then fail

 suspend integer(seq() ∗ (r / (r – 1)))

end

2 / The Icon Analyst 66

Figure 1 shows grid plots for some Beatty
sequence pairs.

 S(2) S(2 / (2 – 1))

 S(φ) S(φ /(φ – 1))

 S(π) S(π/(π – 1))

Figure 1. Beatty Sequences

Two observations about spectra sequences:

(1) Because 2 /(2 – 1) simplifies to 2 +
2 , the complementary sequence S(2) is

just the same sequence, spread out over
bigger gaps. You can see how the clusters of
two and three follow the same pattern in
both sequences.

(2) The complement of S(φ) is S(φ 2) after
simplification, due to the special properties
of φ.

Collating the pairs of Beatty sequences in
Figure 1 gives the results shown in Figure 2.

 2

φ

 π

Figure 2. Collated Beatty Sequences

Spectra T-Sequences

As we’ve mentioned several times in earlier
articles, almost all integer sequences with any struc-
ture can be used as the basis for interesting weave

The Icon Analyst 66 / 3

patterns. Spectra sequences are no exception.
As usual, it’s necessary to bring such sequences

within the bounds of the number of shafts or
treadles used. And, as usual, we’ll do this by taking
residues in shaft arithmetic [2].

Figure 3 shows grid plots for some Beatty T-
sequences and different numbers of shafts.

S(2), 8 shafts

S(2), 12 shafts

S(2), 16 shafts

S(φφφφφ /(φ /(φ /(φ /(φ /(φ – 1)), 8 shafts

S(φφφφφ /(φ /(φ /(φ /(φ /(φ – 1)), 12 shafts

S(φφφφφ /(φ /(φ /(φ /(φ /(φ – 1)), 16 shafts

S(πππππ), 4 shafts

S(πππππ), 6 shafts

Figure 3. Beatty T-Sequences

Figure 4 shows collated Beatty T-sequences
corresponding to the sequences in Figure 3.

2 , 8 shafts

2 , 12 shafts

2 , 16 shafts

φφφφφ , 8 shafts

φφφφφ , 12 shafts

φφφφφ , 16 shafts

πππππ, 4 shafts

πππππ, 6 shafts

Figure 4. Collated Beatty T-Sequences

Figures 5 through 7 show drawdowns for
collated Beatty T-sequences with 2/2 twill tie-ups
and 8 shafts and treadles, treadled as drawn in.

Figure 5. Beatty 2 Drawdown

Figure 6. Beatty φφφφφ Drawdown

4 / The Icon Analyst 66

Figure 7. Beatty πππππ Drawdown

References

1. CRC Concise Encyclopedia of Mathematics, Eric
Weisstein, Chapman & Hall/CRC, 1999, p. 104.

2. “Shaft Arithmetic”, Icon Analyst 57, pp. 1-5.

Modular Expansion

In an earlier article, we described how modu-
lar reduction can be used to bring integer se-
quences within the range of a fixed number of
shafts [1].

Modular reduction effectively wraps the se-
quence around a modular wheel whose modulus,
m, is the number of shafts. Values not in the range
1 ≤ i ≤ m are replaced by their residues. See Figure
1.

Figure 1. Arithmetic Shaft Modulo 8

The converse operation to modular reduc-
tion, which we call modular expansion, can be
used to convert a T-sequence on m shafts to a T-

sequence on n shafts, n ≥ m, in which there is no
wrap-around. The result is a sequence whose resi-
dues, shaft modulo m, produce the original se-
quence.

Figures 2 and 3 show an example of modular
expansion.

Figure 2. A T-Sequence with Wrap-Around

Figure 3. Wrap-Around Removed by
Modular Expansion

The process of modular expansion is simple
and relies on the fact that 1 and m are adjacent on
the modular wheel.

Starting with i = 1, if term ti = m and ti+1 = 1, add
m to ti+1 and all the remaining terms (shifting them
upward by m). Similarly, if ti = 1 and ti–1 = m,
subtract m from ti–1 and all the remaining terms
(shifting them downward by m). Note that adding
or subtracting a multiple of m does not affect the
residues.

When the process is done, add enough mul-
tiples of m to bring the smallest value in the range
1 to m. (The smallest value can be less than 1 but it
cannot be greater than m, since t1 is not greater than
m and is not changed by the process.)

We’ll use the notation

S

to denote the modular expansion of S. Then

((S) ≡ m) = S

Of course, S is not the only sequence whose
residues shaft modulo m produces S.

Here’s a procedure that performs modular
expansion:

procedure sunmod(x)
 local base, bound, i, lseq, k

 x := copy(spromote(x))

 base := 0

 bound := sbound ! x

The Icon Analyst 66 / 5

 lseq := [get(x)] | return []

 while i := get(x) do {
 if (i = 1) & (lseq[–1] = base + bound) then
 base +:= bound
 else if (i = bound) & (lseq[–1] = base + 1) then
 base –:= bound
 put(lseq, base + i)
 }

 k := (smin ! lseq)

 if k > 0 then return lseq

 k := bound ∗ (–k / bound + 1)

 every !lseq +:= k

 return lseq

end

The motivation for modular expansion is to
make runs evident (see Figures 2 and 3) and easy to
deal with using ordinary arithmetic.

Comment: Although there are occasional ref-
erences in the weaving literature to modular arith-
metic, they usually are cast informally in terms of
modular wheel diagrams. All the ones we’ve seen
have been in reference to specific problems such as
how to add incidentals to get alternating parity.
Nonetheless, weavers who design original weaves
must have at least an intuitive awareness of the
logical adjacency between the top and bottom
shafts.

Reference

1. “Shaft Arithmetic”, Icon Analyst 57, pp. 1-5.

T-Sequence Analysis

In previous articles on T-sequences [1-5], we
analyzed T-sequences manually, finding patterns
and casting them in terms of operations on se-
quences that produce them.

As noted earlier [4], there may be many ways
to create the same T-sequence. Any particular char-
acterization is just one way. Without knowing how
a T-sequence was constructed, analysis is at best an
educated guess. Independent of how a T-sequence
was constructed, some characterizations in terms
of patterns and operations are better than others.
Brevity and compactness (objective) and natural-
ness (subjective) are desirable.

Automatic (algorithmic) analysis of T-se-
quences that gives acceptable results is more diffi-

cult than it may seem and, in fact, is not possible for
all T-sequences found in actual drafts.

 T-sequences that are not good candidates for
algorithmic analysis include ones:

• derived from mathematical sources, such as
Fibonacci residues [6]

• that contain elements of randomness

• obtained by digitizing curves

In any event, the best way to do T-sequence
analysis probably is to combine algorithmic meth-
ods with user interaction. In this article, we’ll stick
to algorithmic analysis.

Core Analysis Operations

In past articles we have presented many op-
erations that can be used to construct and describe
T-sequences. Some, such as repeats, are basic. Oth-
ers, such as vertical reflection, occur rarely. Some
operations, such as duplicate removal, leave no
trace of their work and are not useful in analysis.

In the following sections, we’ll describe the
operations that are the most important to the analy-
sis of T-sequences found in actual weaving drafts.

Repeats

Repeats are found in almost all T-sequences.
If a repeat is found, it reduces the size of the T-
sequence remaining to be analyzed, often by a
substantial amount.

Collations

Collations result from the interleaving of two
or more sequences. Since the component sequences
may, and usually do, have different patterns, find-
ing collations has high priority.

The result of finding a collation is three or
more sequences, all of which are shorter than the
original sequence. One of these is the index se-
quence, which usually is quite simple.

Collation analysis is important because of the
frequency with which collations occur in T-se-
quences but it also is vexing.

The underlying problem is that any non-trivial
T-sequence can be considered as a collation, often
in many different ways. For example, (1 → 4)5 can
be cast as the collation ~(15, 25, 35, 45). (We’ve
dropped the overbar for repeats.)

General collation analysis is hopeless. We’ll
limit our attempts to simple collation [3] of se-

6 / The Icon Analyst 66

quences with repeats on disjoint shaft sets.
Such collations are periodic. Specifically, the

collation of k sequences with periods p1, p2, …, pk is
periodic with period m × lcm(p1, p2, …, pk). (The
factor of m is a result of each component sequence
being spread out m places.)

Concatenations

Concatenation is a consideration when a T-
sequence consists of dissimilar segments. This may
occur when borders bound a central pattern. See
Figure 1.

Figure 1. Concatenation of Dissimilar Segments

Dissimilar segments need to be analyzed sepa-
rately and the results concatenated.

The problem is that “dissimilar” is not well
defined. Still, a human being usually can easily find
the boundaries between dissimilar segments of a
sequence.

We’ve tried several ways of dealing with con-
catenation in an algorithmic way, including dis-
crete Fourier transforms [7] and breaking up se-
quences into segments of runs and disconnected
values. So far, no method has produced useful
results and all methods have interfered with other
kinds of analyses.

Runs

Simple, disconnected runs consist of succes-
sive values between starting and ending points. See
Figure 2.

Figure 2. Simple Runs

A connected run consists of successive values
between a beginning point, inflection points at which
direction changes, and an ending point. See Figure
3. A connected run is, of course, a succession of
simple runs, but its characterization is simpler.

Figure 3. A Connected Runs

Both kinds of runs occur frequently in T-
sequences.

Motifs Along Paths

Motifs along paths deserve consideration be-
cause of the frequency with which they occur in
practice. Motifs along paths also subsume repeats:
A repeat is just a motif along a constant path, 1 ,
although we will not use this fact in analysis.

The Role of Modular Expansion

As described in the article Modular Expan-
sion that begins on page 4 of this issue of the
Analyst, modular expansion is effective in reveal-
ing runs that have been broken by modular reduc-
tion, as shown in Figures 2 and 3 in that article.

An extreme but common case is shown in
Figures 4 and 5.

Figure 4. An Ascending Straight Draw

Figure 5. Modular Expansion of an Ascending
 Straight Draw

The ascending straight draw can be cast in
terms of T-sequence operations as both (1 → 8)5

and (1 → 40) ≡ 8.
Which view is more natural? A weaver prob-

ably would view the familiar repeat as the “right”
characterization and the modular reduction of a
very long draw as an aberration. On the other
hand, a mathematically literate nonweaver prob-
ably would view the modularly-reduced long draw
as better representing the structure of the sequence.

The Icon Analyst 66 / 7

One thing this example makes clear is that
modular expansion can alter the period of a repeat
or even eliminate it.

For this reason, we’ve used modular expan-
sion only within the procedures for run analysis.

The Question of Order

The most difficult (in fact, impossible) task in
straightforward algorithmic analysis without pre-
analysis or evaluation of intermediate results and
backtracking is deciding on the order in which the
various kinds of analyses should be performed.

It might seem that repeat analysis should be
done first to extract a basic unit. If that is done and
the resulting repeat is later analyzed for collations,
there may not be enough information left to do
collation analysis. Similarly, motif-along-a-path
analysis will succeed and produce bizarre results
for T-sequences that are most naturally viewed as
connected runs. If the order is reversed, however,
some T-sequences that are most naturally viewed
as motifs along paths will instead be analyzed as
long, unnatural runs.

Trying to circumvent these problems by mak-
ing different kinds of analyses more “clever” leads
to complexity and other kinds of problems. The
difficulty is fundamental.

We therefore know, a priori, that simple algo-
rithmic analysis can only have limited success. It is,
however, a step toward more sophisticated kinds
of analyses and needs to be done, if only to discover
lurking problems.

Termination

At some point in analysis, there either is noth-
ing left to try or the T-sequence is too short to
benefit from analysis and the result may be more
complicated than the sequence itself. For example,
is (1, 4)2 a better characterization than just 1, 4, 1, 4?
Is →(1, 3, 1) better than 1, 2, 3, 2, 1?

As with so many other things in T-sequence
analysis, there is no “right” answer. We have tried
various values for preventing further attempted
analysis. At present we do not attempt to analyze
a sequence whose length is less than 5.

The Core Analysis Procedures

The procedures that follow succeed if the
analysis is successful but fail otherwise. In all cases,
to be successful, the analysis must apply to the
entire sequence.

Some procedures described in earlier articles
on T-sequences are used in what follows. In a few
cases the procedures have been changed slightly.
The full set is on the Web site for this issue of the
Analyst.

The procedure that controls the analysis is

$define MinLength 5

procedure get_analysis(seq)

 if ∗seq < MinLength then return simageb(seq)

 return (
 get_scollate(seq) |
 get_srepeat(seq) |
 remod(seq, get_srun) |
 remod(seq, get_sruns) |
 get_splace(seq) |
 simageb(seq)
)

end

Modular expansion for run analysis is handled
by the procedure remod(seq, p):

procedure remod(seq, p)
 local nseq, bound

 nseq := sunmod(seq)

 if (sbound ! nseq) > (bound := sbound ! seq) then
 return "smod(" || p(nseq) || ", " || bound || ")"
 else return p(copy(seq))

end

The simplest analysis procedure, although
not the first one tried, is

procedure get_srepeat(seq)
 local i

 i := speriod(seq) | fail
 return "srepeat(" || get_analysis(seq[1+:i]) ||
 ", " || (∗seq / i) || ")"

end

A separate procedure is used to get the period
because it is needed in other analysis procedures.

 We’ll make an important simplifying assump-
tion that the repeat comes out “even” — that the T-
sequence does not end in a partial repeat. This
allows us to examine only those segments whose
lengths are divisors of the length of the entire
sequence.

procedure speriod(seq)
 local i, segment

8 / The Icon Analyst 66

 every i := 1 | divisors(∗seq) do {
 segment := seq[1+:i]
 if sequiv(sextend(segment, ∗seq), seq) then
 return i
 }

 fail

end

The procedure divisors(i), which is from the
Icon program library module factors, generates
the proper divisors of i in increasing order. The
improper divisor 1 is added, since in some situa-
tions, the sequence is constant. Note that the small-
est repeat is found.

Motif-along-a-path analysis is similar to re-
peat analysis:

procedure get_splace(seq)
 local i, j, motif, seq2, path

 every i := divisors(∗seq) do {
 motif := seq[1+:i]
 every j := i + 1 to ∗seq by i do
 if not sequiv(motif, sground(seq[j+:i], seq[1]))
 then break next
 path := []
 every put(path, seq[1 to ∗seq by i])
 return "splace(" || get_analysis(motif) ||
 ", " || get_analysis(path) || ")"
 }

 fail

end

Motifs of length 1 are not considered, since all
T-sequences are unit sequences along a path.

The procedure sground() brings the next po-
tential motif segment to the specified level, which
in the procedure call above is the first value in the
current motif candidate:

procedure sground(seq, i)
 local j

 j := smin ! seq

 every !seq –:= (j – i)

 return seq

end

The two procedures for run analysis are simi-
lar:

procedure get_srun(seq) # connected runs
 local i, j, new_seq, dir

 seq := copy(seq)

 i := get(seq)
 j := get(seq)

 if j = i – 1 then dir := –1 # down going
 else if j = i + 1 then dir := 1 # up going
 else fail

 new_seq := [i]

 while i := get(seq) do {
 if i = j + 1 then {
 if dir = –1 then put(new_seq, j)
 dir := 1
 }
 else if i = j – 1 then {
 if dir = 1 then put(new_seq, j)
 dir := –1
 }
 else {
 put(new_seq, j)
 push(seq, i) # put back
 break
 }
 j := i
 }

 if ∗seq ~= 0 then fail # remaining terms?

 put(new_seq, j)

 return "srun(" || get_analysis(new_seq) || ")"

end

procedure get_sruns(seq) # disconnected runs
 local i, j, seq1, seq2, dir

 seq1 := []
 seq2 := []

 repeat {
 i := get(seq) | {
 put(seq2, j)
 break # end of road
 }
 j := get(seq) | fail # isolated end point
 if j = i – 1 then dir := –1 # down going
 else if j = i + 1 then dir := 1# up going
 else fail
 put(seq1, i) # beginning point
 while i := get(seq) do {
 if i = j + dir then {
 j := i
 next
 }
 else {

The Icon Analyst 66 / 9

 push(seq, i) # put back
 put(seq2, j)
 break
 }
 }
 }

 return "sruns(" || get_analysis(seq1) || ", " ||
 get_analysis(seq2) || ")"

end

Collation analysis is the most complicated of
all analyses. It involves finding the periods of
individual shafts and collecting together those with
the same periods:

procedure get_scollate(seq)
 local bound, deltas, i, j, poses, positions, oper
 local results, result, k, count, oseq, m, nonperiod
 local seqs, facts, period

 speriod(seq) | fail # only do periodic case

 bound := (sbound ! seq)

 deltas := table()
 positions := table()

 every i := 1 to bound do {
 poses := spositions(seq, i)
 positions[i] := poses
 j := sconstant(sdelta(poses))
 /deltas[j] := []
 put(deltas[j], i)
 }

 if ∗deltas < 2 then fail

 oseq := list(∗deltas) # decollation order

 count := 0

 every k := key(deltas) do {
 count +:= 1
 every j := !deltas[k] do
 every m := !positions[j] do
 oseq[m] := count
 }

 seqs := sdecollate(oseq, seq) | fail

 oper := "scollate(" ||
 (simageb(oseq[1+:speriod(oseq)]) |
 get_analysis(oseq))

 every oper ||:= ", " || get_analysis(!seqs)

 return oper || ")"

end

The procedure spositions() produces a list of
positions at which shafts appear, from which the
shaft periods can be determined:

procedure spositions(seq, i)
 local lseq, count

 seq := copy(seq)

 lseq := []

 count := 0

 while i := get(seq) do {
 count +:= 1
 if member(seq, i) then
 put(lseq, count)
 }

 return lseq

end

The procedure sdecollate() does the actual
decollation:

procedure sdecollate(order, seq)
 local lseq, i, j

 order := copy(order)

 lseq := list(sbound ! order) # sequences to return

 every !lseq := [] # all initially empty

 every j := !seq do {
 i := get(order)
 put(order, i)
 put(lseq[i], j)
 }

 return lseq

end

If all else fails, the analysis produces the con-
catenation of the remaining values:

procedure concat_image(seq)

 if ∗seq = 1 then return seq[1]

 return "sconcat(" || simage(seq) || ")"

end

Evaluation

Analyzing T-sequences using the core proce-
dures described above produces correct results for
all the T-sequences we have tried — correct in the
sense that the expressions resulting from analysis
produce the original sequences.

10 / The Icon Analyst 66

The quality of analysis is another matter. In
the case of the concatenation of dissimilar se-
quences, the analysis often produces just the con-
catenation of the individual values, although in
some cases it may produce runs.

In some cases, the results of analysis are not as
expected. On occasion, an unexpected result, upon
examination, may prove to be better than the ex-
pression used to produce the sequence.

And, gratifyingly, the results of analysis some-
times are identical to the expressions that produce
the sequences. Figure 6 shows examples for which
the analysis is “perfect” in this sense.

The analysis described here is inefficient in
the sense that some some analyses, notably repeat
analysis, are attempted when it could be deter-
mined in advance that they will fail. The speed of
analysis is not a problem, however, and efficiency
is low on our list of concerns.

The most valuable result of developing even
this flawed algorithmic analysis has been what
we’ve learned about relationships between differ-
ent kinds of patterns.

Other Analysis Operations

There are many other possible analysis op-
erations, including palindromes, scaling, term du-
plication, and so forth.

Most palindromes consist of runs, and analy-
sis of the sequence of inflection points in the runs
produces the essence of the palindromes. There-
fore, palindrome analysis probably is better per-
formed after the core analyses.

Similarly, term duplication and the need for
scaling usually arise from more basic kinds of
analysis.

These are topics for further investigation.

References

1. “Understanding T-Sequences”, Icon Analyst
63, pp. 10-17.

2. “Understanding T-Sequences II”, Icon Ana-
lyst 64, pp. 6-12.

3. “T-Sequence Collation”, Icon Analyst 65, pp.
1-2.

4. “Constructing T-Sequences”, Icon Analyst 65,
pp. 3-9.

~

Figure 6. Sequences “Perfectly” Analyzed

~((1 → 5)10, (6, 7)25)

(→(2, 10, 1, 10, 3, 5, 1, 7, 3, 9, 1, 10, 2, 9, 3, 9)) ≡ 8

(1, 3, 6, 2, 4, 8, 10, 4)12

(→(1, 5, 2, 9, 3, 7, 6) → (→(6, 7, 3, 9, 2, 5, 1))

(1, 3, 2, 1) @ (→ (1, 10, 4, 9, 1, 5)

The Icon Analyst 66 / 11

Tricky Business

When we first started to explore weaving, we
came across a monograph entitled Algebraic Ex-
pressions in Handwoven Textiles [1].

The author was a weaver who had been a
high-school mathematics teacher. In looking for
inspirations for designing weaves, she turned to
mathematics. What she did seems to us to be naive
and quirky, but it was sufficiently successful to
gain attention and acclaim [2-3].

Although she described her mathematical
basis as algebraic expressions, her method was
more limited than that — powers of linear multi-
variate polynomials, such as

(a + b + c + d) 3

which, when expanded, becomes

a3 + 3a2b + 3ab2 + b3 + 3a2c + 6abc + 3b2c +
 3ac2 + 3bc2 + c3 + 3a2d + 6abd + 3b2d +
 6acd + 6bcd + 3c2d + 3ad2 + 3bd2 +
 3cd2 + d3

Each variable corresponds to a shaft (or
treadle), so the expression above is for four shafts.
The power used represents the “degree of interac-
tion among the variables”, higher powers leading
to more complex and longer sequences.

The expanded polynomials are interpreted as
sequences in the following way. Powers are writ-
ten out as products. For example, a2b becomes aab,
which in turn corresponds to the sequence 1, 1, 2.

The numerical coefficient of a term causes the
term to be replicated accordingly. For example,
3a2b becomes aabaabaab and the sequence is 1, 1, 2,
1, 1, 2, 1, 1, 2.

Finally the results for successive terms are
concatenated.

The result for the polynomial above is

 aaaaabaabaababbabbabbbbbaacaacaacabcabcab
 cabcabcabcbbcbbcbbcaccaccaccbccbccbcccccaa
 daadaadabdabdabdabdabdabdbbdbbdbbdacdac
 dacdacdacdacdbcdbcdbcdbcdbcdbcdccdccdccd
 addaddaddbddbddbddcddcddcddddd

The sequence produced depends, of course,
on the ordering of the variables. The one given
above is that standard lexicographic ordering for
multivariate polynomials.

The corresponding sequence is
 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2,
 2, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1,
 2, 3, 1, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3,
 2, 3, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 2,
 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 2, 2, 4, 2, 2, 4, 2,
 2, 4, 1, 3, 4, 1, 3, 4, 1, 3, 4, 1, 3, 4, 1, 3, 4, 1, 3, 4, 2, 3, 4,
 2, 3, 4, 2, 3, 4, 2, 3, 4, 2, 3, 4, 2, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3,
 4, 1, 4, 4, 1, 4, 4, 1, 4, 4, 2, 4, 4, 2, 4, 4, 2, 4, 4, 3, 4, 4, 3,
 4, 4, 3, 4, 4, 4, 4, 4

This sequence can be represented more com-
pactly using T-sequence operations:

 (1)5, (2, 1, 1)2, (2, 1, 2)3, (2)4, (1, 1, 3)3, (1, 2, 3)5,
 (2, 2, 3)3, (1, 3, 3)3, (2, 3, 3)3, (3)3, (1, 1, 4)3,
 (1, 2, 4)6, (2, 2, 3)3, (1, 3, 4)3, (2, 3, 4)6, (3, 3, 4)3,
 (1, 4, 4)3, (2, 4, 4)3, (3, 3, 4)3, (4)5

We have omitted the overbar for grouped
terms, something we wish we’d done earlier.

A grid plot for this sequence is shown in
Figure 1.

Figure 1. Sequence for (a + b + c + d) 33333

Figure 2 shows a drawdown for this sequence,
treadled as drawn in and with a direct tie-up.

5. “Generalizing T-Sequence Operands”, Icon
Analyst 65, pp. 7-9.

6. “Residue Sequences”, Icon Analyst 58, pp. 4-6.

7. Numerical Recipes: The Art of Scientific Computa-
tion, William H. Press, Brian P. Flannery, Saul A.
Teukolsky, and William T. Vetterling, Cambridge
University Press, 1986, pp. 387-390.

12 / The Icon Analyst 66

Figure 2. (a + b + c + d)3 Drawdown

T-Sequences of this kind, with many succes-
sive duplicates, are better used for profile drafting
[4] than for thread-by-thread drafting.

In practice, sequences produced from powers
of multivariate polynomials are rearranged in vari-
ous ways to produce more attractive results. The
process, therefore, is not entirely algorithmic.

All kinds of extensions and variations on
multivariate polynomials are possible, but as far as
we know, these have not been pursued.

We are not interested here in designing weaves
by the method described above. We are, however,
interested in how such T-sequences can be ob-
tained from multivariate polynomials.

The problem is the usual one: Interesting ex-
pressions are too complicated to work out by hand,
not to mention the likelihood of errors.

As usual, we use Mathematica, which is de-
signed for this kind of thing, but then we are left
with processing the Mathematica output. Here’s
what that output looks like for the polynomial
we’ve been using for an example:

\!\(a\^3 + 3\ a\^2\ b + 3\ a\ b\^2 + b\^3 + 3\ a\^2\ c +
 6\ a\ b\ c + 3\ b\^2\ c + 3\ a\ c\^2 + 3\ b\ c\^2 +
 c\^3 + 3\ a\^2\ d + 6\ a\ b\ d + 3\ b\^2\ d +
 6\ a\ c\ d + 6\ b\ c\ d + 3\ c\^2\ d + 3\ a\ d\^2 +
 3\ b\ d\^2 + 3\ c\ d\^2 + d\^3\)

It’s not that hard to write an ad hoc program to
convert such input to the corresponding T-se-
quence:

link strings

procedure main()
 local expr, result, term, i, var, letters, sequence, k

 expr := ""

 # Read Mathematica expression.

 while expr ||:= read()

 # Delete extraneous characters.

 expr := deletec(expr, '()\\! ')

 # Analyze polynomial

 sequence := ""

 # Parse expression.

 expr ? {
 while term := tab(upto('+–') | 0) do # get term
 term ? {
 result := ""
 i := (tab(many(&digits)) | 1) # multiplier
 while var := move(1) do { # variable
 if ="^" then k := tab(many(&digits))
 else k := 1
 result ||:= repl(var, k)
 }
 sequence ||:= repl(result, i)
 }
 move(1) | break
 }
 }

 letters := &lcase ∗∗ sequence #variables

 # Map variables into digits (assumes at most
 # nine variables).

 write(map(sequence, letters,
 "123456789"[1 +: ∗letters]))

end

After writing this program, we thought there
must be a better (harder), more elegant (strange),
and interesting (obscure) way to solve the prob-
lem.

We were reminded of the way we dealt with
Mathematica expressions in solving continued-frac-
tions with variable coefficients — converting such
expressions to executable Icon code that produced
the desired results [5].

To do this here, we need to approach the
problem in a more sophisticated (peculiar) way,
since the result needs to be a string involving the
variables in the expression, while the expression,
as it stands, is designed to produce a numerical
result for the given values of the variables.

The technique we used was to associate a
unique prime number with each variable and then

The Icon Analyst 66 / 13

rely on the fundamental theorem of arithmetic to
recover the variables from a numerical result.

The fundamental theorem of arithmetic states
that, up to the order of terms, any positive integer
can be represented uniquely as a product of pow-
ers of primes:

i = p1
c

1 × p2
c

2 × … × pn
c

n

where pi is the ith prime. For example, if

a = 2
b = 3
c = 5
d = 7

then a2b = 12 and bd2 = 147. These terms can be
recovered by factoring 12 and 147, respectively.

There is one other thing to be considered: the
numerical coefficients of terms. This can be handled
by choosing primes for variables that are larger
than the largest numerical coefficient.

As usual, it’s easier to understand what’s
going on when one program writes another by
looking at the written program first (we’ve done
minor editing to get line lengths within printing
boundaries):

procedure main()
 a := 7
 b := 11
 c := 13
 d := 17
 terms := (a ^ 3 || "," || 3 ∗ a ^ 2 ∗ b || "," || 3 ∗ a ∗
 b ^ 2 || "," || b ^ 3 || "," || 3 ∗ a ^ 2 ∗ c || "," || 6 ∗ a ∗
 b ∗ c || "," || 3 ∗ b ^ 2 ∗ c || "," || 3 ∗ a ∗ c ^ 2 || "," ||
 3 ∗ b ∗ c ^ 2 || "," || c ^ 3 || "," || 3 ∗ a ^ 2 ∗ d || "," ||
 6 ∗ a ∗ b ∗ d || "," || 3 ∗ b ^ 2 ∗ d || "," || 6 ∗ a ∗ c ∗
 d || "," || 6 ∗ b ∗ c ∗ d || "," || 3 ∗ c ^ 2 ∗ d || "," || 3 ∗
 a ∗ d ^ 2 || "," || 3 ∗ b ∗ d ^ 2 || "," || 3 ∗ c ∗ d ^ 2 ||
 "," || d ^ 3)
 result := ""
 terms ? {
 while term := tab(upto(',') | 0) do {
 pattern := ""
 every var := !'abcd' do {
 while term % variable(var) = 0 do {
 pattern ||:= var
 term /:= variable(var)
 }
 }
 result ||:= repl(pattern, term)
 move(1) | break
 }
 }

 letters := &lcase ∗∗ result
 every write(!map(result, letters,
 "123456789"[1 +: ∗letters]))
end

The primes used for variables start at 7 be-
cause the largest numerical coefficient is 6. The
terms are concatenated so that the result is the
complete string. After factoring and recovering the
variables (note the use of variable() to convert a
string to the corresponding variable), the variables
are mapped into shaft numbers and the sequence is
written out one term per line.

Here’s the program that reads Mathematica
input and produces programs such as the one
above:

link options
link factors
link strings

procedure main(args)
 local exp, line, vars, limit, c, opts, name, output
 local expr1, expr2, file, var, max, primes

 opts := options(args, "l+")

 limit := \opts["l"] | 100

 output := open("dietzsol.icn", "w") |
 stop("∗∗∗ cannot open file for program")

 exp := ""

 # Input may be on more than one line.

 while exp ||:= pretrim(read())

 # Variables are guaranteed to be lowercase letters

 vars := cset(exp) ∗∗ &letters

 # Find the largest number in the expression.

 max := 0

 exp ? {
 while tab(upto(&digits)) do
 max <:= tab(many(&digits)) \ 1
 }

 # Get as many primes past the largest number
 # as there are variables.

 primes := [nxtprime(max)] # big enough

 every 2 to ∗vars do
 put(primes, nxtprime(primes[–1]))

 # Perform ad-hoc replacements to convert
 # Mathematica syntax to a valid Icon expression.

 exp := replacem(exp,

14 / The Icon Analyst 66

 "\\ ", " * ",
 "\\^", " ^ ",
 "\\(", "(",
 "\\)", ")",
 "\\!", "",
 "+", "|| \",\" ||", # concatenation and separator
)

 write(output, "procedure main()")
 every var := !vars do
 write(output, " ", var, " := ", get(primes))
 write(output, " terms := ", exp)
 write(output, " result := \"\"")
 write(output, " terms ? {")
 write(output, " while term := tab(upto(',') | 0) do {")
 write(output, " pattern := \"\"")
 write(output, " every var := !", image(vars),
 " do {")
 write(output, " while term % variable(var)_
 = 0 do {")
 write(output, " pattern ||:= var")
 write(output, " term /:= variable(var)")
 write(output, " }")
 write(output, " }")
 write(output, " result ||:= repl(pattern, term)")
 write(output, " move(1) | break")
 write(output, " }")
 write(output, " }")
 write(output, " write(result)")
 write(output, "end")

 close(output)

 system("icont –s dietzsol –x")
 write(output, " every write(!map(result, letters,_
 \"123456789\"[1 +: ∗letters]))")

 remove("diosol.icn") # clean up debris
 remove("diosol")

end

The procedure nxtprime(i), which produces
the next prime after i, is from the Icon program
library module factors.

Now isn’t that a better (harder), more elegant
(strange), and interesting (obscure) way to solve
the problem than the simple ad hoc method?

Sarcasm aside, the use of the fundamental
theorem of arithmetic to encode nonnumeric val-
ues deserves remembering. Kurt Gödel used a
more sophisticated version of this idea to prove
one of the most important mathematical results of
all time. See the side bar.

Kurt Gödel 1906 - 1978

Gödel and
Undecidability

Kurt Gödel
shook the founda-
tions of mathemat-
ics by proving that
certain mathemati-
cal propositions
cannot be proven to
be true or false.

Put in an infor-
mal way, Gödel’s
incompletness theo-
rem states that all
consistent axiom-
atic formulations of arithmetic include unde-
cidable propositions [1].

The method Gödel used relied on a system
by which every mathematical proposition was
represented by a distinct number. Such num-
bers are called Gödel numbers. For example,
the proposition ($x)(x = sy), which means “there
exists an x such that x is the immediate succes-
sor of y” is encoded as

28 34 513 79 118 1313 175 197 2316 299

where the exponents correspond to the symbols
in the proposition [1].

Needless to say, this is a very large number:

 74880654697373651627226805069425599081
 28930612274430799531084603348039652271
 735661562500000000

For more information about Gödel’s work
and its ramifications, see Reference 2.

References

1. CRC Concise Encyclopedia of Mathematics, Eric
W. Weisstein, Chapman & Hall/CRC, 1999, pp.
741-742.

2. Gödel, Escher, Bach: an Eternal Golden Braid,
Douglas R. Hofstadter, Basic Books, 1979.

All that having been said, a saner way of
approaching the problem would be to calculate the
terms of multivariate polynomials using the bino-
mial theorem.

The Icon Analyst 66 / 15

Color-and-Weave

The visual pattern of a woven fabric comes
from two primary sources. One is the interlace-
ment pattern, which is what we’ve shown in draw-
downs. In drawdowns, the interlacement pattern
is made clear by using black warp threads and
white weft threads. The interlacement is call struc-
ture.

In a woven fabric, the structure is apparent (if
not always easily seen) even if the warp and weft
are the same color. This is because threads have
thickness and surface properties and their inter-
lacement produces a three-dimensional effect.

The other source of patterns in woven fabrics
comes from using threads of different colors.

The effect of the combination of structure and
thread colors is a complex and fascinating subject
that appears not to have been studied in any sys-
tematic way.

When we first encountered the term color-
and-weave , we thought we’d at last found a source
of information about how to use color in weave
design. In fact, color-and-weave has nothing to do
with hue. It is concerned only with the patterns
produced by threads of two contrasting colors,
generally referred to as dark and light — D and L.
Despite this limitation, color-and-weave is the ba-
sis for the design of most stripes, checks, and
similar simple patterns in woven fabric.

For our purposes, the contrasting colors can
be represented by binary digits — 0 for dark and 1
for light, which work naturally with Icon’s g2
palette.

The simplest color-and-weave effects use al-
ternating dark and light threads for the warp and
the complement for the weft: DLDLDL … warp
and LDLDLD … weft or, equivalently, 010101 …
and 101010 … . There are many other possibilities
that produce interesting patterns. We’ll call the
color sequences for threading and treadling C-
sequences. In the present context, C-sequences are
limited to two contrasting colors, but the concept
has more general application [7].

The tie-up and T-sequences, which define the
structure of the weave, play a major role in the
resulting pattern. Plain weave, with uniform over-
and-under interlacing, is the simplest. Figure 1
shows the pattern, which is just vertical stripes, for
the basic color-and-weave C-sequences.

Figure 1. Color-and-Weave Stripes

Other possibilities fill books [1-6]. In this ar-
ticle, we’ll show some possibilities that you won’t
find in the weaving literature. All the patterns that

References

1. Algebraic Expressions in Handwoven Textiles, Ada
K. Dietz, The Little Loomhouse, Louisville, Ken-
tucky, 1949.

2. “Two Weavers in a Trailer”, Handweaver &
Craftsman, Spring 1953, pp. 20-21, 56, 60.

3. “Algebraic Expressions: Designs for Weaving”,
Lana Schneider, Handwoven, January/February
1998, pp. 48-49.

4. “Profile Drafting”, Icon Analyst 65, pp. 18-20.

5. “Solving Square-Root Palindromes II”, Icon
Analyst 65, pp. 9-14.

16 / The Icon Analyst 66

follow use weft C-sequences that are the comple-
ments of the corresponding warp C-sequences.

Almost all published C-sequences are peri-
odic. Aperiodic sequences offer interesting alter-
natives.

Randomness usually produces unattractive
patterns that just look noisy. However, with the
constraints of complementary C-sequences for the
warp and weft, there is enough correlation to pro-
duce interesting patterns. See Figure 2.

Figure 2. Random Color-and-Weave

Aperiodic fractal sequences that have strong
structural properties, like the Morse-Thue sequence
[8], produce interesting effects because they ap-
pear periodic at a glance, but actually are not. See
Figure 3.

Figure 3. Morse-Thue Color-and-Weave

A sequence that has properties that are in
many ways similar to the Morse-Thue sequence is
the rabbit sequence [9], which is defined by the
following L-system:

axiom:0
0–>1
1–>10

Here‘s a procedure that generates the rabbit
sequence.

procedure rabbitseq()
 local memory, i

 memory := [0]

 repeat {
 i := get(memory)
 if i = 0 then put(memory, 1)
 else put(memory, 1, 0)
 suspend memory[1]
 }

end

Figure 4 shows a rabbit-sequence color-and-
weave pattern.

Figure 4. Rabbit Sequence Color-and-Weave

“Strongly” aperiodic sequences that plainly
have no periodic properties can be interesting also.
An example is the “multi” sequence, 1, 2, 2, 3, 3, 3,
4, 4, 4, 4, … . Here is a procedure that generates the
“multi” sequence:

procedure multiseq()

 suspend (i := seq(), (|i \ i))

end

Figure 5 shows the color-and-weave pattern
for the mod-2 residue sequence of the “multi”
sequence.

Figure 5. “Multi” Sequence Color-and-Weave

Of course, any mod-2 residue sequence is a
candidate for a C-sequence. As we’ve shown ear-

The Icon Analyst 66 / 17

lier [10], many such sequences are periodic. For
example, the repeat for the Fibonacci sequence
mod-2 is 1, 1, 0. However, the mod-2 residues of the
mod-5 residues of the Fibonacci sequence have
period 20, the same as the mod-5 residues. Figure
6 shows the color-and-weave pattern for this se-
quence.

Figure 6. (fibseq() % 5) % 2 Color-and-Weave

Other possibilities for aperiodic sequences
are signature sequences [11] and spectra sequences
(see the article Spectra Sequences, which begins
on page 1 of this issue of the Analyst).

Other Possibilities

The patterns produced by color-and-weave
C-sequences depend strongly the interlacement
structure used. Figures 1 through 6 all are for tabby
tie-ups and ascending straight draw T-sequences.

The difference the structure makes is illus-
trated by Figure 7, which uses “multi” sequence C-
sequences and a 2/2 twill tie-up with point draw T-
sequences.

Figure 7. Twill “Multi” C-Sequence
Color-and-Weave

It’s also not necessary for the weft C-sequence
to be the complement of the warp C-sequence.
Figure 8 shows the twill structure used above with
the two C-sequences the same.

Figure 8. A Variant Twill Color-and-Weave

Notice that the patterns in Figures 7 and 8 are
similar but not the same.

Imagine the other patterns that might be ob-
tained from different interlacement structures.

The literature and lore of weaving is notable
for its lack of unifying principles and generality.
That leaves many opportunities for the analyti-
cally minded person. For example, as far as we can
tell, no one had considered the obvious extension
of color-and-weave to more than two different
shades. Why not three — dark, medium, and light?
Or more?

It does not necessarily follow that such gener-
alizations will lead to interesting results, but they
are worth exploring.

References

1. Color and Weave Effects for Four-Harness Twills,
Margaret Ball, self-published, 1976.

2. Color-and-Weave, Margaret B. Windeknecht and
Thomas G. Windeknecht, Van Nostrand Reinhold,
1981.

3. Color-and Weave Design: A Practical Reference Book,
Ann Sutton, Bellew Publishing, 1984.

4. Point Twill with Color-and-Weave, Margaret B.
Windeknecht, self-published, 1989.

5. The Pinwheel: An Exploration in Color-and-Weave

Downloading Icon Material

Implementations of Icon are available for down-
loading via FTP:

ftp.cs.arizona.edu (cd /icon)

18 / The Icon Analyst 66

Befriending a Sequence

A friendly sequence is one in which successive
terms differ by one. Close proximity amounts to
friendship. Figure 1 shows a friendly sequence,
which we’ll label .

Figure 1. : A Friendly Sequence

Figure 2 shows a fairly unfriendly sequence,
which we’ll label and Figure 2 shows a down-
right hostile sequence, .

Figure 2. : A Fairly Unfriendly Sequence

Figure 3. : A Hostile Sequence

exudes good vibes; it’s a cheerful sequence.
The tension in is evident, while reeks of
discord.

Our goal here is to convert unfriendly se-
quences to friendly ones — to befriend unfriendly
sequences.

These are the rules:

• Only friendly terms may be added.

• Terms may not be deleted.

• Existing friends may not be separated.

Under these rules, befriending a friendly se-
quence does not change it.

The most straightforward, conservative ap-
proach is to add the fewest terms necessary to
achieve a friendly result. This involves inserting a
friend between pairs of equal, self-focussed terms
and adding a run of friendly terms between un-
friendly terms that are some distance apart.

Here are procedures that do this:

procedure befriend_con(s)
 local lseq, i, tail

 s := copy(s)

 lseq := [get(s)] | return []

 while i := get(s) do
 lseq |||:= connect(lseq[–1], i)

 return lseq

end

procedure connect(j, i)
 local k, result

 result := []

 k := i – j

 if abs(k) = 1 then put(result, i)
 else if k = 0 then
 put(result, i + ?[1, –1], i)

Supplementary Material

Supplementary material for this issue of the Analyst, including images and program material,
is available on the Web. The URL is

Design, Margaret B. Windeknecht, self-published,
1992.

6. Color-and-Weave II, Margaret B. Windeknecht,
self-published, 1994.

7. “Weave Drafts”, Icon Analyst 53, pp. 1-4.

8. “The Morse-Thue Sequence”, Icon Analyst 65,
pp. 15-18.

9. Fractals, Chaos, Power Laws: Minutes from an Infi-
nite Paradise, Manfred Schroeder, W. H. Freeman,
1991, p. 55.

10. “Residue Sequences”, Icon Analyst 58, pp. 4-
6.

11. “Fractal Sequences”, Icon Analyst 61, pp. 2-5.

The Icon Analyst 66 / 19

 else if k > 0 then
 every put(result, j + 1 to i)
 else
 every put(result, j – 1 to i by –1)

 return result

end

Note that there is only one place where a
choice is made — whether to insert a friend above
or below a pair of self-focussed terms.

A more enthusiastic approach is to allow some
leeway in inserting friends between unfriendly
terms — letting the friendly path wander a little. Of
course we expect friend-binding paths to be finite
so that befriending terminates. Here are proce-
dures for enthusiastic befriending:

procedure befriend_ent(s)
 local lseq, i, tail

 s := copy(s)

 lseq := [get(s)] | return []

 while i := get(s) do
 lseq |||:= wander(lseq[–1], i)

 return lseq

end

procedure wander(j, i)
 local result, k, incr

 result := [j]

 repeat {
 k := i – result[–1]
 if abs(k) = 1 then {
 put(result, i)

 break
 }
 incr := [1, –1]
 if k < 0 then
 every 1 to –k do
 put(incr, –1)
 else
 every put(incr, 1)
 put(result, result[–1] + ?incr)
 if result[–1] == i then break
 }

 if ∗result > 1 then get(result)

 return result

end

Note that the choice of direction is biased
toward the target friend. This does not guarantee
that the process will terminate, but the probability
that it will is high.

Figure 4 shows the results of befriending
and in a conservative way. Figure 5 shows the
results for the more enthusiastic befriending.

The horizontal tick marks at the left edges of
these plots show the upper and lower bounds for
the original sequences. Befriending in the way
we’ve done it can add values larger or smaller than
those in the original sequences.

Befriending T-Sequences

Of course, we want to consider befriending T-
sequences. Friendly sequences make good con-
nected runs [1], and since friendly sequences have
alternating parity, they can be used for weaves that
require this [2].

Figure 5. Enthusiastically Befriended Sequences

Figure 4. Conservatively Befriended Sequences

20 / The Icon Analyst 66

The key question in befriending T-sequences
is what constitutes a friend. As described in the
article Modular Expansion, which begins on page
4, most T-sequences are best interpreted on a modu-
lar wheel on which the largest value (the modulus)
is adjacent to 1. In this view, the modulus and 1 are
friends.

The easiest way to deal with this is to expand
the sequence as described in the article Modular
Expansion and consider friendship in the usual
way on the result. Figure 6 shows a typical T-
sequence and Figure 7 shows its modular expan-
sion, which is friendly.

Figure 6. A Point Draw T-Sequence

Figure 7. The Modular Expanded Point Draw

If the expanded T-sequence is not friendly, it
can be made friendly and then reduced according
to the original modulus. Figure 8 shows a T-se-
quence that is not friendly when it is expanded, as
shown in Figure 9. Figure 10 shows the result of
conservatively befriending this sequence and Fig-
ure 11 shows the result of modular reduction of the
sequence by its original modulus.

Figure 8. A T-Sequence

Figure 9. The Modular-Expanded T-Sequence

Figure 10. The Befriended Modular-Expanded
T-Sequence

Figure 11. The Reduced Befriended T-Sequence

References

1. “Understanding T-Sequences II”, Icon Ana-
lyst 64, pp. 6-12.

2. ”Name Drafting”, Icon Analyst 57, pp. 11-14.

The Icon Analyst

Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

Editors

The Icon Analyst is published six times a
year. A one-year subscription is $25 in the United
States, Canada, and Mexico and $35 elsewhere.
To subscribe, contact

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon–analyst@cs.arizona.edu

and

 Bright Forest Publishers
 Tucson Arizona

© 2001 by Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

All rights reserved.

