
The Icon Analyst / 1

In-Depth Coverage of the Icon Programming Language

April 1995
Number 29

 In this issue …

New Area Code … 1
Procedure and Operator Values … 1
Applications of String Invocation … 3
Curiosity or Problem? … 6
From the Library … 7
Dynamic Analysis of Icon Programs … 10
Subscription Renewal … 12
What’s Coming Up … 12

New Area Code

Most of Arizona, including Tucson, now has
a new area code, 520. Until July 23, 1995, our old
area code, 602, also will work. After that, you’ll
have to use 520 to reach us.

A word of warning: Some automated switch-
boards only can dial area codes whose second digit
is a 0 or 1. If you try to call us at 520 after March 19
and are unable to reach us, that may be the prob-
lem.

Procedure and Operator Values

String invocation, described in the last issue
of the Analyst, allows you to invoke procedures
and operators using their string names. It’s also
possible to get procedure and operator values from
their string names.

In past articles we’ve mentioned that proce-
dures are Icon values, although it’s seldom neces-
sary to use such values explicitly. For example, the
global variable trim has a procedure (function)
value at the beginning of execution, which can be
seen by executing

write(type(trim))

which writes procedure. It’s this value that’s looked

up if you execute

"trim"(line)

If you’re using trim() explicitly, there’s no reason
to use string invocation, but suppose you use

p := read() |
 stop("procedure name expected")

to provide a string name for a procedure that
happens to be "trim". If you subsequently use p to
invoke trim(), there’s a lookup each time you use it.

That overhead can be avoided by getting the
actual procedure value corresponding the name.
The function proc(s) does this. If s is the name of a
procedure, proc(s) produces the corresponding
procedure value, but if s is not the name of a
procedure, proc() fails. For example,

p := proc("trim")

assigns the procedure value for trim() to p. In the
example above, proc() might be used as

p := proc(read()) |
 stop("procedure name expected")

While the notion that procedures are values is
generally well known to experienced Icon pro-
grammers, many aren’t aware that there also are
values for operators. Unlike procedures, there are
no global variables corresponding to operators. An
expression like

i + j

is a syntactic form; you can’t use

+(i, j)

although you can use

"+"(i, j)

Nevertheless, operators are values and you can use
proc() to get them.

In addition to the string name for the opera-
tor, a second argument to proc() is needed to
specify how many operands the operator has. Thus,

2 / The Icon Analyst

proc("∗", 1)

is the unary size operator, while

proc("∗", 2)

is the binary multiplication operator.
The default for the second argument to proc()

is 1, so

proc("∗")

produces the unary size operator.
But what is the value produced by proc() for

an operator? It’s a procedure value. For example,

type(proc("∗"))

produces "procedure".
This may seem a bit strange, but there’s noth-

ing particularly subtle about it. In the implementa-
tion of Icon, procedures and operators are much
the same. The difference is that procedures are the
initial values of global variables, while operators
are distinguished syntactically.

The values for operators are not just curios-
ities; they allow operators to be invoked using the
same syntax as is used for procedures. For ex-
ample, you can do this:

size := proc("∗")

and then

write(size(x))

There are a few things about proc() for opera-
tors that you need to know. One is that proc(s, n)
fails if s not the name of an nary operator. A bit of
care is needed in specifying the second argument.
For example,

proc("...", 2)

fails, since to-by is a ternary operator given in
distributed syntactic form, and proc() makes no
allowance for the fact that the by clause can be
omitted.

If you want to know if s is the name of any
operator, you can use

proc(s, 1 to 3)

If s is the name of a unary operator, you get that
operator value. If it isn’t, proc() fails and 1 to 3 is
resumed to produce 2. If s is name of a binary
operator, you then get that value, and so on.

In some situations, you might want to reorder
the alternatives, as in

proc(s, 2 | 1 | 3)

Incidentally, if s is the name of a procedure,
proc() produces the corresponding procedure value
and the second argument is ignored; the forms
above can be used for either procedure names or
operator names.

There is one subtle aspect of procedure names
and values. Suppose the value of a variable that
corresponds to a built-in procedure (function) has
been changed. This happens if there is a declared
procedure by the same name, as in

procedure tab(i)
...

end

This also happens if a value other than a procedure
has been assigned to the global variable, as in

tab := 8

In the first case, proc("tab") gives the vari-
able for the declared procedure, which certainly is
reasonable. In the second case, proc("tab") fails,
which also is reasonable, since attempting to use
the tab to invoke the function would not work

Suppose, however, you want to use the built-
in function even if the corresponding global vari-
able no longer has this function as value. Prior to
Version 8.10 of Icon, there was no way to do this; in
fact, if the value of a global variable corresponding
to a built-in function was changed without being
saved in another variable, there was no way to get
to the built-in function.

Starting with Version 8.10, proc(s, 0) pro-
duces the built-in function for s, if there is one. This
feature allows a built-in function to be retrieved if
its global variable has been changed, and it also
allows a procedure to “overload” a built-in func-
tion, while still allowing the built-in function to be
used.

The latter case is illustrated by a procedure to
trim both the beginning and end of a string:

procedure trim(s, c)
 static trim_end

 initial trim_end := proc("trim", 0)

 /c := ' '

 trim_end(s, c) ? {
 tab(many(c))
 return tab(0)
 }

end

The Icon Analyst / 3

which trims trailing blanks from the lines of input.
Suppose this program is named trim.icn. Then in
UNIX, for example,

trim <input >output

writes the trimmed lines of input to output.
A more general approach is to write a pro-

gram, ifilter.icn, that takes the name of the filtering
operation on the command line, as in

ifilter trim <input >output
Since the name of the operation is given as a

string on the command line, string invocation can
be used to get the corresponding procedure, as in

procedure main(args)
 local p

 p := args[1] | stop("∗∗∗ no operation")

 while line := read() do
 every write(p(line))

end

The every loop is used in case the operation is a
generator.

This formulation has two problems. If the
command-line argument is not the name of an
operation, a run-time error occurs when it is ap-
plied and the message may be mystifying to a user.
In addition, the procedure is looked up by its string
name for every line that is read in. Both of these
problems can be solved by converting the name to
a procedure, as described in the preceding article:

procedure main(args)
 local p

 p := proc(args[1]) |
 stop("∗∗∗ invalid operation")

 while line := read() do
 every write(p(line))

end

Although this program doesn’t use string
invocation explicitly, what it does amounts to the
same thing; whether string invocation is used di-
rectly or proc() is used, the same underlying fea-
ture is at work — getting a procedure value from its
string name.

In either of the formulations, operators can be
used for filtering, as in

ifilter '∗' <input >output

which writes the lengths of the lines in input to
output.

Of course, you could use a name other than
trim for this procedure, but if you want to change
the functionality of trim() in a program, this is an
elegant way to do it. This technique also can be
used in library procedures to overload built-in
functions without having to change the programs
that link them.

There is another function that sometimes is
useful in conjunction with proc() — args(p), which
returns the number of arguments expected by the
procedure or operator p.

For built-in functions like write() that accept
an arbitrary number of arguments, args(p) pro-
duces 0. (There is no built-in function that expects
no arguments.) For a declared procedure, args(p)
produces the negative of the number of arguments
given in the procedure’s declaration. There is no
way to tell if a procedure has been declared with an
arbitrary number of arguments.

Finally, a word of caution; args(p) requires a
procedure-valued argument; it does not automati-
cally convert string names.

Applications of String Invocation

String invocation may seem a bit ethereal or
even fraught with dangers. You may not even see
why it’s needed.

String invocation is one of those features that
isn’t needed often, but when it’s needed, it can be
very useful indeed. In some situations, string invo-
cation may not be necessary, but it may simplify
program design and provide generality that can’t
be provided by other means. Using string invoca-
tion may, in fact, suggest useful approaches to
programming. We’ll illustrate these points with a
few examples.

Filtering Files

Many programming tasks involve “filtering”
the lines of a file, applying the same operation to
each line to produce another file. The operation
may transform the line, eliminate it, or produce
several lines from one.

Many “one-shot” filters are written in Icon
simply by writing a short program that applies the
operation, as in

procedure main()

 while write(trim(read()))

end

4 / The Icon Analyst

Procedures in libraries also can be used with
these formulations, but they must be linked with
ifilter.icn when it is translated, as in

icont ifilter wordform.u

which adds the procedures in wordform to ifilter.
It’s also necessary to add

invocable all

to ifilter.icn, as described in the article on string
invocation in the last issue of the Analyst.

To make ifilter really useful, we need to be
able to handle arguments as well as the operation
to apply. For example, to use a function like right(),
it’s necessary to supply the field width and the
padding string. With this addition, for example,

ifilter right 10 0 <input >output

could be used to produce lines of width 10 filled
with zeros at the left.

Here’s a version of ifilter that handles argu-
ments:

invocable all

procedure main(args)
 local p

 p := proc(args[1], 1 to 3) |
 stop("∗∗∗ invalid operation")

 while args[1] := read() do
 every write(p ! args)

end

This program requires some explanation. The sec-
ond argument to proc() is used as described in the
preceding article to cover unary, binary, and ter-
nary operators (in that order — without an addi-
tional feature, the program uses the one it finds
first).

The lines

 while args[1] := read() do
 every write(p ! args)

may be less clear. The value of args for

ifilter right 10 0 <input >output

is

["right", "10", "0"]

while what is needed for a line of input is

p(read(), "10", "0")

where p is the result of proc(args[1], 1 to 3). By

overwriting the first element of args, once it has
been used to get p, args is equivalent to

[read(), "10", "0"]

This allows list invocation to be used in

p ! args

Note that the version of ifilter above takes advan-
tage of the fact that many Icon functions have a
string of interest as their first argument, while
trailing arguments provide parameters. This also
allows trailing arguments to be omitted when de-
faults apply, as in

ifilter right 10

which produces lines filled with blanks on the left
and

ifilter map

which converts uppercase characters to lowercase
ones.

Interactive Expression Evaluation

If you are learning or testing Icon, it’s handy
to be able to keyboard an Icon expression and
immediately get the results of evaluating it with-
out having to write and run a separate program. A
program that reads in an Icon expression and
evaluates it is what’s needed.

Such a program needs to parse the expres-
sion, read in as a string, and use string evaluation
to evaluate it. Here’s such a program:

invocable all

link ivalue

procedure main()
 local line

 while line := read() do
 every write(eval(line))

end

procedure eval(expr)
 local p, args, tok

 &error := –1

 expr ? {
 p := trim(tab(upto('(')), '\t ') | {
 write(&errout, "∗∗ syntax error")
 fail
 }
 p := proc(p, 2 | 1 | 3) | {
 write(&errout, "∗∗ invalid operation")

The Icon Analyst / 5

 fail
 }
 move(1)

 args := []

 repeat {
 tab(many(' \t'))
 tok := trim(tab(upto(',)'))) | break
 put(args, ivalue(tok)) | fail
 move(1)
 }

 suspend p ! args
 }

end

This program assumes functional form for
input and it can handle “expressions” like +(2, 3),
but it can’t handle infix expressions like (2 + 3) or
expressions involving control structures.

Error conversion is used so that syntax errors
in the input do not cause run-time errors. The name
for the operators is found and converted to a pro-
cedure. The procedure ivalue() from the Icon pro-
gram library is used to convert arguments, which
are placed on a list for subsequent invocation. It
can handle literals and constants. ivalue() is a story
in itself; see the Icon program library if you’re
interested.

As you’ll note, this program does not handle
nested expressions, we’ll leave that as an “exer-
cise”. It’s not easy to handle nested generators. For
this, “think recursive generators” [1].

A Suffix Calculator

Perhaps the most common use of string invo-
cation is to carry out “commands” entered by a
user of an application. We described a suffix calcu-
lator for Icon in an earlier Analyst article [2]. Since
we explained this program in some detail in that
article, we’ll just list the program here. Look at it in
terms of the material described in this article.

invocable all

link ivalue
link usage

global stack

procedure main()
 local line

 stack := []

 while line := read() do
 (operation | value | command)(line) |
 Error("erroneous input ", image(line))

end

procedure command(line)

 case line of {
 "clear": stack := []
 "dump": every write(image(!stack))
 "quit": exit()
 default: fail
 }

 return

end

procedure operation(line)
 local p, n, arglist

 if p := proc(line, 2 | 1 | 3) then {
 n := abs(args(p))
 arglist := stack[–n : *stack + 1] | {
 Error("too few arguments")
 fail
 }
 stack := stack[1 : –n]
 &error := 1 # anticipate possible error
 put(stack, p ! arglist) | {
 if &error = 0 then
 Error("error ", &errornumber,
 " evaluating ", image(line))
 else
 Error("failure evaluating ",
 image(line))
 stack |||:= arglist
 }
 &error := 0
 return
 }

 else fail

end

procedure value(line)

 put(stack,ivalue(line)) | fail

 return

end

Conclusions

You may not use string invocation often in
our Icon programs, but at least keep it in mind. It

6 / The Icon Analyst

not only makes writing some programs much easier
than they would be using other techniques, but it
may suggest ways of designing programs that
provide generality and flexibility that aren’t fea-
sible to provide in other ways.

References

1. “Recursive Generators”, Icon Analyst 13, pp.
10-12.

2. “Anatomy of a Program – A Suffix Calculator”,
Icon Analyst 12, pp. 2-4.

Curiosity or Problem?

Bob Alexander noticed something apparently
unusual about Icon’s random number generator.
Consider this program, in which the seed of the
random number generator is set to successive even
integers:

procedure main()

 i := 20

 every &random := 0 to 30 by 2 do
 write(
 right(?i, 3), right(?i, 5), right(?i, 5),
 right(?i, 5), right(?i, 5), right(?i, 5),
 right(?i, 5), right(?i, 5), right(?i, 5),
)

end

The output is:

5 9 7 11 9 7 2 15 2
5 10 7 5 3 13 11 20 7
6 10 7 19 16 19 19 5 11
6 11 7 14 10 5 8 10 16
7 12 7 8 3 11 16 15 1
7 13 8 3 17 18 5 20 6
8 14 8 17 11 4 13 5 11
9 15 8 11 4 10 2 10 16
9 15 8 6 18 16 10 15 1

10 16 8 20 12 2 19 20 6
10 17 8 15 5 9 7 5 11
11 18 9 9 19 15 16 10 16
11 19 9 3 13 1 4 15 1
12 19 9 18 6 7 13 20 6
12 20 9 12 20 14 1 5 11
13 1 9 6 13 20 10 10 16

The regularities in the columns are less appar-
ent for larger values of i, but they’re definitely
there.

Some persons are amazed at the results and
think something is terribly wrong with Icon’s ran-
dom number generator. Other persons think the
output is interesting but not surprising or worri-
some, and common to all linear congruential ran-
dom number generators.

Perhaps, if you’re mathematically inclined,
you can shed some light on this that we can pass
along to readers of the Analyst.

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

…uunet!arizona!icon-project

 ®

and

Bright Forest Publishers
 Tucson Arizona

© 1995 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

The Icon Analyst / 7

From the Library

When we choose material from the Icon pro-
gram library for these articles, we usually look for
things that are the most useful. The Icon program-
ming library also has many entertainments. These
programs take several forms — the library has
games and puzzles, and also a few visual amuse-
ments. We’ve picked one of these for this article.

The program we’ve chosen produces sym-
metrical drawings. Symmetry is fascinating and
has been the subject of much study and writing.
See References 1-18 for some of the more accessible
literature.

There’s something about symmetrical designs
that human beings find attractive. The reasons for
this are not at all clear and lead to deep water (such
as, does attraction to symmetric features have a
survival value that might have had an evolution-
ary effect?).

To appreciate the power symmetry has on
our perception, consider this relatively meaning-
less scribble:

This scribble looks, perhaps, like a sketch of a
piece of coastline, but there’s nothing particularly
attractive about it. But now consider the design
below, which was constructed by mirroring the
scribble above in a symmetric fashion:

This isn’t art, but it’s certainly more interesting
than the scribble from which it was created.

The symmetry used in this figure, one of the
17 plane symmetries, is called the sunflower sym-
metry in quilting [19] and carries the technical
name p4m (or sometimes p4mm) in crystallogra-
phy. The sunflower symmetry is produced by
reflecting a drawing using two sets of mirrors, as
indicated below:

The library program symdraw, whose visual
interface is shown on at the top of the next page,
lets a user create drawings with the sunflower
symmetry.

8 / The Icon Analyst

drawing is not restricted to the generating region,
drawing anywhere in the drawing area is reflected
in all octants. Unrestricted drawing is easier and
more fun, but it tends to produce less attractive
results than restricted drawing.

The images produced by symdraw are black
-and-white line drawings, but they easily can be
colored in any painting application that provides a
“paint bucket” or similar tool for filling areas. The
best results for color usually are obtained if sym-
metrically placed areas are filled with the same
color.

We can’t show you a color design here, but the
grayscale image below may give you an idea of the
possibilities.

Images produced by symdraw tile seamlessly
to produce larger repeat pattern such as the one
shown in reduced form at the bottom of this page.

symdraw was included in a recent update of
the Icon program library that was sent to update
subscribers. It will be included in the next general
release of the library, which is scheduled for this
summer.

The symdraw Interface

The drawing area at the right shows the axes of
reflection as lines and one shaded octant. The
shaded region is called the generating region, since
anything drawn in it is reflected in the other octants.

When a user presses and drags with the left
mouse button with the mouse cursor in the gener-
ating region, a line is drawn following the mouse
cursor, and this line is reflected in the other octants.
Drawing stops if the mouse cursor moves outside
the generating region.

Lines can be erased by using the right mouse
button in a similar fashion. The middle mouse
button is used to draw straight lines. A line begins
where the middle mouse button is pressed and
ends where it is released.

The File menu provides for saving a snapshot
of the drawing (without the mirror lines and shad-
ing) and for quitting the application. The buttons at
the left provide for clearing the drawing area,
turning the lines and shading on and off, and
restricting the drawing to the generating region. If

The Icon Analyst / 9

At present, symdraw only supports the sun-
flower symmetry. This symmetry is relatively easy
to implement, since drawing symmetric points
involves only sign changes and exchanges of the
x,y coordinates. There are other symmetries that
would be even easier to implement, such as the
“prickly pear” symmetry shown below. Other sym-
metries, such as the “turnstile” symmetry, require
more complicated computations.

 prickly pear (pmm)

turnstile (p6m)

References

1. D’Arcy Wentworth Thompson, On Growth and
Form, Cambridge University Press, 1942.

2. Hermann Weyl, Symmetry, Princeton University
Press, 1952.

3. L. Fejes Tóth, Regular Figures, Pergamon Press,
1964.

4. Gyorgy Kepes, ed., Module, Proportion, Symme-
try, Rhythm, George Braziller, 1966.

5. F. J. Budden, The Fascination of Groups, Cam-
bridge University Press, 1972.

6. A. V. Shubnikov and V. A. Koptsik, Symmetry in
Science and Art, Plenum Press, 1974.

7. Peter S. Stevens, Patterns in Nature, Little, Brown,
and Company, 1974.

8. Joe Rosen, Symmetry Discovered, Cambridge
University Press, 1975.

9. E. H. Lockwood and R. H. Macmillan, Geometric
Symmetry, Cambridge University Press, 1978.

10. Krome Barratt, Logic and Design in Art, Science,
and Mathematics, Design Books, 1980.

11. Branko Grünbaum and G. C. Shephard, Tilings
and Patterns, W. H. Freeman and Company, 1987.

12. Dorothy K. Washburn and Donald W. Crowe,
Symmetries of Culture; Theory and Practice of Plane
Pattern Analysis, University of Washington Press,
1988.

13. Doris Schattschneider, M. C. Escher; Visions of
Symmetry, W. H. Freemen and Company, 1990.

14. Jay Kappraff, Connections; The Geometric Bridge
Between Art and Science, McGraw-Hill, Inc., 1991.

15. Peters S. Stevens, Handbook of Regular Patterns,
The MIT Press, 1991.

16. Ian Stewart and Martin Golubitsky, Fearful Sym-
metry; Is God a Geometer?, Penguin Books, 1992.

17. Michael Field and Martin Golubitsky, Symme-
try in Chaos, Oxford University Press, 1992.

18. Michelle Emmer, ed., The Visual Mind; Art and
Mathematics, The MIT Press, 1993.

19. Xaos Tools, Terrazzo; User’s Guide, Macintosh
Version 1.0, 1994.

10 / The Icon Analyst

Dynamic Analysis of Icon Programs
(Continued)

In the last issue of the Analyst, we started a
series of articles on the dynamic analysis of Icon
programs — what goes on during program execu-
tion. In this and subsequent articles, we’ll explore
various aspects of program execution in Icon. Be-
fore going on, we need to explain how we’ve
chosen programs for analysis.

Analysis Test Bed

Since static analysis only depends on the text
of programs, it can be applied to any program and
it’s not particularly difficult to select programs to
analyze. In earlier static analyses, we used the
entire Icon program library.

Choosing programs for dynamic analysis is
more difficult. Dynamic analysis, unlike static
analysis, is very time consuming. It’s impractical to
apply the same dynamic analysis to a large number
of programs. We decided to pick about a dozen
programs. Selecting even this few was a problem.

In order to perform dynamic analysis on a
program, the program needs to perform enough
computation to produce meaningful results. In
order for analysis to be practical, a program also
must run in batch mode. Appropriate test data also
is needed. In order to make comparisons between
programs, they also need to run for approximately
the same amount of time.

We chose our programs for dynamic analysis
from the Icon program library so that persons
interested in dynamic analysis would have easy
access to the programs. There are 285 programs in
the Version 9 program library. You’d think it would
be easy to find a dozen that are suitable, but it
wasn’t. Most of the graphics programs and many
others are unsuitable because they can’t be run in
batch mode. We also lack test data for most of the
remaining programs. In some cases we were able
to create test data, but for others it wasn’t possible
to do this without investing more time and effort
than we could afford. Among the remaining candi-
dates, many were unsuitable because they weren’t
designed to perform the extensive computation
needed to make the results of dynamic analysis
useful.

We finally managed to find 11 programs that
met our needs. These programs are by no means
representative of Icon programming — if such a

concept even is meaningful. Here are the ones
we’ve chosen:

program functionality

csgen.icn sentences from context-free
grammars

deal.icn randomly dealt bridge hands
fileprnt.icn character display of files
genqueen.icn solutions to the n-queens prob-

lem
iiencode.icn text encoding for files
ipxref.icn cross references for Icon pro-

grams
kwic.icn keyword-in-context listings
press.icn file compression
queens.icn solutions to the n-queens prob-

lem
rsg.icn sentences from context-free

grammars
turing.icn Turing machine simulation

The choice of two programs for the n-queens
problem was deliberate; the methods used in the
two programs are different, and we thought it
would be interesting to compare them.

In retrospect, after performing extensive dy-
namic analyses on these programs, we’re not par-
ticularly satisfied with our choices. Some of the
programs use specific features of Icon that aren’t
used in many programs, and it’s easy to draw
unwarranted conclusions if these programs are
taken to be representative. For now, we’ll present
the result we have with a caution about drawing
such conclusions.

The Evaluation of Functions and
Operators

In the last issue of the Analyst, we showed a
summary report of function events for one pro-
gram (iiencode.icn), which we repeat here for
reference:

Downloading Icon Material

Most implementations of Icon are available for
downloading via FTP:

cs.arizona.edu (cd /icon)

The Icon Analyst / 11

event count

function call 197393
function failure 441
function return 190679
function suspension 6272
function resumption 0
function suspension removal 6272

This summary only provides information for
functions, and for them, only the aggregate activ-
ity.

With the instrumentation provided by MT
Icon and support procedures that have been devel-
oped for dynamic analysis, it’s relatively easy to
get information not only for individual functions
but for operations as well. The listing at the bottom
of this page shows the results for iiencode.icn,
ordered by decreasing number of calls.

From this listing alone, we can determine
many things about the program. The extensive use
of iand(), ior(), ishift(), ord(), and char() suggests the
kind of computation the program is doing, which
is atypical; few Icon programs use these functions.
The large number of uses of e1[e2] is interesting,

and we’ll have more to say about this later. The use
of move(), pos(), and find() shows the program uses
string scanning. In the column for suspensions,
there are only two nonzero entries. move() always
suspends so that it can restore the cursor position
if it is resumed. Note, however, that move() never
is resumed, indicating there is no backtracking in
string scanning in this program. The only genera-
tor used in this program is e1 to e2 by e3, which
almost certainly occurs in every-do, not goal-di-
rected evaluation. In fact, Icon’s expression-evalu-
ation mechanism probably plays no significant
role in this program. (To be sure of that, we’d have
to have information on procedure activity. This is
easy to get but is confusing when given in combi-
nation with the activity of built-in expressions.)

A plausible conclusion is that this program
could have been written in a lower-level language
like C without much of a change in structure.

Now look at the corresponding listing for
csgen.icn on the next page. This program shows
extensive use of generators. Most of the resump-
tions, however, are for !e, which probably is used
in every-do, not in goal-directed evaluation. The

name calls returns suspends failures resumps removals

iand() 56867 56867 0 0 0 0
e1[e2] 37634 37634 0 0 0 0
ord() 37632 37632 0 0 0 0
ishift() 31360 31360 0 0 0 0
writes() 25929 25929 0 0 0 0
e1 := e2 25514 25514 0 0 0 0
e1 + e2 25509 25509 0 0 0 0
char() 25507 25507 0 0 0 0
e1 ~== e2 25507 24971 0 536 0 0
–e 18816 18816 0 0 0 0
+e 12544 12544 0 0 0 0
ior() 12544 12544 0 0 0 0
move() 6691 0 6272 419 0 6272
∗e 421 421 0 0 0 0
reads() 420 419 0 1 0 0
pos() 419 419 0 0 0 0
find() 21 0 0 21 0 0
/e 5 4 0 1 0 0
\e 3 0 0 3 0 0
e1 === e2 2 0 0 2 0 0
close() 2 2 0 0 0 0
e1 <= e2 2 1 0 1 0 0
e1 to e2 by e3 1 0 21 1 21 0
exit() 1 0 0 0 0 0
e1 :=: e2 1 1 0 0 0 0

total 343352 336094 6293 985 21 6272

Expression Activity for iiencode.icn

12 / The Icon Analyst

Subscription Renewal

For many of you, the next issue is the last in
your present subscription to the Analyst and
you’ll find a subscription renewal form in the
center of this issue. Renew now so that you won’t
miss an issue.

Your prompt renewal also helps us in plan-
ning and by reducing the number of follow-up
notices we have to send.

What’s Coming Up

We have several articles in the works — sev-
eral on dynamic analysis, material in the Icon
program library, one on integers and the design
problems related to large-integer arithmetic, and
the first of a series on building applications with
visual interfaces. We also are planning a series of
articles that go into some depth on the way things
are implemented in Icon, especially how lists, sets,
and tables are implemented.

We not yet sure what will appear in the next
issue of the Analyst, but more on dynamic analy-
sis is a good bet.

name calls returns suspends failures resumps removals

e1[e2] 81343 81343 0 0 0 0
find() 70771 0 5303 65468 0 5303
?e 47869 47869 0 0 0 0
tab() 10608 0 10608 1 1 10607
e1 || e2 10568 10568 0 0 0 0
move() 5307 0 5306 1 0 5306
∗e 5284 5284 0 0 0 0
e1 := e2 2864 2864 0 0 0 0
upto() 2812 0 2643 170 1 2642
\e 2643 0 0 2643 0 0
!e 2642 0 22882 0 20240 2642
write() 150 150 0 0 0 0
e1 == e2 24 2 0 22 0 0
read() 22 22 0 0 0 0
[...] 21 21 0 0 0 0
e1 to e2 by e3 20 0 169 20 169 0
put() 19 19 0 0 0 0
/e 3 1 0 2 0 0
integer() 2 1 0 1 0 0
table() 2 2 0 0 0 0
get() 1 0 0 1 0 0
any() 1 0 0 1 0 0
e1 < e2 1 1 0 0 0 0
pull() 1 0 0 1 0 0

total 242978 148147 46911 68331 20411 26500

Expression Activity for csgen.icn

use of string scanning clearly is much more exten-
sive in this program than in iiencode.icn. In other
words, csgen.icn is more “Icon-ish” than
iiencode.icn.

Next Time

We’ve run out of space. In the next article in
this series, we’ll show a composite for expression
activity in all 11 test programs and then go on to
other aspects of program execution.

