
Icon Observed Coding Laws and Standard Techniques
(Icon OCLAST)

Cary A. Coutant

May 1979
Revised August 1980

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

(Not issued formally as a technical report;
offered to readers of Icon Newsletter #5)�

Icon Observed Coding Laws and Standard Techniques

(IconOCLAST)

This document describes a coding style for the Icon programming language. This style is not presented as
the best or only way to write programs. Rather, it is a blend of commonly-used conventions (largely influ
enced by many Ratfor programs) that have proven to be practical, and thus is a suitable style for use in a group
project.

1. Overall Program Structure

An Icon source file consists of a sequence of record, global, and procedure declarations. Record and glo
bal declarations should be grouped together at the beginning of the program, and should be separated from
one another by one blank line. Procedure declarations should follow, each separated by two blank lines.

Record declarations should assume the following form:

record name(field1, field2)

Global variables should each be declared on a separate line, with a comment beside each explaining the use
of the variable.

Procedure declarations should consist of two parts, a preamble of comments followed by the source code.
The first line of the preamble should begin with two sharp signs (##) , for both visual and automated aid in
finding procedures, followed by the name of the procedure and its arguments, and a description of the
procedure's function and method. Continuation lines should begin with a single sharp sign, and two blanks to
align the left edge of the comment text.

Normally, the preamble for each procedure should contain all the comments necessary to understand that
procedure. In cases where a tricky construction is used, or a comment in the code is deemed necessary, the
comment should appear on the right side of the code. Comments should not appear intermixed with the code,
unless a procedure consists of several logically independent steps, in which case a comment (preceded by a
blank line) may identify the beginning of each step.

All local (and static) variables used in a procedure should be declared on one or more lines immediately
following the procedure header. The declarations should be indented three spaces, and the word local or
static should be followed by a comma-separated list of variable names. (There should be spaces after the
commas in this list.) If the list is too long for one line, the continuation should be aligned underneath the first
variable name in the list.

One blank line should be used after declarations within a procedure, and after an initial clause.

An example of a procedure appears below.

gcd(n, m) — Compute greatest common divisor
of n and m, using Euclid's algorithm.

procedure gcd(n, m)
local rem

if (rem := n % m) = 0 then return m
return gcd(m, rem)

end

The rest of this report describes the style for the procedure source code.

2. Indenting Conventions

In Icon, any arbitrary program structure may be nested within any control structure. Without a consistent
convention for indenting, a program quickly becomes unintelligible. Any nested structure should be indented
underneath the structure within which it occurs, and a structure should generally be thought of as continuing
until a statement below it appears at the same indentation level. Three or four spaces for indentation have pro
ven to be good: fewer spaces render the structure difficult to follow; more spaces (or tabs) produce overly long
lines.

When a compound expression is nested in a control structure, the braces surrounding the expression
should be placed so that they do not complicate the code. The opening brace should appear at the end of the
line containing the governing control structure; each statement within the compound expression should begin
on a separate line, indented the same amount. The closing brace should appear on a line of its own indented
the same amount as the body of the expression, since it is part of that expression.

3. Formatting Control Structures

Each control structure should obey the rules of indenting as described above. Nonetheless, there are
several ways to arrange complex statements. This section gives one or more forms for each Icon control struc
ture.

3.1 if expr l then expr2 [else expr3]

If there is no else clause and expr2 is short, the if structure may be written on one line:

if expr l then expr2

If the else clause is present, the structure can be treated as two separate statements:

if expr l then expr2
else expr3

If either exprl or expr2 is long or compound, the structure should be written on several lines:

if exprl then
expr2

else {
expr3

I
Nested else-if constructions should never accumulate indentation; each if should be written immediately fol
lowing the else. For example:

if expr l then
expr2

else if expr3 then {
expr4

else if expr5 then
expr6

Use of the if structure within an expression is possible; but an alternative style is usually clearer. In particular,

- 2

if expr l then
a := expr2

else
a := expr3

is preferable to

a :- if exprl then expr2 else expr3

In cases where the if structure is reasonably used in an expression, the entire expression should fit on one line.
(If it will not fit nicely on one line, it is unreasonable.)

3.2 while exprl do expr2

(until exprl doexpr2)

If expr2 is compound or long, the while or until structure should be written on several lines:

while exprl do {
expr2

}

or

while expr l do
expr2

Otherwise, the structure may be written on one line as above.

3.3 repeat expr

If expr is compound, this structure should be written on several lines:

repeat {
expr

}

Otherwise, the structure may be written on one line.

3.4 case expr of {... }

This structure should always be written on several lines. The case labels should appear stacked, indented
the standard three spaces under the first line of the structure. If each case clause is a simple expression (and fits
on one line), each clause should follow its label. The case clauses should line up vertically, with two spaces
between the longest label and its clause. For example:

case expr of {
labe l l : clausel
Iabel2 | Iabel3: clause2
Iabel4: clause3
default: clause4

}

If any of the case clauses is compound, or if a long list of labels would push the case clauses too far right, each
case clause should be indented below its label:

case expr of {
labell | Iabel2 | Iabel3 | Iabel4:

clausel
Iabel5: {

clause2

For case structures with few labels, an else-if construction may prove clearer.

3.5 scan s using expr

This structure should be formatted like while (Section 3.2).

3.6 initial expr

This structure should be formatted like repeat (Section 3.3).

4. Continuation Conventions

When an expression is too long to fit on one line, it should be broken at an operator of low precedence so
that the resulting halves of the expression are as similar as possible. For example, if condition3 of the follow
ing if structure does not fit,

if conditionl & condition2 | condition3 then
exprl

it should be written as

if conditionl & condition2 |
condition3 then
exprl

A long expression is often a sequence of terms separated by one of the operators |, &, ||, or+. When this is
the case, the most logical place to break the expression is after each occurrence of the operator:

if conditionl |
condition2 |
condition3 then
exprl

When one of the terms is too long to fit on a single line, the term itself should be broken up similarly. For
example:

if {(conditionl | condition2) &
(condition4 | condition3 | condition5)) |
condition6 then
exprl

Note the use of parentheses and the extra indentation to help group the terms visually.

Procedure calls with several arguments are often candidates for splitting across lines. In this case, the final
arguments should be aligned underneath the first argument. For example:

result := map(string1 || string2,
&ucase || &lcase || " ()<>[] { } " ,
&lcase || &ucase || ") (><][}{") ||

map(string3, &ucase, &lcase)

Note that the first map procedure call is, in this case, the first term of a concatenation. The second term is

aligned underneath the first, as above.

5. Use of Blanks
Blanks normally should surround all binary operators that are not within subscripts, list constructors, or

argument lists. Commas within these constructions should not be followed by blanks. For example:

i := i * r + d
day := calendar(month,date,"19"||year) || "day"
s[n+1][r] := s[n][r-1] - n * s[n][r]
res := expr("*", [2,x])

Blanks should, however, surround operators within vertically stacked list constructions or argument lists (see
Section 4).

- 5 -

Appendix — Sample Program

record graph(nodes, arcs)

topological sort program — reads a list of graphs from
standard input, and topologically sorts each one. The
graphs are input on one line each, as follows: All the
nodes in the graph are listed first (each node is
identified by a single character), followed by a colon,
followed by a list of arcs (each arc is a pair of
characters identifying the beginning and end of the arc).
The graph is represented internally in a record, whose
first field contains a cset of all the nodes, and whose
second field contains a string of all the arcs.

procedure main()
local line, i, c

while line := trim(read()) do {
i := upto(":", line)
g := graph(cset(line[1 :i]), line[i+1:0])
write()
write(line)
write(disg(g))
write("sorted")
write(" ", tsort(g) | "the graph has a cycle")
}

end

disg(g) — return a display of the graph g.
The arcs (the second element of the list) are returned using
mapg to format them, followed by the nodes (the first element)
which are not contained in any arcs.

procedure disg(g)
local result, c

result := mapg(g.arcs)
every c := I (g.nodes — g.arcs) do

result := result || " " || c || " \ n "
return result

end

mapg(arcs) — map the arcs given as the argument into a str ing
w i t h each arc on a newline, and inserting "->" as a fr i l l .

procedure mapg(arcs)
static image, object

Bootstrap the image and object strings used for displaying
the arcs of a graph.
initial {

object := " 1 - > 2 \ n "
image := " 1 2 "
object := mapg(&lcase || &ucase)
image := &lcase || &ucase

if size(arcs) <= size(image) then
return map(objectt1 +: 7*size(arcs)/2],

imagefj +: size(arcs)], arcs)
return map(object, image, arcs[1 +: size(image)])

mapg(arcs[size(image)+1 : 0])
end

tsort(g) — perform a topological sort on the graph g.
Al l nodes wh ich have no predecessors are appended to the
result str ing, then all arcs from each of those nodes
are deleted. This process is repeated unti l there are
no nodes left w i th no predecessors. Hopefully, there
wi l l be no arcs left then either, or the graph has a
cycle in it, in wh ich case, tsort fails.

procedure tsort(g)
local result, nodes, arcs, roots

nodes := g.nodes
arcs := g.arcs
until null(roots := nodes — snodes(arcs)) do {

result := result || roots
arcs := delarcs(arcs, roots)
nodes := nodes — roots

}
if null(arcs) then

return result
else fail

end

- 7 -

snodes(arcs) — return all the even characters of arcs, wh ich
really returns all the nodes which have predecessors. The
cset is taken here since a cset of nodes is more meaningful
than a str ing.

procedure snodes(arcs)
stat ic dascii

Form a string of doubled characters from &ascii used for
extracting the even characters from a string.
init ial {

every c := !&ascii do
dascii := dascii II c II c

if size(arcs) <= size(dascii) then
return cset(map(&ascii[1 +: size(arcs)/2],

dascii[1 +: size(arcs)], arcs))
return cset(map(&ascii, dascii, arcsfj +: size(dascii)]) ||

snodes(arcs[size(dascii)+1:0]))
end

delarcs(arcs, roots) — delete all arcs from the string arcs
which arc f rom a node contained in the cset roots.

procedure delarcs(arcs, roots)
local result, i

every i := 1 to size(arcs)-1 by 2 do
if any(roots, arcs, i) fai ls then

result := result || arcsfj +: 2]
return result

end

- 8 -

