
k THE U N I V E R S I T Y OF A R I Z O N A
P T U C S O N , A R I Z O N A 85721

WJ
DEPARTMENT OF COMPUTER SCIENCE

ICON NEWSLETTER #3

Ralph E. Griswold and David R. Hanson

February 22, 1980

Perspective on Icon

The origins of Icon lie in research on programming language facilities for processing strings and
structures. This work began at Bell Laboratories with the SNOBOL languages and has continued at the
University of Arizona with support from the National Science Foundation. When the capacity of
SNOBOL4 as a research tool was exhausted, SNOBOL4 was succeeded by SL5 and then by Icon. While the
underlying motivation has always been research, the SNOBOL languages, SL5, and Icon were produced as
completely implemented programming languages to provide contexts for testing new ideas, to serve as
research tools, and to make new facilities available to the programming community. Each release in the
sequence represents a reasonably complete and distinct programming language. To a certain extent, the
development of these programming languages has been evolutionary, with inheritance of philosophy, style,
and features from earlier versions. There have been "environmental" pressures also: changing concepts of
acceptable style, increasing emphasis on structured programming, and so on. As those who have followed
the development of these languages know, resistence to fads has been a major philosophical guideline.

Version 2 of Icon

We have recently completed the design and implementation of Version 2 of Icon. The change in version
number indicates significant changes in language features (not just implementation changes indicated by
decimal suffixes such as 1.3).

Version 2 for the DEC-10, CDC 6000/Cyber, and in portable form is available from us. Order forms are
included at the end of this Newsletter. As before, there is no charge for these systems, but magnetic tapes
must accompany requests.

Some of the new features of Version 2 have been motivated by our own work on language design, while
other features have been added in response to the suggestions and requests of others. While the changes are
not really major, some existing programs may have to be changed for Version 2.

- I -

A complete description of Version 2 features is included with distribution of the system. Briefly
summarized, the new features are:

Some changes have been made to the rules for the scoping of identifiers.

The syntax for structure creation has been changed to a functional notation.

Record field names no longer need be unique.

Assignment may be made to substrings produced during string scanning. The subject is modified as
a result, allowing scanning to perform incremental string transformations.

A revised language manual is distributed with the new system. This document can also be requested
separately. Ask for TR 79-la or "the Version 2 Icon Manual".

Feedback

As indicated above, we have received several useful comments on Icon. The most extensive criticism to
date is contained in a draft report on PSI ("Possible Simplifications for Icon") by Messrs. P. Isbendjian of
the Universite Libre de Bruxelles and R. Haentjens of the Koninklijke Militaire School. Their proposals are
extensive and thought-provoking. They are presently preparing a report for publication. When it becomes
available, we will announce it in a subsequent Newsletter.

Critical comments, especially from persons who have actually used Icon, are very important to our work.
We would like to get your comments — and we will respond to all correspondence.

Portable Icon

To date 34 portable Icon systems have been distributed to installers on a wide range of computers. In
addition to the DEC-10, CDC Cyber/6000, IBM 370, and FACOM 230 implementations mentioned in the
last Newsletter, there is now a running system for the IBM 3031 (done independently of the IBM 370
system), and implementations are running, or nearly so, for the Data General Eclipse and UNIVAC 1108.

As noted above, we distribute the DEC-10 and CDC Cyber/6000 systems. The IBM 370 system (Version
1.2) for OS 21.8 is available for a $5 handling fee from

Mr. William H. Mitchell
University Systems Analysis and Control Center (USACC)
Box 50298
338 Daniels Hall
North Carolina State University
Raleigh, North Carolina 27650

Send a 2400' tape in a reusable package along with the handling fee. Tapes will be written at 800 bpi with
IBM standard labels.

The C Implementation of Icon

Cary Coutant and Steve Wampler of the University of Arizona have a C implementation of Icon running
on a PDP-11/70 under UNIX. This implementation is quite efficient — preliminary timing tests indicate it
runs 3 to 5 times faster than the portable implementation.

We expect to release this system later this spring. Its availability will be announced in a subsequent
Newsletter.

Programming Corner

Experience with Icon has shown that the full use of its facilities requires different ways of thinking about
programming than are used in other languages. In the last Newsletter we mentioned some of the problems
encountered in attempting to use SNOBOL4-style programming techniques in Icon. With this Newsletter
we are starting a "Programming Corner" to illustrate, by examples, some programming techniques that we
have found useful in Icon. The first installment follows.

The built-in scanning functions tab(i) and move(i) can be easily coded as Icon procedures. This exercise is
helpful both in understanding tab(i) and move(i) better and in illustrating some Icon idioms. Since tab(i)
and move(i) differ only in that the former changes &pos absolutely while the latter changes &pos relatively,
only tab(i) will be considered here.

A naive procedure for tab(i) is

procedure tab(i)
return section(&subject,&pos,&pos := i)

end

Before discussing the defects in this solution, aspects of the returned expression should be noted. In
the first place, the value of &pos := i is the value of i. Thus the section of &subject returned is
between the old and new values of &pos. Furthermore, if &pos := i fails (because i is out of range of
&subject), &pos is not changed and the failure of &pos := i is inherited by section and in turn by
return. Hence tab(i) fails as it should.

One defect in this procedure is that it does not restore &pos to its former value in case tab(i)
succeeds, but the enclosing expression in which it occurs fails. Consider, for example

tab(i) & find(s)

Suppose tab(i) succeeds (thus changing &pos) but find(s) fails. In this case, the built-in version of
tab(i) restores &pos to its previous value. This is one of the few cases in Icon where there is data
backtracking (the others are move(i), =s, x <- y, and x <-> y).

From the point of view of expression evaluation, the failure of find(s) in

tab(i) & find(s)

results in a request for an alternative value fortab(i). While tab(i) itself is not a generator (it can only
set &pos to the value of i), the request for an alternative value allows tab(i) to gain control in order
to restore &pos to its former value. This can be accomplished in the procedure above by a few minor
modifications:

procedure tab(i)
local j
j := &pos
suspend section(&subject,&pos,&pos := i)
&pos := j
fail

end

The local identifier j provides storage for the original value of &pos. suspend is used in place of
return so that the procedure can regain control if an alternative value is requested. When control is
regained, &pos is restored to its former value and tab(i) returns with a failure signal.

As a detail, it is worth noting that if section fails because &pos := i fails, the suspend does not
return to the calling procedure and control falls through to the (unnecessary but correct) expression
that follows. That is, while return inherits its signal from the success or failure of its argument,
suspend (in the style of every) returns the alternatives of its argument — if its argument fails at
once, there are no alternatives to return.

The argument of suspend in the procedure above can be made somewhat more compact at the
expense of clarity as follows:

suspend section(&subject,j := &pos,&pos := i)

in which case the immediately preceding expression can be omitted. In addition, the restoration of
&pos to its former value can be accomplished by using reversible assignment, thus eliminating the
need for j and the explicit save and restore of &pos. Thus the procedure becomes:

procedure tab(i)
suspend section(&subject,&pos,&pos <- i)
fail

end

The fail expression is still needed, since suspend, as noted above, cannot fail.

In order to have confidence that the value of &pos is restored in the procedure above, it is
necessary to appreciate that when the procedure is reactivated for an alternative value, suspend
requests an alternative value from its argument, which in turn results in a request of an alternative
value for &pos <- i. Like tab(i), reversible assignment has no alternative value, but does restore the
former value of its left operand when it gains control. It then fails and control falls through to fail.

There is one subtle difference between the behavior of the procedure as given above and that of
the built-in function. Since section returns a variable to which assignment can be made, it is possible
to use the procedure above as follows:

tab(i) := s

thus replacing the substring of &subject returned by tab(i) and also setting &pos to 1 (which always
happens when the value of &subject is changed). On the other hand, the built-in function tab(i) does
not allow such an assignment (although a feature of this kind is included in Version 2 of Icon). This
extra feature of the procedure above can be removed by explicitly dereferencing the argument of
suspend so that only a value is returned. One way to do this is by means of explicit type conversion
(which actually does nothing but dereference the argument, since its type is already string):

suspend string(section(&subject,&pos,&pos < - i))

As a final note, it should be observed that expressions such as

tab(i1 | i2)

work properly. This is a direct consequence of the goal-directed evaluation mechanism of Icon,
which causes a procedure to be called with alternative arguments if the context in which the
procedure call occurs results in requests for alternative values. Thus

tab(i1 | i2)

is equivalent to

tab(i l) | tab(i2)

It is important to realize that this aspect of generation is completely independent of the code in the
procedure body for tab(i) and is solely a property of goal-directed evaluation.

-4-

DEC-10 Icon Distribution Request; Version 2.0

Contact Information

name:

address:

telephone:

cable/telex:

Computer Information

model:

memory capacity:

operating system:

comments:

Magnetic Tape Information

Icon for the DEC-10 is distibuted as a BACKUP tape in interchange mode. Please specify your preferred tape
recording format:

• 9-track • 7-track
• 1600 bpi • 800 bpi

comments:

Please return this form with a magnetic tape (at least 1200') to:

Ralph E. Griswold
Department of Computer Science
University Computer Center
The University of Arizona
Tucson, Arizona 85721
USA

-6-

CDC 6000/Cyber Icon Distribution Request; Version 2.0

Contact Information

name:

address:

telephone:

cable/telex:

Computer Information

model:

memory capacity:

operating system:

character set:

comments:

. • 63 • 64

-7-

Magnetic Tape Information

Icon for CDC/Cyber systems is distributed as UPDATE PLs on an unlabeled SCOPE-format tape. Please
specify your preferred tape recording charactersitics:

• 9-track • 7-track
• 1600 bpi • 800 bpi • 556 bpi

Please return this form with a magnetic tape (at least 1200') to:

Ralph E. Griswold
Department of Computer Science
University Computer Center
The University of Arizona
Tucson, Arizona 85721
USA

-8-

Portable Icon Distribution Request; Version 2.0

Contact Information

name:

address:

telephone:

cable/telex:

Computer Information

manufacturer:

model:

memory capacity:

operating system:

Fortran pecularities:

comments:

Magnetic Tape Information

Our standard format for magnetic tape distribution of Icon source material is 9-track, 1600 bpi (phase
encoded), EBCDIC industry standard, unlabeled, fixed-block 80-character records with a blocking factor of
10 (last block filled out to 800 characters). Please indicate if you can accept this format:

• yes • no

If you cannot accept this format, please indicate acceptable alternatives by checking the boxes below. Circle
the checks that correspond to your preferred format. (You may fill out this section even if you can accept
our standard distribution format — we will try to accomodate your preferences, although doing so may
cause delays.)

• 9-track
• 1600 bpi
• EBCDIC

blocking factor:

• 1

comments:

• 7-track
• 800 bpi
• ASCII

• 10

• 556 bpi

• other (specify)

• check here if you also want the UA Ratfor system

Please return this form with a magnetic tape (at least 1200' or 2400' if Ratfor is requested) to:

Ralph E. Griswold
Department of Computer Science
University Computer Center
The University of Arizona
Tucson, Arizona 85721
USA

-10-

