
T H E U N I V E R S I T Y OF A R I Z O N A
T U C S O N , A R I Z O N A 85721

DEPARTMENT OF COMPUTER SCIENCE

Icon Newsletter #10

Ralph E. Griswold

November 8, 1982

Version 5 Icon for the VAX Operating under UNIX*

Version 5 of Icon for VAX computers operating under UNIX is now available. The system and documen
tation are provided free of charge; the only charge is for the cost of the tape if we are asked to provide it.
There is a request form at the end of this Newsletter.

Version 5 Icon for the VAX Operating under VMS

Several persons have expressed an interest in a C implementation of Icon Version 5 for the VAX operating
under VMS. If anyone is interested in undertaking such an implementation, we will provide source material
and technical assistance. It should be easy, incidentally, to bring this system up under a UNIX emulator on
VMS.

Porting the C Implementation of Icon

Now that the VAX implementation of Icon is running, we are working on tidying up the source code and
providing more documentation. Some time this spring we should have a system ready for persons who want to
transport the C implementation of Icon to other computers.

The Icon Book

The Icon book mentioned in earlier Newsletters is now in production, and is scheduled to be in stock on
March 7, 1983. The title is 77?? Icon Programming Language and the publisher is Prentice-Hall, Inc. More
information will appear in the next Newsletter.

Electronic Mail

Interest has been expressed in creating an electronic discussion forum for Icon. If you have access to
CSNET, ARPANET, or Usenet and would be interested in participating in such a group, send a note over the
appropriate network to

icon-project.arizona@rand-relay (CSNET or ARPANET)

arizonalicon-project (Usenet)

We currently have uucp connections to gi, ucbvax, utah-cs, mcnc and purdue.

• UNIX is a t rademark of Bell Laboratories .

Programming Corner

The material that follows relates to Version 5 of Icon. Most of the principles apply to Version 2 as well.

Implicit Type Conversion: In Newsletter #9, the following shuffling procedure was given:

procedure shuffle(x)
every !x :=: ?x
return x

end

It was noted there that x may be a string, list, table, or record, but not a cset. The reason is that the operations
!x and ?x do not apply to csets directly.

If x is a cset, its value is first converted to a string and then the operation is applied. Consequently,

every write(lx)

writes the characters in the cset X as expected. However, the implicit type conversion does not change the
value of x. The expression above is therefore equivalent to

every write(!string(x))

Similarly,

!x :=: ?x

is equivalent to

!string(x) :=: ?string(x)

This is much like

!"abc" :=: ?"abc"

Neither argument of the exchange operation is a variable, and a run-time error results.

Result Sequences: The result sequence for an expression in Icon consists of the results the expression is capa
ble of producing. For example, the result sequence for 1 to 5 is {I, 2, 3, 4, 5}. The results that an expression
actually produces depend on the context in which the expression is used. For example

every write(1 to 5)

causes all the results for 1 to 5 to be produced, but in

(1 to 5) = 2

only the first two results of 1 to 5 are produced.

Result sequences are interesting in themselves, independent of the context in which they are used. This
subject is explored in Steve Wampler's doctoral dissertation and in the forthcoming Icon book. For example,
the result sequence for

e.xpr, | expr2

is simply the result sequence for expr. followed by the result sequence for expr, (the concatenation of the
result sequences).

Similarly, the result sequence for repeated alternation

\expr

is the repeated concatenation of the result sequences for expr.

From this, it follows that the result sequence for

(1 to 4) | (7 to 10)

is { I, 2, 3. 4. 7, 8, 9, lOjand the result sequence for

file:///expr

n
is | I. I, I], which is infinite. Similarly, the result sequence for

(i := 1) I l(i +:= 1)

is {I, 2, 3 , . . . }.

An expression that fails has an empty, zero-length result sequence, {}, by definition. Empty result
sequences take the place of the Boolean va\uefalse in control structures such as while-do and if-then-else. The
empty result sequence also terminates the result sequence for repeated alternation. Thus the result sequence
for

| read ()

is the sequence of lines from the input file. This sequence terminates when read() fails at the end of the file.

The use of expressions that have infinite result sequences does not necessarily result in failure of the pro
gram to terminate. The generation of results from an expression can be controlled in several ways. The most
direct method of controlling generation is the limitation control structure:

expr \ i

which limits expr to at most i results. For example, the result sequence for

((i := 1) | |(i +:= 1)) \ j

is {I, 2, 3, . . . , . / } , assuming that the value of j is a positive integer/. This provides an easy way of inspecting
result sequences; a typical test has the form

every wr\te(expr) \ 10

These observations on result sequences lead to the following exercises:

1. Write expressions that have the following result sequences (do not use procedures):

(1) The squares of the positive integers: {1, 4, 9, 16,...}

(2) The factorials: {1, 2, 6, 24, 120,...)

(3) The Fibonacci numbers: {I, 1, 2, 3, 5, 8, 13,. . . }

(4) All nonempty substrings of a string s. For "abc" the result sequence is {"a", "ab", "abc", "be", "c"}.

(5) All the odd-sized substrings of s.

2. What are the result sequences for the following expressions? (Warning: take appropriate precautions if you
try to run these.)

(1) !&lcase || !&ucase

(2) (1 to 3) + (1 to 3)

(3) (1 to 3) \ (1 to 3)

(4) (1 to 5) = (4 to 9)

(5) 1 = |0

Solutions to these exercises will appear in the next Newsletter.

Request for Version 5 Icon for VAX/UNIX

Contact Information:

name:

address:

telephone:

electronic mail address:

cable/telex:

Note: All magnetic tapes are written in 9-track tar format.

Please specify recording density:

• 1600 bpi • 800 bpi

Return this form to:

Ralph E. Griswold
Department of Computer Science
University Computer Center
The University of Arizona
Tucson, Arizona 85721
USA

Enclose a magnetic tape (at least 1200') or a check for $15.00 payable to the University of Arizona.

