
THE U N I V E R S I T Y OF A R I Z O N A 
T U C S O N , A R I Z O N A 85721 

DEPARTMENT OF COMPUTER SCIENCE 

Icon Newsletter #15 

Ralph E. Griswold 

June 7, 1984 

1. Results from the Questionnaire 
Over 25% of the questionnaires included in Icon Newsletter #14 have now been returned. The results are 

tabulated below, followed by a discussion of some of the comments that were sent in. 

Newsletters mailed: 

Interests: 

650 Questionnaires returned: 169 

programming 
language design 
implementation 
theoretical issues 
teaching 

122 
120 
70 
56 
54 

Other interests mentioned included a variety of applications such as artificial intelligence, text processing, 
natural language processing, simulation, psychology, molecular genetics, and number theory. 

Implementations Used: 

Version 2: 

CDC Cyber/6000 
CRAY-1 
DEC-10 
DG MV8000 
Honeywell DPS-8 
HP 3000 
IBM 360/370 
VAX/VMS 

Level of Use: 

high: 
medium: 
low: 
none: 

8 
22 
72 
43 

5 
2 
5 
i 
2 
1 
8 
3 

Version 5: 

Onyx C8002 
PDP-11 
VAX/ UNIX 
VAX/VMS 

2 
22 
61 
35 

A number of persons remarked that they did not have access to Icon or that they were currently in the process 
of installing it. 



Content of the Icon Newsletter: 

Several persons commented that they liked the content and structure of the Newsletter as it stands. Sugges
tions for material to include in future issues fell into two general categories: (a) specific topics and (b) subjects 
that might be covered on a regular basis. Some of the specific topics follow. Items flagged with an asterisk are 
covered in this Newsletter. 

Applications of Icon in various areas, such as artificial intelligence and office automation. 

Comparison of the relative efficiency of alternative programming techniques; space/time tradeoffs. 

Pattern-matching techniques, including comparisons with SNOBOL4, Awk, and Sed. 

Portability of Version 5.* 

Design issues; tradeoffs; evaluation of the design of Icon. 

Icon's virtual instruction set and intermediate code. 

The use of Icon in computer science courses.* 

Information about Icon users.* 

The impact of Icon on other programming languages. 

Among items that might appear regularly, there was considerable interest in the presentation of more pro
gramming examples, including ones for novices and larger, annotated programs. Some material of this kind 
can be found on the Version 5 Icon distribution tape. Both the UNIX* and VMS distribution tapes include 
demonstration programs and all the program material from the Icon book. The UNIX distribution tape also 
includes a moderately large library of Icon programs ranging from text processing utilities to games. In addi
tion, some recent technical reports include examples of large programs (see the New Documents section in this 
Newsletter). In any event, more programs will be included and discussed in future Newsletters. 

Many readers mentioned items that fall under the general classification of status reports: 

new implementations* 
bug reports* 
new publications* 
status of the Icon program library 
availability of updates 
work in progress* 

Material of this type generally has been covered in the Newsletter and will continue to be covered in the future. 
See this Newsletter for material on subjects that are flagged above with an asterisk. 

One of the biggest areas of interest concerned what other persons are doing with Icon. User-contributed 
articles were suggested. We will be happy to publish material submitted by users — if we can get it. For work 
in progress, a paragraph or two is appropriate (see material elsewhere in this Newsletter). We also are willing 
to publish longer contributions, space permitting. If you have something of potential interest, please send it in 
— there are many interested readers. 

The programming corner is popular with readers, although some readers would like to see more introduc
tory material to balance the arcane subjects and trivia (of course, some readers want more trivia also). 

2. Version 5 Implementation News 
Mark Langley of Science Applications Inc. has implemented Version 5 under Eunice, a UNIX emulator 

for VMS. We expect to have a distribution tape available soon. 

John Pollack of Chemical Abstracts Service has adapted Version 5 to run under IS/3, a UNIX emulator 
for VMS derived from UNIX System III by INTERACTIVE Systems Corporation. Steve Wampler at North
ern Arizona also has successfully installed Version 5 under System III. We have incorporated several modifi
cations suggested by them to make other System III installations easier. More information on installing 

•UNIX is a trademark of Bell Telephone Laboratories. 



Version 5 of Icon under System III is available from: 

Professor Stephen B. Wampler 
College of Engineering 
Box 15600 
Northern Arizona University 
Flagstaff, AZ 86011 

Incidentally, Version 5.7 of Icon, which is included on the Berkeley UNIX 4.2bsd tape as a user-
contributed program, is out of date. In fact, some persons have had problems installing it, since modifications 
were made to 4.2bsd following the release of Icon Version 5.7. There also have been a number of corrections 
and additions made to Icon since Version 5.7. Anyone using Version 5.7 should get Version 5.8. See Icon 
Newsletter #12 or Implementations of Icon for ordering information. 

Several readers keep hoping to hear that Version 5 of Icon has been implemented on other computers. 
Work is in progress on several such implementations, and persons have received source code for projected 
implementations on the following computers: 

AT&T 3B20 IBM 370 (UNIX) 
DG MV8000 IBM PC (DOS and UNIX) 
Gould Concept Perkin-Elmer 3200 
HP 3000 Prime 450 
HP 9000 Pyramid 90x 
Honeywell DPS-8 

Notes on some of the returned questionnaires indicated progress on some of these implementations, although 
there is no definite news yet. To get some idea of the problems involved, see the section Porting Version 5 of 
Icon that follows. 

3. Bugs in Version 5 VAX/VMS Icon 
There is a storage allocation problem in the VAX/VMS implementation of Version 5.8 that can cause pro

grams to run out of string or heap space after a file is opened. This is caused by the fact that VMS may allocate 
memory in the program's data space. VAX-11 C is smart enough to realize that this has happened, and it then 
prevents Icon's data space from growing. This problem is compounded by an incorrect space computation in 
the Icon storage management system that makes it think that it needs more space than it does. 

This problem can be circumvented by increasing the initial allocations of space for Icon's data regions. See 
the Icon HELP file. 

The bug can be fixed by adding 

IOSEGMENTS=32,NOP0BUFS 

to the linker options file and relinking Icon. 
We hope to have a new release of VMS Icon soon with these problems resolved. 

4. Work in Progress 

Many readers are interested in what is going on and what to expect next. For one thing, do not expect 
major changes in Icon. Icon is a byproduct of a research program, not an end in itself. Version 5 is intended to 
be a relatively stable language. Most of our current work involves the use of Icon and the exploration, on an 
experimental basis, of language design issues related to it. In other words, Version 6 is not on the horizon. 

Version 5.9 

We have accumulated a number of minor improvements to be made in Version 5 of Icon and plan to pro
duce Version 5.9 to supercede the current Version 5.8 sometime later this year. One area in which substantial 
improvement in performance will be made is in the implementation of tables. 

3-



We also plan to abandon the compiler version of Icon and only distribute the interpreter in the future. 
Compared to the interpreter, the compiler presently offers a minor advantage in execution speed at the 
expense of considerably increased time to get into execution. The main motivation for using the compiler at 
present is to be able to add external functions, written in C, to augment the built-in repertoire of Icon. Bill 
Mitchell recently has developed a "personalized interpreter" system for Icon that allows functions to be added 
easily and quickly to the interpreter version. With a personalized interpreter, there is very little motivation to 
retain the compiler, but there are many reasons for discontinuing it. For one thing, it adds a large mainte
nance, testing, and distribution burden — time and effort we otherwise could expend in more useful ways. We 
plan to continue to distribute the Version 5.8 compiler to persons who specifically request it, but those of us 
who have worked with the personalized interpreter (including students in a course at the University of Arizona 
on "Icon Internals") are prepared to tell you how great it is. 

Sets in Icon 

The Icon Internals class mentioned above undertook, toward the end of the course, the addition of a set 
data type and set operations to Icon. This offered the students an opportunity to participate in language 
design and to test their understanding of the Icon implementation by making a significant modification to it. 
The project turned out well and as a result, we have the nucleus of a significant extension to Icon. The details 
of sets as they are realized in Icon will be described in the next Newsletter. Sets probably will be included as an 
experimental extension in the Version 5.9 release. 

Production Icon 

Steve Wampler at Northern Arizona University provides the following description of a project he is work
ing on: 

The Icon programming language was developed as a research tool with which to examine new approaches to pro
cessing data structures. It contains a large number of unusual features, often at some cost in efficiency. Some of 
its more novel features are not necessarily inefficient. However, it is difficult to measure their true cost because of 
the costs of other features within their context. The w ("Production Icon") programming language is an attempt 
to develop the generator-based evaluation found in Icon in an efficient, production-level language. Previous 
attempts to add generators into production-level code have concentrated on embedding generators into existing 
languages (for example, Cg). it is intended to be an efficient, uniform language retaining as much of the expres-

• siveness of Icon as possible. 

Generators in Object-Oriented Languages 

Tim Budd at the University of Arizona, who implemented Cg, is currently studying object-oriented 
languages: 

Icon is not the only language in which the formal manipulation of generators and sequences can be expressed or 
investigated. One current project involves the expression of generators in the language Smalltalk-80. In 
Smalltalk terms, a generator is any object that responds to the messages first and next by producing a sequence 
of values, terminated by the special symbol nil. As is the case with Icon, there are two different ways one can 
view generators. The first view, what we might call the implementation view, is that of an object producing a suc
cession of values. The alternative, what one could call the data view, is that of a sequence, perhaps infinite, and a 
pointer to the "current" value. One can then describe operations using generators either by their actions at the 
low level, in terms of first and next messages, or at a higher conceptual level, in terms of how they combine 
sequences. 

The power of generators in Smalltalk is in the ease and flexibility of defining ways of combining sequences (or 
generators) to form new sequences (or generators). For example, one very powerful combining operator has 
been defined which can be used to express such operations as catenate (appending one sequence to the end of 
another), shuffle (mixing two sequences), combining (adding the elements of two sequences, for example), and 
others. One aspect of current research involves defining pattern-matching operations in terms of operations on 
sequences. 

- 4 -



5. Use of Icon in Computer Science Courses 

Icon has been introduced in a number of computer science courses. Typically, it replaces SNOBOL4 in 
comparative programming languages courses. Institutions teaching Icon include Carnegie-Mellon University, 
Grinnell College, Illinois Institute of Technology, New Mexico Tech, Rutgers University, the University of 
Arizona, the University of Michigan, the University of Pittsburgh, and Vanderbilt University (this informa
tion comes from a number of sources and may not be completely accurate; it certainly is not complete). Ed 
Gehringer of CMU provides the following report on his experience with teaching Icon: 

Icon was one of three languages emphasized in my Comparative Programming Languages course at Carnegie-
Mellon this spring. The course is required for an Applied Math/Computer Science degree, and is usually taken 
in the junior year, although some sophomores and seniors and a few graduate students from other departments 
are also enrolled. 

The course is intended to give students a background in programming languages in general, not just specific 
languages. We consider issues such as data abstraction, exception handling, and object-oriented programming. 
To give students practical experience, though, it is necessary to focus on a few languages in which students can 
write and run programs. Over the past two or three years, these languages had been Lisp, SNOBOL4, and APL. 
This semester, for the first time, Icon was substituted for SNOBOL4. 

We used the VAX/VMS Icon translator, with all students working on a single VAX. The class consisted of 55 
students. To limit the system load to manageable levels, I utilized staggered due dates: half the class had an 
assignment due on Tuesday, the other half on Thursday. 

In the one or two days preceding a due date, the class might have been responsible for more than half the load on 
the Vax. Degradation of response time was noticeable, though not severe. A more serious problem was the 
Computation Center policy of limiting the number of simultaneous users; some students had to wait at a terminal 
more than an hour before the system would allow them to log on. Sometimes this policy seemed to be more res
trictive than necessary, but had it not been in effect, degradation of response might have been more pronounced. 

We encountered only one real problem with the VMS translator; the default memory allocation for the heap was 
too small and usually had to be increased manually. We received a fix for this problem very quickly, but it raised 
another, somewhat less serious, problem. 

The students seemed to find Icon no more difficult to learn than Lisp or APL. Some found it the easiest of the 
three, usually because it is more Pascal-like than Lisp or APL, both of which tend to be more functional and less 
imperative. Most seemed to find it just about as difficult to debug as Lisp or APL; however, a significant minor
ity felt that the lack of static typing, coupled with a very large number of operators, made it easy to write pro
grams which translate successfully but then encounter run-time errors far away from the incorrect code. No one 
at all complained about the Icon textbook. I found most of the problems in the book to be too easy to assign as 
homework, though they are good exercises for self-study. 

A few students also knew SNOBOL4; all of them preferred Icon because it's more "modern" and has other 
interesting features besides pattern matching. (I'm not sure to what extent they "learned" this opinion from me.) 
I did find it more difficult to teach pattern-matching in Icon, however, and I produced the following table to clear 
up some of the confusion: 

find 
match 
upto 
any 
many 
bal 
move 
tab 

Generator 

yes 
no 
yes 
no 
no 
yes 
no 
no 

Beginning or End? 

beginning 
end 

beginning 
end 
end 

beginning 
end 
end 

Matching Function? 

no 
no 
no 
no 
no 
no 
yes 
yes 

"Beginning or end" refers to whether the function moves the "cursor" to the beginning or end of the string or cset 
it has found. 

In summary, my experience with Icon has been very favorable. I highly recommend it for a comparative 
languages course, providing sufficient computing resources are available. 

•5-



6. Portability of Version 5 

To understand why there are not yet more implementations of Version 5 of Icon, it is necessary to appreci
ate that portability was not a major design goal. The initial implementation of Version 5 was designed to run 
under UNIX on the PDP-11. Most of the implementation is written in C, but there are substantial com
ponents written in assembly language and the UNIX support environment is relied upon heavily. 

To get an idea of what is involved, consider the Icon interpreter (the compiler is similar). It has three major 
components: 

• A translator that converts source-language programs into an intermediate form, which is called 
ucode. 

• A linker that combines ucode files and produces an interpretable form, which is called icode. 

• A run-time system that contains an icode interpreter, routines for built-in operators and functions, a 
support library, and so forth. 

The translator is written entirely in C and is machine independent. The linker is written entirely in C, but 
has parameters that depend on machine architecture. Most of the run-time system is written in C, but it also 
contains a substantial amount of assembly-language code (about 700 lines on the VAX-11 implementation). 
There are also portions of the C code in the run-time system that depend on the target machine architecture. 

The main problem in implementing Version 5 of Icon on a new computer lies in the assembly-language 
code. Some parts, like the icode interpreter, are relatively straightforward. Code related to expression evalua
tion, which cannot be written in C in a reasonable way, is not straightforward. In particular, it requires an 
understanding of the C stack frames for the target computer and the design of Icon stack frames to interface 
them. (The C compiler for the target machine has to have certain properties to make this possible; this can be 
a stumbling block in itself.) 

As mentioned above, the UNIX environment also is important. Adapting Version 5 to other operating sys
tems may involve reorganization of the file hierarchy of the Icon system, provision of alternatives to the UNIX 
tools that are used to build Icon, modification of the Icon input/ output system, and provision of substitutes 
for UNIX system routines that are used by Icon. 

On the positive side, the PDP-11 and VAX-11 assembly-language portions of Version 5 are available as 
models. The VAX-11 assembly-language code is extensively commented. There is also a detailed guide to tran
sporting Icon, as well as a suite of test programs. 

Source material and documentation for Version 5 of Icon is in the public domain. Anyone interested in 
attempting to transport Icon to a new computer can get this material, free of charge. See Icon Newsletter #12 
for ordering information. 

7. Programming Corner 

Old Business 

Assignment to Subscripted Strings: In the last Newsletter, the semantics of expressions such as 

x[i:j] := (x := expr) 

were posed, where x is string-valued when the subscripting expression is evaluated, but in which expr changes 
the value of x before the (left) assignment is made to replace the subscripted string. (Expressions such as x[i] 
and x[i+:j] are just special cases of x[i:j].) 

While expressions like this are uncommon (and generally are considered to be in poor style), they are legal 
and therefore must be well defined and handled properly in the implementation. (It should be no surprise that 
all the possibilities were not considered in the initial design and that there were several bugs related to these 
matters in the early versions of the implementation.) 

This is a case where efficiency and implementation considerations influenced language design. The prob
lem is that the translator cannot, in general, determine whether an expression such as x[i:j] will have a value 
assigned to it. Even if x[i:j] is the target of an assignment operation, the assignment never may be made 
because of failure in evaluation elsewhere in the expression. In the case of 

6-



return x[i:j] 

the translator has even less information, since the use of the returned expression depends on the context in 
which the function containing this return is called. For these reasons, the translator treats all expressions such 
as x[i:j] in the same way*. When an expression like x[i:j] is evaluated, if the value of x[i:j] is a string, a 
trapped variable is produced. A trapped variable is a special kind of variable that points to a small block of 
data which contains enough information to assign a new value to x if an assignment is made to x[i:j]. This 
information consists of the variable x and the location of the substring in x. Every string subscripting expres
sion produces a trapped variable. Although the block of data that is created usually is used only transiently, it 
causes a certain amount of storage throughput. 

Now consider what happens if the value of x is changed before an assignment is made to x[i:j]. Since the 
value of x can be changed to anything, the assignment cannot be made blindly — the position of the replaced 
string might be out of range, even if the new value of x is a string. Consequently, the type of x is checked when 
assignment is about to be made to x[i:j]. If the value of x is a string, its length is checked to be sure the sub
string specified by i'.j is still in range. If it is, the assignment is made, even if the value of x is different from 
what it was when x[i:j] was evaluated. Thus, in 

x := "hello world" 
x[3] := (x := "abc") 

the value of x becomes "ababc". On the other hand, if the value of x is a string, but it is too short, run-time 
error 205 (value out of range) occurs, as in 

x := "hello world" 
x[3] := (x := "ab") 

One might well argue that assignment to x[i:j] should be an error if the value of x has changed, even if the 
substring is still in range. After all, such a situation seems more likely to be an error than an intentional com
putation. Here, however, there is an efficiency consideration. In order to be able to detect that the value of X 
has changed, it would be necessary to save the value of x as well as the variable X in the trapped variable. 
Furthermore, this would have to be done for every evaluation of a string subscripting expression. The result 
would be substantially higher storage throughput just to treat a pathological case more elegantly. 

From a language design viewpoint, a somewhat more radical alternative would be to bind the value of x to 
X at the time x[i:j] is evaluated, so that 

x := "hello world" 
x[3] := (x := "abc") 

would change the value of x to "heabclo world". This solution also would require saving the value of X in the 
trapped variable — additional overhead that again does not seem justified for such a pathological situation. 

Returning to the situation as it actually is handled, given that any string value for X that is long enough is 
acceptable, the next question is what to do if the value of X is not a string when the assignment is made to 
x[i:j]? In consonance with Icon's general philosophy of converting types automatically whenever possible, if 
the value of x can be converted to a string, it is. Thus, 

x := "hello world" 
x[3] := (x := 397) 

changes the value of x to "39397". Weird, maybe, but consistent with the result of concatenating two integers 
— which is, after all, what this expression amounts to. 

If the value of x cannot be converted to a string, a run-time error (103) occurs, as in 

•There is the potential here for an implementation optimization, since there are many situations in which the translator 
could determine that a subscripting expression is not the target of an assignment. This would require a substantial modifi
cation to the implementation, however. 

- 7 



x := "hello world" 
x[3] := (x := [1,2,3,4]) 

Note that these problems are essentially problems of dereferencing — when and how the value of x is 
determined when assignment is made to x[i:j]. There are a number of other situations in Icon in which dere
ferencing is a problem. One is string scanning, which will be discussed in the next Newsletter, along with more 
material on matching expressions. 

Trivia Corner: In the last Newsletter, the following problem was posed: 

What is the longest string of distinct prefix operators which, when applied to a value, might compute a meaning
ful result? (You may assume any value that you wish.) What if the prefix operators need not be distinct? 

For distinct prefix operators, one possibility is 

| + = - ? * ~ \ @ A ! X 

It might go like this: Let x be a list of co-expressions. Generate one, refresh and activate it, being sure the 
result is nonnull. Assuming the result is a cset, use the size of its complement to provide a range for a ran
domly selected integer. Negate this integer. Match the equivalent string in &subject and convert the result 
back to an integer. Repeat the whole process (whatever that means). Enough! 

Strictly speaking, repeated alternation is a control structure, not an operator, but it is denoted with opera
tor syntax. Note that the prefix operators. and /are not included in the expression above. They can be added, 
but not in a "meaningful" way. 

If the prefix operators do not have to be distinct, there is no specific limit on the number that can occur. 
Consider, for example, 

The expression =x matches x in &subject, = x matches two consecutive occurrences of x, and so on. 

What about expressions such as 

111 ... ??x 

New Business 

Pitfalls: Steve Wampler contributes the following program, in which the procedure tally echos its argument 
and tallies it in the table count. In the main procedure, empty input lines are converted into the more prom
inent marker <empty line> . Or are they? What does this program actually do? What does it take to fix the 
problem? 

global count 

procedure main() 
count := table(O) 
while line := read() do 

tally(("" ~ = line) | "<empty line>") 

end 

procedure tally(s) 
count[s] +:= 1 
write(s) 

end 



8. Electronic Mail 
As mentioned in Icon Newsletter #12, there is an electronic mail group for the discussion of topics related 

to Icon. This group is available to persons who have access to CSNET. To enroll, mail to 

icon-group-request.arizona@csnet-relay 

Persons who have questions about Icon also can send electronic mail via CSNET to 

icon-project.arizona@csnet-relay 

or via Usenet or Uucpnet to 

arizonalicon-project 

We currently have connections established with noao, mcnc, ihnp4, and utah-cs. Note that noao was previ
ously kpno. 

9. The Icon Mailing List 
Several persons have inquired about the make-up of the Icon community. This, of course, is very difficult 

to determine, since we have no way of knowing who is interested in Icon, other than through the Icon mailing 
list. A superficial analysis of this list, for what it is worth, shows the following approximate breakdown by 
organization: 

52% 
31% 

2% 
15% 

academic 
business/industry 
government 
unknown 

The business/industry category is divided approximately evenly into organizations that are solely involved in 
computing and other types of organizations. 

10. New Documents 
There are several new documents related to Icon. All are available, on request, free of charge. Use the 

document request form at the end of this Newsletter. 

The paper "Implementing SNOBOL4 Pattern Matching in Icon" contains a description of how Icon string 
scanning can be used to implement higher-level pattern-matching procedures. Much of the material in this 
paper appeared in earlier technical reports; the paper brings this material together in a condensed and refined 
form. 

The technical report Expression Evaluation and Result Sequences explains the motivation for generators 
and goal-directed evaluation in Icon and describes how expression evaluation can be viewed in terms of 
sequences of results. There is nothing new in this report except its perspective. It may be of interest to persons 
who are not familiar with expression evaluation in Icon or to persons who are interested in this aspect of pro
gramming language design. 

Technical Report TR 83-19, The Construction of Variant Translators for Icon, describes a system for 
building source-to-source translators for languages that are syntactically close to Icon. It is particularly useful 
for producing preprocessors and has been used as a tool for earlier work in list scanning, the cinematic display 
of pattern matching, and the implementation of Seque (see Icon Newsletter #14). This report may be of 
interest to persons who want to know more about the Icon translator or to persons with a general interest in 
software development tools. 

TR 83-20, The Implementation of an Experimental Language for Manipulating Sequences, describes how 
Seque is implemented. It contains the details of a variant translator (see above) and a run-time system that is 
implemented in Icon and makes extensive use of co-expressions. Program listings are included. Persons who 
are interested in the use of co-expressions may find this material useful, although the programming techniques 
are somewhat arcane. 



TR 84-5, Diagramming Icon Data Structures, describes an Icon program that produces diagrams of Icon's 
internal data structures. The program uses external functions from the Icon program library to access 
memory directly from the running program. Diagrams of a number of Icon internal data structures are 
included. This report may be of interest to persons who want to know more about the internal representation 
of data in Icon. It also contains listings of some moderately large Icon programs. 

TR 84-8, An Icon Subsystem for UNIX Emacs, describes the design and implementation of Icon as an 
embedded language for the Emacs editor. An appendix describes the modifications that were made to Icon for 
this application. This report may be of interest to persons who are interested in programmable editors, 
language interface issues, or Icon internals. 

Finally, the Icon Address List, the mailing list for this Newsletter, is available. 

10-



Request for Icon Documents 

Please send the documents checked below to: 

• "Implementing SNOBOL4 Pattern Matching in Icon", reprinted from Computer Languages. 

• Expression Evaluation and Result Sequences. 

D The Construction of Variant Translators for Icon, TR 83-19. 

• The Implementation of an Experimental Language for Manipulating Sequences, TR 83-20. 

• Diagramming Icon Data Structures, TR 84-5. 

• An Icon Subsystem for UNIX Emacs, TR 84-8. 

• Icon Address List. 

• Please add my name to the Icon mailing list. 

Return this form to: 

Icon Project 
Department of Computer Science 
The University of Arizona 
Tucson, Arizona 85721 
U.S.A. 

11- #15 


