
THE U N I V E R S I T Y OF A R I Z O N A
T U C S O N , A R I Z O N A 85721

DEPARTMENT OF COMPUTER SCIENCE

Icon Newsletter #18

Madge T. Griswold and Ralph E. Griswold

April 23, 1985

1. Implementation News

Icon for the IBM PC under PC/IX

An implementation of Version 5.9 of Icon for the IBM PC operating under PC/IX has been completed at
The University of Arizona by Robert K. McConeghy .

At the present time we are distributing executable binaries with the Icon program library as an option, but
we are not distributing the source code. Distribution is on DSDD 5!4" diskettes in PC/IX dump I restore for
mat only. Use the request form at the end of the Newsletter. Note that this implementation of Icon will not
run on other PC operating systems, such as DOS.

Icon for AT&T 3B2/3B5 and for UNIX/PC

O. Rick Fonorow, of AT&T Information Systems Laboratories, reports that his preliminary Version 5.9
implementations of Icon for the 3B2/ 3B5 are running. Porting to the UNIX/ PCT is under way.

For more information, contact:

Mr. O. Rick Fonorow
AT&T Information Systems Laboratories
1100 East Warrensville Road
IW 2X-361
Naperville, IL 60655

(312)979-7173

...ihnp4!iwsam!orf

Corrected Request Form for Version 5.9 VAX/VMS Icon

In the preceding Newsletter, the form for requesting Version 5.9 of Icon for the VAX/VMS incorrectly
specified that distribution was in tar format. The actual format is COPY. A corrected request form is
included in this Newsletter.

This work was supported in part by equipment and software provided by IBM Corporation.

2 UNIX is a trademark of AT&T Bell Laboratories.

Another Implementation Project

A project to implement Icon is under way at Illinois Institute of Technology. The project is currently being
conducted solely for research and education — it is uncertain whether a distribution version of the system will
ever be released.

The compiler was designed and implemented by Thomas Christopher. It was inspired by a desire to try
out a new implementation of backtracking. The compiler is written in Icon and is generating VAX/UNIX
assembly code. Phil Hatcher is supervising seven undergraduate students who are implementing the run-time
system.

Future work includes writing an optimizing compiler for Icon (again based on designs by Christopher),
translation of the compilers into C, and some experimentation with different implementations of the run-time
system.

2. An Icon Machine?

We recently received a proposal for an Icon "machine" that would consist of software between the UNIX
kernel and user applications. Perhaps we will have something for publication on this idea in a subsequent
Newsletter, but for now, we offer the following response to the proposal by Dave Gudeman at the University
of Arizona:

The Icon machine is obviously an idea whose time has come. Of course the proposal is only for software, but
it's only a matter of time 1 have a few of my own ideas on the Icon machine, specifically involving terminol
ogy, which is seldom fully thought out. First of all, what is this Icon shell supposed to be called? The first thing
to come to mind is, of course, the I-shell. This is very unentertaining and dry. 1 prefer, the Iconosphere. This
word has implications which lend wings to the imagination.

Of course, once you have an Iconosphere you need the positive and negative icons — applications which are or
are not considered suitable for doing in Icon. And the field of applications brings up the subject of standards. I
propose a rigorous set of standards against which all Icon applications should be judged. Those which follow
the standards would be referred to as "Iconoclasts".
People who write the Icon software should be called software Generators. Those who are especially skilled
would work on many different projects in alternation and should have the special title "Alternator". This leaves
the title "Transformer" for programmers who specialize in taking C software and applying it to the Iconosphere
(not to mention as a new Icon operator). Someone has to do the testing. If each programmer checked each
other programmer's work, this would be referred as mutual evaluation. Another option would be to have a spe
cial team of "Scanners" to look at each program as it is finished: Each program going first to one scanner team,
if they couldn't find any problem, the "second string" (as it were) would be brought in, if they couldn't find any
thing, the third string of scanners would try. etc. This process would be referred to as serial evaluation. (Got
you, didn't I?)

When a real Icon machine comes along, a CPU that supports Icon should be called an edifice. This would have
various new hardware devices to speed up Icon primitives (icon-accelerators) as well as supporting Icon stack
operations and data structures directly in hardware. It would probably not be classified as a RISC machine.
There would be various competing but similar architectures which would be referred to as Icomers of each
other.

3. Programming Corner

In the last Newsletter the following problem was proposed:

Write a procedure anagram(s) that produces a string consisting of the characters in s in alphabetical
order, but without the deletion of duplicates.

We received a number of interesting solutions from several persons. The most efficient solution, at least
when working on a large amount of data, follows:

procedure anagram(s)
local c, s1
si := "" # start with the empty string
every c := lcset(s) do # for every character in s

every find(c, s) do # and every time it occurs in s
s1 ||:= c # append one

return s1
end

The heart of this solution is to use cset(s) to obtain an ordered set of the characters in s. It is interesting that it
is noticeably more efficient to use find instead of upto in the solution. The difference does not lie primarily in
the functions themselves. What else is at work here?

It is also faster to append the characters one at a time than to count the number of each and append them
in groups, as in

procedure anagram(s)
local c, i, s1
s1 := "" # start with the empty string
every c := lcset(s) do { # for every character in s

i := 0
every(find(c, s)) do # count the number of times it occurs

i +:= 1
s1 ||:= repl(c, i) # and append that many copies to the result
)

return s1
end

Why should this be?

Randal Schwartz submitted a number of interesting solutions in addition to one similar to the first solu
tion above. One of his solutions uses a table of characters and their counts:

procedure anagram(s)
local c, t
c := table(O)
s ?:= {

while c[move(1)] +;= 1
tin

}
every t := !sort(c, 1) do

s ||:= repl(t[l] , t[2])
return s

end

This solution is about twice as slow, when working on a large amount of data, as the first one above, probably
because of time spent in table lookup and garbage collection (due to the larger amount of storage needed for
tables).

An even more interesting, albeit admittedly inefficient, solution from Randal Schwartz is the following
one that puts each character of s in a separate table element:

procedure anagram(s)
local t
t := table()
s ?:={

while t [[]] := move(1);

}
every s ||:= (!sort(t, 2))[2]
return s

end

Do you see why there is a separate table element for each character?

4. New Documents

Several technical reports related to Icon have been published recently:

Technical report TR 84-21 describes a system for observing, interactively, the operation of the Icon
interpreter. This system uses a two-process model in which one Icon program (the observer) controls the
execution of another Icon program. Facilities include stack diagrams, a cinematic display of the execu
tion of the code for the Icon virtual machine, and access to the memory of the observed program.

Technical reports TR 85-2 and TR 85-4 describe Seque, an experimental programming language for
manipulating streams. Streams have both a storage and a computational component and are "first-
class" data objects. The computational component of streams utilizes Icon expressions and particularly
generators to characterize sequences of values. Seque also provides notational mechanisms for the con
cise representation of complicated streams. Streams can be nonhomogeneous, infinite, and self-
referential.

The last technical report. TR 85-8, describes in some detail the representation of data objects in Version
5 of Icon. Descriptions of the methods for manipulating lists, sets, and tables are included.

All of these reports are available, free of charge. Use the document request form that follows.

- 4 -

Request for Version 5.9 of Icon for VAX/VMS

Contact Information:

name

address

telephone

electronic mail address

computer

operating system

All tapes are written in 9-track COPY format. Specify preferred tape recording density:

• 1600 bpi D 800 bpi

Return this form to:

Icon Project
Department of Computer Science
The University of Arizona
Tucson, AZ 85721

Enclose a 600' magnetic tape or a check for $20 payable to The University of Arizona.

#18 1 0 April 23, 1985

Request for Version 5.9 of Icon for PC/IX

Note:This implementation of Icon runs on IBM PCs under PC/IX, not under PC-DOS.

This system is distributed on 5[A" DSDD diskettes in PC/IX dump/restore format. Charges include media,
documentation, handling, and shipping. Make checks payable to The University of Arizona.

D Executable binaries and test programs (one diskette): $25

D Icon program library (two diskettes): $40

Total enclosed:

Ship to:

name

address

telephone

electronic mail address

Return this form with payment to:

Icon Project
Department of Computer Science
The University of Arizona
Tucson, AZ 85721

#18 April 23, 1985

Request for Icon Documents

Please send the documents checked below to:

• A Tool for Interactive Observation of the Icon Interpreter, TR 84-21.

D Seque: A Language for Programming with Streams, TR 85-2.

• Reference Manual for the Seque Programming Language, TR 85-4.

D The Implementation of Data Structures in Version 5 of Icon, TR 85-8.

• Please add my name to the Icon mailing list.

Return this form to:

Icon Project
Department of Computer Science
The University of Arizona
Tucson, AZ 85721
U.S.A.

1 8 April 23, 1985

