
TTie Icon 9{ezvs(etter
No. 25 — November 1,1987

Odds and Ends
Subscriptions to the CNjzPsktter

We've decided to continue to distribute the
O\[eios(etter to all interested persons without

charge. The 9{ezvsCetter is, however, expensive to
prepare, print, and mail, so we need to keep the size
of the mailing list under control. Because the U^ewsCet-
ter is free and anyone can get on the subscription list,
we tend to accumulate persons who have only a pass
ing interest in Icon.

To handle this problem, we occasionally send out a
renewal form with a !A[ezVs(etterand require that this
form be returned for continued subscription. The
"cost" to subscribers therefore is just returning the
form. The problem is, of course, that it's easy to forget
to return the form — and then you never hear from us
again.

From time to time we get requests like "put me on
your mailing list forever". We regret that we can't ac
commodate such requests. We think that reaffirming
your interest and address every year or so is not too
much to ask in return for a free subscription.

Incidentally, if you think you've "fallen off" our
mailing list, you can always write or call and ask to be
reinstated.

Use of Our Mailing List

We do not sell the mailing list that we use for the
9{ezustetter. Occasionally, we provide mailing

labels to another organization for some purpose re
lated to Icon.

We also prepare a printed list of our subscribers
that's available free to persons who want to locate
others with common interests. If you do not want us
to include your name on this printed list, let us know
and we'll take care of it.

Contacting the Icon Project

When you contact the Icon Project by electronic
mail, be sure to include a postal mailing address

in addition to your electronic one — electronic mail
does not always work properly. If you don't get a
reply, you can't tell if we got your message at all, if we
failed to answer, or if our answer was lost in the ether.
However, if our electronic mail to you bounces, we'll
send a backup message via the post.

Reporting Problems

When you report a problem with running Icon,
please give us the values of Icon's Aversion and

&host for your system. We can't undertake to explain
difficulties unless we have this information. You'll
also get better response from us if you send the
program and data that produced the problem. If the
program and data are more than a few lines long, send
them on a diskette or tape; we won't keyboard from
long listings.

Implementation News

There is not much in the way of implementation
news this time. Worth noting are:

The VAX/VMS Icon system was updated in June.
This release uses a different strategy for dealing with
VMS memory management, fixing a problem oc
casionally seen by programs using many files.
Another fix now correctly handles icode files larger
than 65,536 bytes. This new release has the same ver
sion number as the preceding one (6.3), but Aversion
has a date of June 16,1987. Orders filled starting June
17,1987 contain this new release. If you are in doubt
about what release you have, check the date in Aver
sion.

Icon source code for the Atari ST is now available.
It requires Lattice C Version 3.03 or higher to compile.

See the order form at the end of this 9{ezps(etter for
ordering information. Note that the two implementa
tions described above are the only new ones since the
last tyivsUtter (]une, 1987).

An Extension Interpreter for Icon

David Notkin and Bill Griswold at the University of
Washington provide this description of some of their recent
work.

The Extension Interpreter (EI) is a set of tools that al
lows system builders to incorporate a procedure-

based extension facility into their programs. This
facility permits incremental addition of procedures to
a running program, supporting applications that can
be augmented by users without modifying the
original program source or executable.

Extensions are written in existing languages. We
currently have one EI implementation for Icon and a
separate one for C. We are combining the implemen
tations to form a multilanguage system that supports
a (nearly) transparent interface between C and Icon
procedures (but not between variables). Procedure
calls are handled by a stub mechanism similar to that
used in remote procedure-call facilities; however, all
calls take place in a single address space. The stubs,
which are automatically generated by an Icon
program, handle not only the call itself but also type
translation and the signaling of failure.

77te Icon 9{ewstetter

Madge T. Griswold and Ralph E. Griswold

Editors

•[he Icon %{gws(etter is published aperiodically, at no
cost to subscribers. For inquiries and subscription infor
mation, contact:

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U. S. A.

(602)621-2018

© 1987 by Madge T. Griswold and Ralph E. Griswold

All rights reserved.

Significant enhancements were made to Icon to per
mit extendability and calls between C and Icon. To
permit dynamic loading of Icon programs into a run
ning Icon program, we implemented a dynamic linker
for Icon programs. The implementation is similar to
an Icon dynamic linker implementation by Bill
Mitchell at The University of Arizona in the construc
tion of his Ice (Icon-Emacs) editing system. Calls to
newly loaded procedures are handled by the proc pro
cedure or string invocation in Icon, which permits call
ing a procedure by its string value. The current
implementation does not garbage collect unreachable
procedure instances.

The basic approach to supporting calls from C to
Icon was supplied by Andy Heron of the Government
Commun ica t i ons H e a d q u a r t e r s , Che l tenham,
England. We have generalized Heron's approach by
allowing the invocation of (1) arbitrary Icon proce
dures (not just main) from C and (2) arbitrary C pro
cedures from Icon. Further, calls between C and Icon
can be interleaved to an arbitrary depth. This requires
making each call from Icon into C appear as a normal
Icon procedure call, rather than as a call to a built-in
function: the stack must be kept in a consistent state
for the recursive call to the interpreter. To do this we
provide an Icon built-in function callC to handle the
calls appropriately. This routine takes the string name
of the C routine and the parameters to the procedure.
The EI supports the required mapping from a string
name to a C implementation.

All modifications to Icon were made using its per
sonalized interpreters mechanism. The dynamic
linker was a bit more than a personalization, since it
required changing data structures in the linker.

From Our Mail
You make up most of these questions don't you ?
No, (although this one is contrived). We do, however,
sometimes make composites from several similar
questions.

What does "Icon" stand for?
"Icon" is neither an acronym nor a play on words. It's
just a name we picked, quite a while ago. In fact, we
picked the name before the word came into common
use to describe those little images on the computer
screen that represent objects and functions. Had we
anticipated the confusion that resulted, we would
have picked a different name. It's too late now.

/ want to take a course at your school to learn to program in
Icon. How do I apply?

Our department is in a state university. It offers
graduate degrees in computer science and some un
d e r g r a d u a t e courses to suppor t other degree
programs. It does not teach how to program in Icon
per sc, although there are courses that use Icon. You
can't just go to the university and take a course; you
must be admitted as a student. Basically, we don't
provide what you want.

My dog ate my copy of the last Icon CNjzvsCetter. Can you
semi me another one (9{ezvs(ettcr, that is)?
Sure. We hope your dog is no worse for the experience.

Can I order free Icon documents by electronic mail?
Yes, you can order free material any way you like, but
please provide us with a postal mailing address, since
we do not distribute documents electronically.

/ knoiv it's expensive to publish the 9{ezosCetter. While I un
derstand why you'd prefer not to charge for subscriptions,
why don't you ask for voluntary contributions?
We'd prefer not to solicit contributions or to have our
subscribers feel some kind of implied obligation.
That's also the reason we don't distribute Icon as
shareware. However, we do get occasional contribu
tions, which are both very welcome and helpful. Cor
porate contributions are particularly welcome.

Is there an Icon Users' Group?
Not that we know of, aside from the loose affiliation
provided by subscribers to this 'Ng.tvslttter. We fre
quently are asked how to contact persons interested in
Icon in a particular area. If you are interested in form
ing a regional or local group, send us your name; we'll
connect interested persons on a geographical basis. (If
you've asked before, please ask again — we did not
keep a list of interested persons.)

Is it okay for me to put a copy of Icon on our local BBS?
Yes. As we've said many times, our implementations
of Icon are in the public domain and may be copied
freely. We encourage others to distribute Icon in any
convenient way.

We want to run Icon on our VAX cluster under VMS. Do
we have to get a copy of Icon for each of our VAXes, or can
we just copy it from one to another?
You can just copy it; there are no restrictions on making
copies of Icon.

Can I copy and sell Icon diskettes?
Yes. Icon's public-domain status allows you to make
copies for whatever purpose you want. There's noth
ing to prevent you from selling public-domain
software, but its "market value" is obviously limited.
You should make it clear that you are selling public-
domain software to avoid misleading potential
buyers.

/ read that Icon is in the public domain. Please send me my
free copy.
"Public domain" does not mean "free". There are ex
penses involved in preparing material for distribution:
media, copying, printing documentation, packaging,
and shipping.

Can I make copies of the Icon 9{e.ivslettcrfor my friends?
Star t ing wi th No . 24, the Icon 9{eu>sUtter is
copyrighted. Our written permission is required to
make copies. On the other hand, we'll be happy to
send copies to your friends if you give us their names
and addresses. That way, they'll get copes of future
%{ezps(etter as well.

I don't see why you can't distribute the hon 9{ezi>s(etter
electronically. It's prepared on a computer, isn't it?
Yes, it's prepared on a computer. Previous versions
used Troff. The present one was prepared using Xerox
Ventura Publisher, a desktop publishing system. That
doesn't mean it's feasible to distribute it through
electronic mail or on a diskette. The printing language
is PostScript, so you'd need to have a PostScript
printer, such as an Apple LaserWriter. The last
C^ezosktterwas about 250KB of PostScript — too large
to make electronic transfer attractive.

Is there an implementation of Icon for the Apollo Worksta
tion?
Not as far as we know. Several persons are working on
one.

I'd prefer to get MS-DOS Icon on 3.5 " diskettes instead of
the 5.25" diskettes you distribute.
While there certainly will be more MS-DOS computers
with 3.5" diskette drives in the future, a large majority
of existing MS-DOS computers only have 5.25" drives.
We provide Icon as a service to the computing com
munity, not as a commercial, profit-making venture. It
would be expensive and difficult for us to provide 3.5"
diskettes that only a minority of persons need.

J want to get the source code for Icon for my PC, but I don't
know whether to get the MS-DOS source distribution or the
porting source distribution. What's the difference?
The basic source code for Icon is the same for all com
puters. It uses conditional compilation to select sys
tem-specific code. However, there also are several
system-specific files that tailor the basic source code
for a specific computer. The MS-DOS source distribu
tion contains files specific to MS-DOS in addition to
the basic source code. Get the MS-DOS source dis
tribution if you are going to compile Icon on an MS-
DOS computer. The porting-source distribution is
intended for use on systems for which there is not yet
an implementation of Icon.

/ want to get Icon for my MS-DOS computer, but I don't
know whether to get the LMM or SMM implementation.
There is no simple answer to your question. The SMM
implementation is smaller and faster than the LMM
one, but the amount of memory available for Icon data
in the SMM is very limited. SMM Icon is fine for
programs that process data transiently (such as refor
matting a file, line by line), but it may run out of space
for a program that keeps a lot of data in memory (such
as tables of names and addresses). We recommend the
LMM for persons who intend to use Icon seriously.
You really should have at least 350KB of RAM avail
able to Icon to run the LMM version satisfactorily, al
though it can be made to run with less.

/ have a generic MS-DOS computer (not nearly IBM-com
patible). Will Icon run on it?
MS-DOS Icon does not require IBM hardware com
patibility. If your computer runs MS-DOS 2.0 or
higher, it should run Icon. We know of no verified ex
ceptions.

Why don't you provide makefiles in Microsoft C format with
your MS-DOS source distribution?
We include a public-domain make program with our
MS-DOS source distribution. This make program is
more powerful than the one Microsoft provides, and
it works for all C compilers (or any other make ap
plication). Thus, we need only one format for all
makefiles. If you want to produce Icon makefiles in
Microsoft format, we'll be glad to include them in fu
ture source-code distributions.

Dot's MS-DOS Icon work under Turbo C?
Not yet. We've gotten it to compile, making the chan
ges necessary to support the ANSI C draft standard.
However, it doesn't run. We haven't had time to look
for the cause of the problem yet.

Icon BBS at Arizona

We have changed the software on our electronic
bulletin board to the public domain RBBS

program. This has resulted in several new capabilities
and a variety of changes to the user interface.

The new BBS software offers a wider selection of file
transfer protocols. You may select from Xmodem,
Xmodem(CRC), windowed Kermit (which includes
unwindowed Kermit), and simple ASCII transfers.
Another feature of the new BBS system is that it
provides electronic mail exchange between users, in
cluding some members of the Icon Project.

The bulletin board, which is used for both the Icon
and SNOBOL4 Projects, is available from 5:00 p.m. to
8:00 a.m. Mountain Standard Time on weekdays and

all day on weekends. The phone number is (602) 621-
2283. We use a 2400-baud Hayes modem. The bulletin
board prompts for your first and last names, and the
city and state you are calling from. The system is set
up to reject certain names that it recognizes as bogus,
so it is important to enter your real name to these
prompts. After getting on, running the bulletin board
is simply a matter of walking through the system's
menus.

For greatest flexibility in using the file download
ing capabilities once you're logged on, we suggest you
set your serial port for 8-bit characters, no parity, and
1 stop bit.

Ordering Icon Books Outside the
United States

We've discovered that readers abroad have had
some difficulty in ordering the Icon books. Here

are addresses and other means of contact to use when
placing an order. Please give them to your booksellers.
It is our understanding that you may also place an
order directly with either Prentice-Hall or Princeton
University Press at these addresses.

PRENTICE-HALL

For The Icon Programming Language, Prentice-Hall,
1983:

U.S. Export Sales Office
Simon & Schuster International
International Customer Service Group
200 Old Tappan Road
Old Tappan, New Jersey 07675, U.S.A.
Tel: (201) 767-4990
Telex: 990348
Fax: (201) 767-5625

Carribean and South America
Same as U.S. Export Sales Office.

Mexico and Central America
Prentice-Hall Hispanoamerica, S.A.
Apartado 126 de Naucalpan
Estado de Mexico, MEXICO
Tel: (905) 358-8400
Telex: 3172379

United Kingdom, Europe, Africa, and Middle East
Prentice-Hall International (UK) Limited
66 Wood Lane End
Hemel Hempstead, Herts.
HP2 4RG ENGLAND
Tel: (442) 58531
Telex: 82445

Fax:(442)212485

India
Prentice-Hall of India Private Ltd.
M-97 Connaught Circus
New Delhi 110001, INDIA
Tel: 352590
Telex: 31-61808
Cable: PRENHALL NEW DELHI

Japan
Prentice-Hall of Japan, Inc.
Jochi Kojimachi Bldg. 3F
1-25, Kojimachi 6-chome
Chiyoda-ku Tokyo 10, JAPAN
Tel: (03)238-1050
Telex: 650-295-8590

Southeast Asia
Simon & Schuster (Asia) Pte. Ltd.
24 Pasir Panjang Road
#04-31 PSA Multi-Storey Complex
SINGAPORE 0511
Tel: 2789611
Telex: RS 37270
Fax:2734400

Australia and New Zealand
Simon & Schuster (Australia) Pty. Ltd.
P.O. Box 151
7 Grosvenor Place
Brookvale, N.S.W. 2100, AUSTRALIA
Tel: (02) 939-1333
Telex: PHASYDAA 74010
Fax: (02) 938-6826

Simon & Schuster (Australia) Pty. Ltd.
4A/6 Riddell Parade
Estemwick, Vic. 3185, AUSTRALIA

PRINCETON UNIVERSITY PRESS

For The Implementation of the Icon Programming Lan
guage, Princeton University Press, 1986:

Canada
Book Center (wholesaler)
1140BeaulacSt.
Montreal, Quebec
H4R 1R8 CANADA

Cnriad Ltd.
89 Isabella Street, Suite 1103
Toronto, Ontario
M4Y INB, CANADA

United Kingdom
Princeton University Press
15A Epsom Road
Guildford, Surrey
GUI 3JT ENGLAND
Tel. (483) 68364

Princeton Export Department
41 William St.
Princeton, NJ 08540 U.S.A.

Mexico, Central and South America, and the
Carribean, including Puerto Rico

EDIREP
5500 Ridge Oak Dr.
Austin, TX 78731 U.S.A.

Australia and New Zealand
Cambridge University Press
10 Stamford Road
Oakleigh
Melbourne, Victoria 3166, AUSTRALIA

India
UBS Publishers' Distributors Pvt. Ltd.
Delhi, Bombay, and Bangalore INDIA

Oxford University Press
Bombay, Calcutta, Delhi, Madras INDIA

Japan
United Publishers Services Ltd.
Kenkyu-sha Bldg., 9
Kanda Surugadai 2-chome Chiyoda-ku
Tokyo, JAPAN

South Africa
Oxford University Press
P.O. Box 1141
Cape Town, 8000, SOUTH AFRICA

All Other Countries
Princeton Export Department
3175 Princeton Pike
Lawrenceville, NJ 08648, U.S.A.

If you have any difficulty getting books from these
sources, please let us know.

A Brief History of Icon

Did you ever wonder where Icon came from? To
really understand what motivated it and why it's

the way it is, you'd first have to know the origins of
SNOBOL4, another high-level programming lan
guage that emphasizes processing strings and struc
tures. That's a long story. If you're interested, see
"History of the SNOBOL Languages" in History of
Programming Languages, Academic Press, New York,
1981; or "The Road to SNOBOL4" in Vol. 1, No. 3
(1987) of A SNOBOL's Chance, Catspaw, Inc., Salida,
Colorado.

To summarize this early history very briefly, the
first SNOBOL language originated at Bell Labs in 1962

because a few of us there needed a tool for manipulat
ing symbolic material, such as equations. SNOBOL
only had one data type, the string, and supported a
limited set of pattern-matching operations. While this
language was primitive in some respects, it was
sophisticated in others. For example, it managed
string storage automatically so that the user did not
have to worry about how long strings were. At the
time, a programming language for string processing
was something of a novelty, and it attracted a lot of in
terest. This led to the development of subsequent lan
guages, culminating in 1968 with SNOBOL4.

In the course from the original SNOBOL to
SNOBOL4, we developed a philosophy of program
ming language design and implementation. We
wanted ease of programming and high-level features,
so we created useful linguistic facilities without much
concern for how well they matched traditional com
puter architectures. In the spirit of making program
ming easier, we emphasized run-time flexibility,
freedom from arbitrary constraints, and a general at
titude that the burden should be on the implementa
tion rather than on the user. We didn't pay much
attention to the (then) conventional wisdom about
what programming languages should be like. In many
respects, the SNOBOL languages ran orthogonal to the
mainstream of programming-language design — and
deliberately. It's interesting to note that the design and
implementation of SNOBOL4 and PL/I were contem
poraneous.

SNOBOL4 is a rather remarkable language. In ad
dition to strings, it has many other data types, includ-
ing arrays, tables, and patterns. It has unusual
run-time flexibility; functions and operators can be
redefined at will during execution, and it is even pos
sible to compile new code during execution, so that a
program can modify itself.

One important aspect of the context for the
SNOBOL languages was the absence of the constraints
of design committees, corporate objectives, or com
mercial concern. The SNOBOL languages were really
the product of a small group, working largely inde
pendently. Although the persons involved changed
from time to time, there was a thread of continuity that
started in 1962 and still continues.

In 1971, the project moved to The University of
Arizona, where it took on more of the character of a
research project with, however, the same philosophi
cal objectives.

SNOBOL4, which is still in widespread use today,
carries the marks of its early origins. Despite its power
ful features, its syntax is awkward and antique, and it
lacks many amenit ies that developed in other
programming languages. More fundamentally, there
are conceptual problems in its pattern-matching
facilities, resulting in a language that is really a com
bination of two: one with conventional expression
evaluation and another with searching and backtrack
ing control structures.

We continued to try to find a better framework for
the best features of SNOBOL4 in combination with the
development of new linguistic facilities for handling a
broader range of problems. This led to a new language,
SL5 (SNOBOL Language 5) in 1975.

SL5 was notable for a sophisticated procedure
mechanism that allowed the components of procedure
invocation to be treated as separate language opera
tions — the creation of an environment, the binding of
arguments, and activation. Coroutines followed
naturally from this mechanism, and patterns were cast
in terms of environments for scanning procedures.
SL5 also refined operations on structures and included
a repertoire of basic string-processing operations that
were lacking in SNOBOL4.

SL5 was a full-blown programming language and
was completely implemented. It might have gone on
to become a rival to SNOBOL4, except for the dis
covery of a unifying view of traditional and pattern-
matching expression evaluation that led to the design
of Icon.

Next time: — "The Early Days of Icon"

The Icon Project (continued)

Last time, we started to describe the Icon Project,
which turned out to be difficult to do. That's

probably because it's not a well-defined entity. If
you've read that article, you've undoubtedly noticed
that it's impersonal: the Icon Project is described in
terms of "it" rather than "we".

That doesn't mean that there are no persons in
volved; in fact that's what the Icon Project is all about.
However, since the Icon Project has no formal or
ganization and no paid employees, we sometimes
have a hard time deciding who is and who isn't part
of it. Some persons devote a major part of their time to
the project, but most contribute only a small amount
of time. Some persons affiliated with the project are
here at The University of Arizona, and some are scat-

tered over the world. Some affiliations are ongoing
and some are transient.

In trying to describe the Icon project, it became clear
that there was no structural dividing line and also that
we risked leaving out persons who feel very much a
part of the Icon Project. At the same time, we risked
including some persons who might prefer anonymity.
So we've decided rather arbitrarily to say a bit about
only those persons who are at The University of
Arizona.

The office staff of the Department of Computer
Science handles most of the administrative aspects of
Icon distribution. Beth Stair is the person you're most
likely to get if you call the Icon Project. She handles
most orders, answers nontechnical questions, takes
care of accounts, maintains our address list, and so on.
She's been called "the Icon lady", a term she doesn't
like ("I'm not ready for that!"). Jana Zeff helps Beth,
assembles orders, and prepares mailings. Fabiola Car
denas takes care of copying Icon documents.

The laboratory staff of the Department of Computer
Science prepares Icon distribution material. John
Luiten, the lab manager, sees that supplies are stock
ed, sets up procedures, and supervises other members
of the lab staff. Bala Vasireddi copies tapes and disket
tes. The laboratory staff also provides programming
support for Icon itself. Bill Mitchell and Gregg
Townsend, software specialists, help with debugging
and contribute to the design and implementation of
new features. Gregg handles the VMS version of Icon.

Four research associates, working on their PhDs,
contribute to Icon language design and implementa
tion in addition to their individual research (see Icon
9{eu>s(ctterNo. 24). Janalee O'Bagy also handles most
technical questions about Icon. She's the one you're
most likely to hear from if you send electronic mail to
the Icon Project. Ken Walker presently is doing most
of the implementation on the next version of Icon. Kel
vin Nilsen is sysop for our BBS and also provides sup
port tools for Icon. Dave Gudeman handles source
version control and provides code improvements.

Madge Griswold is co-editor of the Icon 9{ciosittUr
and co-author of the books on Icon. She handles the
production of documentation and provides ad
ministrative support to the Icon Project.

Ralph Griswold directs the Icon Project. He also
handles most written correspondence and a good part
of the electronic mail. From time to time he does just
about everything from language design and im

plementation to sweeping the floor. He prefers im
plementation.

Language Corner

We're starting a new regular feature with this
O^eufslettcr— the Language Corner. It's devoted

to discussion of features of the Icon programming lan
guage. The difference between the Language Corner
and the Programming Corner is mainly that the
former deals with aspects of the language while the
latter deals with how to use it. Of course, the distinc
tion is not always clear, and we're certainly not going
to worry if there's some overlap.

We're starting the language corner with a subject
that we've found to be troublesome to some Icon
programmers: the concept of failure in expression
evaluation.

Failure

The term failure often confuses persons when they
start to learn Icon and the confusion sometimes per
sists in experienced Icon programmers. This confusion
may interfere with their ability to use the full range of
possibilities that Icon's expression evaluation offers.

The use of "failure" originated in SNOBOL4, where
an expression, as in Icon, can produce a result or fail
to produce a result. This makes it natural to say an ex
pression such as i < j either succeeds or fails.

That's fine as far as it goes. Icon gets into trouble
with this terminology because of generators — that is,
because an expression may not only produce one
result but many.

The mechanism whereby an expression can
produce more than one result is described in terms of
suspension and resumption. An expression that can
produce a result, and may be able to produce another,
suspends with that result. Subsequently, if the sur
rounding context needs another result, it resumes the
expression, and so on. The trouble is that the expres
sion may not be able to produce another result (most
expressions can only generate a finite number of
results). That is, to make the source of the confusion
clear, it may fail to produce a result when it's resumed.

Thus, an expression that produces many results
may then "fail". However, it also succeeded for every
result that it produced, so it's silly to say that it failed.
The confusion is between using the word "fail" for an
expression that produces no results at all and using the

same word when it produces one or more results and
then no more.

The problem, of course, is all in the use of language.
For example, in

every i := 1 to 10 do f(i)

the expression 1 to 10 produces 10 results and, al
though it then fails to produce another one when
resumed, you'd probably not think of it as failing. It
would be foolish to say that 1 to 1/J fails. On the other
hand, in

if find(s1 ,s2) = i then write(i)

you might be inclined to say find(s1 ,s2) failed if it
didn't produce a value equal to i, even if it produced
10 values not equal to i. That would, of course, be con
fusing.

The confusion is compounded by the use of the ex
pression fail to indicate that no result is produced by
calling (or resuming) a procedure. The standard for
mat of a programmer-defined generator is:

procedure gen()

suspend exprl | expr2 | ...
fail

end

The fail at the end does not mean that gen() fails to
produce a result; instead, it means that it eventually
fails to produce a result after being resumed several
times. Here, it's a bit clearer if you leave the fail out and
let flowing off the end of the procedure body take care
of it.

Part of the problem with all this is that the English
language doesn't come equipped with all the words
that are needed to succinctly describe the concepts that
ha vebeen developed in programming languages. This
is, of course, a consequence of the fact that program
ming languages contain new concepts. To describe
these concepts, it's necessary to invent new terms, use
cumbersome phrases, or try to use existing words in
ways that are suggestive of the concepts. The use of
"failure" to describe an aspect of expression evalua
tion just has not worked out well. Unfortunately, it is
ingrained in the literature and the vocabulary of many
programmers and it cannot simply be expunged in
favor of better terminology (if we could think of any).
On the other hand, it's impractically cumbersome to
say "an expression does not produce any result when
it is evaluated" or "an expression does not produce a
result when it is resumed". Something like "an expres
sion blonks" or "an expression bleeks" is not very ap

pealing either. If you have a good solution to this
problem, we'd like to know about it.

In the absence of a good solution to this problem of
terminology, keep in mind the distinction between the
two cases. Where the context does not make the dif
ference clear, try to think something like "its evalua
tion fails" or "i ts r e s u m p t i o n fai ls" — still
cumbersome, but better than getting it wrong.

Incidentally, Icon's terminological heritage from
SNOBOL4 has led to another misunderstanding: that
expressions signal success or failure. The problem with
this view is not with the idea of a signal — in the im
plementation, it's just that — it's with the accompany
ing assumption that the evaluation (resumption) of an
expression produces two things, a result and a signal,
and that if the signal is "failure", the result is dis
carded. This assumption probably comes about be
cause most p r o g r a m m e r s are familiar with
programming languages in which the evaluation of an
expression always produces a result. They can't quite
accept the fact that an expression may not produce a
result and figure that the idea of not producing a result
is some kind of trick to hide the fact that a result is dis
carded. It isn't a trick. When an Icon expression fails
(watch it!), it's because it has no result to produce.

On the other hand, thinking of expressions as sig
naling doesn't lead to any essential contradictions. If
you must think of it this way, all we can say is that
you'd be better off if you could think of it as it really
is. The unnecessary concept of a signal just gets in the
way and increases the possibility of confusion. (The
next thing you know, you'll be wanting to test this
non-existent signal, store it as a value, or whatever.)

Programming Corner
Pattern Words

In the last 'Ng.zvsUtttr, we posed the problem of
writing a procedure patwords(s) that returns the pat
tern word for s. (A pattern word is obtained by replac
ing all occurrences of the first letter of a word by A, the
next different letter by B, and so on.)

Experienced Icon programmers naturally turn to
map(s1 ,s2,s3) when there is a hint of character sub
stitution or rearrangement in the air. The problem
above is a natural for map — the difficulty is finding
the unique characters on which to base a substitution.

Most solutions we received were based on remov
ing duplicate characters in the word by "convention-

al" string processing, followed by a straightforward
use of map. Here's one that's based on a submission
by Gregg Townsend:

procedure patword(s) # Solution 1
static letters

initial letters := string(&lcase)

out :=""
every c := !s do

if not find(c.out) then out ||:= c
return map(s, out, letters [1+:*out])

end

The static identifier is used to avoid cset-to-string
conversion every time the function is called. This
makes a noticeable difference, as does the use of find
instead of upto — the latter requires a string-to-cset
conversion in the loop.

Ardent Icon programmers try to find a way to do it
entirely with map — both because of the challenge and
because of the knowledge that map operates on all
characters of its arguments in each call, avoiding loops
over the characters at the source level.

Here is such a solution, based on a submission by
Ken Walker:

procedure patword(s) # Solution 2
local numbering, orderS, orderset, patlbls
static labels, revnum

initial {
labels := &lcase || &lcase
revnum := reverse(Scset)
}

1: Map each character of s into another character, such that
the new characters are in increasing order left to right (note
that the map function chooses the rightmost character of its
second argument so things must be reversed).
2: Map each of these new characters into contiguous letters.

(numbering := revnum [1 : *s + 1]) | stopfword too long")
orderS := map(s, reverse(s), numbering)
orderset := string(cset(orderS))
(patlbls := labels [1 : *orderset + 1]) |

stop("too many characters")
return map(orderS, orderset, patlbls)

end

Yet another all-map solution is:

procedure patword(s) # Solution 3 (anonymous)
static backwards, letters

initial {
backwards := reverse(&ascii)
letters := string(&lcase)
1

z := reverse(s)
z := map(z,z,backwards [1:*z + 1])
cz := cset(z)
return reverse(map(z,cz,map(cz,cz,letters [1 :*cz + 1])))

end

We'll leave you to figure this one out.

The concept of "good style" is more controversial
in Icon than in many other programming languages.
We personally prefer the first solution for clarity and
the second for cleverness. Timing is more objective.
Solution 2 is fastest. Here are comparative timings
from processing 10,000 words from the word list from
Webster's 2nd. The results are normalized to Solution
2:

Solution 1
Solution 2
Solution 3

1.15
1.00
1.51

It's worth noting that the timing is very sensitive to the
method used. Solutions that use table-lookup instead
of mapping typically are three to five times slower
than Solution 2. Even putting the cset-to-string con
version in the body of the procedure in Solution 1 adds
about 20% to its running time.

Environment Variables

The last tNstvsletter also asked for a procedure
getenv(s) for UNIX that returns the value of the en
vironment variable s if it's set but fails otherwise.

The solutions we got varied somewhat, depending
on the flavor of UNIX involved. The approach we
liked best, used by Mike Beede and Dave Hanson, is
to read in all of the environment variables the first time
getenv is called. Here's a combination of their submis
sions for use with Berkeley UNIX:

procedure main()
while s := read() do

write(getenv(s))
end

procedure getenv(s)
local pipe, line
static environment
initial {

environment := table()
pipe := open("printenv","pr")
while line := read(pipe) do

line ? environment [tab(upto('='))] := (move(1),tab(0))
close(pipe)
}

return \environment [s]
end

file:///environment

Benchmarking Icon Expressions

In the last 9{ezvsUtUr, we talked a little about effi
cient p rogramming in Icon. There are several
problems in writing efficient programs in Icon. One
problem is that Icon often provides many different
ways of accomplishing a task, and it's often difficult
to tell which is the most efficient. Another problem is
that many of Icon's features do not have any direct
counterpart in the architecture of the computers on
which Icon runs. You can guess how a feature like
table-lookup is implemented, but you may guess
wrong. Even if you know, you may be mistaken about
its speed. In other cases, features may be implemented
in ways that you'd not expect. Even if you are an ex
pert on the implementation, you may be surprised by
how relatively fast or slow some operations are. Even
those of us who did the implementation frequently are
wrong about speed.

In theory, if you knew enough about the implemen-
tation, you could come up with analytic results — for
mulas, bounds, and so forth. In practice, this approach
has limited usefulness because of the complexity of the
problems and the sensitivity of the operations to the
kinds of data on which they operate. An alternative is
an empirical approach: measurement of different
kinds of expressions or small program segments. Such
measurements can help answer questions, pinpoint
potential problems, and suggest the most efficient ap
proach to a particular problem.

Benchmarking expression evaluation isn't difficult.
We have developed a few tools for translating expres
sions of interest into programs that time their evalua
tion in loops and report the results in a convenient
format. These tools are described in IPD18, which is
available for the asking.

To see how helpful benchmarking can be, consider
the subscripting of a list: a[i]. This expression is simple
enough, and in a more conventional programming
language you probably would have a good idea of
how it's implemented. But Icon supports stack and
queue access as well as positional access, so you might
guess that positional access is not as simple as it ap
pears.

In fact, how fast positional access is depends on
how the list is constructed. This is a case where
benchmarking is useful. Consider two 1,000-element
lists, a1 and a2 constructed as follows:

a1 :=list(1000)
a2 := list []
every 1 to 1000 do put(a2,&null)

Benchmarking shows the following comparative
times for referencing the first and last elements of the
two lists:

a1[1]
a1[1000]
a2[1]
a2[1000]

0.1084
0.1084
0.1084
0.2914

The time for referencing the first and last elements
of a1 is the same, as might be expected. But why
should it take longer to access the last element of a2?
Both lists have the same size and the same values, but
because of the way lists are implemented in Icon, they
do not have the same structure. The first consists of a
single block of 1,000 elements, while the second con
sists of a doubly-linked list of smaller blocks. The extra
time to access the last element of a2 is a consequence
of chaining through the blocks to get to the last one.
(See the Icon implementation book for details.)

Questions: How long do you think a1 [1001] and
a2[1001] take? Suppose you build a list by adding ele
ments in the fashion above but later need to access the
elements by position? Is there anything you can do to
eliminate the referencing overhead that results from
the piecemeal construction of the list?

Next time we'll give some more results from
benchmarking and extend it to measure how much
storage various Icon expressions allocate.

Primes

Andrew Appel's "what does it do?" submission in
the last tyiOsUtttr provoked this response from Bill
Griswold:

Here is a sequence of modifications of the prime
program in the last 9\feivsfetter. The first program is the
original submission. The next three are modifications
that attempt to restrict the range of iteration for check
ing if the current number is composite. Although the
latter programs look more cumbersome (a lot of co-ex
pression creation and invocation), they are actually
competitive in speed for large numbers of primes. This
is probably due to the fact that the sieve is more dis
criminate than the simpler programs. (You can also
contrast these programs with the sieve in sample
programs distributed with UNIX Icon systems, which
isn't lazy. It is much faster than any of these).

procedure main()
every write((i := 2) | (|i := i + 1) & (not(i = (2 to i) * (2 to i))) & i)

end

10

procedure main()
every write(i := seq(2) & (not(i = (2 to i) * (2 to i))) & i)

end

procedure main()
every write(i := seq(2) & (not(i = (I := (2 to iA0.5)) * (I to i))) & i)

end

procedure main()
every write(i := seq(2) & (not (i = (k := 2 to i/2)*(i/k))) & i)

end

This program produces the primes lazily using the
basic sieve technique and co-expressions. Nested
creation of co-expressions eats space and causes (co-
expression?) stack overflow. This is a modified ver
sion of a program by Robert Henry, which is a
translation of a Miranda program.

procedure main(arglist)
every write(sieve(create seq(2)))

end

procedure modcheck(s, p)
repeat if ((x := @s) % p) -

end
•- 0 then suspend x

procedure sieve(e)
suspend (p := @e)
every suspend sieve(create modcheck(e, p))

end

Here's a modified version of the sieve program.
Elimination of tail recursion in the sieve lets the
program run longer than the more straightforward
version of this program.

procedure main()
every write(sieve(create seq(2)))

end

Check that every value in s is relatively prime to p
procedure modcheck(s, p)

while x := @s do if (x % p) ~= 0 then suspend x
end

Sieve of Eratothsenes, sans tail recursion
procedure sieve(e)

repeat {
suspend p := @e
e := create modcheck(e, p)
}

end

And here's the one from the distributed sample
programs:

This program illustrates the use of sets in implementing the
classical sieve algorithm for computing prime numbers.

procedure main(arglist)
local limit, s, i
limit := arglist [1] | 100
s := set([])
every insert(s,1 to limit)
every member(s,i := 2 to limit) do

every delete(s,i + i to limit by i)
primes := sort(s)
write("There are ",*primes," primes in the first",limit," integers.")
writefThe primes are:")
every write(right(!primes,*limit + 1))

end

Queens Never Die

The non-attacking n-queens problem continues to
fascinate persons who are interested in program struc
ture. Here's a recent contribution by Paul Abrahams,
based on an earlier program by Steve Wampler:

global n, solution

procedure main(args)
local i
n := args [1] | 8 # 8 queens by default
if not(0 < integer(n)) then stop("usage [n j")
solution := list(n) # ... and a list of column solutions
writefn,"-Queens:")
every show(q(1)) # show the result of placing queens

in cols 1 - n in all possible ways
end

q(c) - place queens in columns c through n in all possible ways.
Suspend with a list of row positions for columns c through n

procedure q(c)

local r
static up, down, rows
initial {

up:= list(2*n-1,0)
down := list(2*n-1,0)
rows := list(n,0)

every (r := 1 to n,if 0 = rows [r] = up [n+(r-c)] = down [r+c-1]
then rows [r] <- up [n+(r-c)J < - down [r+c-1] <- 1) do

suspend {
if c = n then [r] else [r] ||| q(c + 1)
}

end

/ /

Show the solution on a chess board. The argument is a list of
row positions for columns 1 through n.

procedure show(solution)

static count, line, border
initial {

count := 0
line := repl("| ",n) || "|"
border := repl(" ",n) | |"-"

write("solution:", count+:=1)
writef ", border)
every line [4*(!solution - 1) + 3] <-

write(" ", line)
write(" ", border)
)

write()
end

"Q" do |

Icon Electronic Clip-Art "Contest"

Now that we're using a desktop publishing system
to produce the 9{$ivsfetter, we can provide a more

varied and visually interesting format. We've tried to
resist the temptation to "tart-up" the 9\(ezos fetter with
a lot of gimmicks, but there are some things we can do
that we've not attempted yet.

For example, we could include a logo for the Icon
programming language — except that we don't have
one.

So we're soliciting electronic clip art for a possible
Icon logo, as well as other art related to Icon. We'll
publish the best entries we receive in the next 9\[eu>sfet-
terand award a $50 credit at the "Icon Store", good for
either program material or publications, to the entry
we judge to be the best. We'll also award $15 credits
to any other entries we decide to publish.

Entries are not limited to proposed logos — any
thing related to Icon is okay. We're looking for artistic
merit and subject interest.

The usual contest rules apply: All entries must be
original and free of copyright or other restrictions. All
entries become the property of the Icon Project. The
decision to publish entries and to award prizes is sole
ly up to the editors of the Icon 9{ewsfetter, and all
decisions are final.

All entries must be submitted in both printed and
machine-readable form in one of the following for
mats: MacPaint, Macintosh PICT, PC Paintbrush (but
not Paint), GEM Draw, GEM Paint, DFX (Drawing In
terchange Format), or Encapsulated PostScript. Be
sure to tell us what program you used and the format.

We can read MS-DOS format diskettes, 3.5" as well
as 5.25" DD and HD, and also Macintosh diskettes.

The deadline for entries is January 15,1988. We will
consider later entries for inclusion in a subsequent
issue of the 9{eivs(etter.

(We have a feeling we're going to regret this adven
ture, but it seems like a fun idea, so we're giving it a
whirl.)

New Documents

Two new technical reports related to Icon are now
available:

• IPD18, Benchmarking Icon Expressions: This report
describes some simple tools that can be used to time
the evaluation of individual Icon expressions. The
tools are written in Icon and program listings are in
cluded.

• IPD41, Tabulating Expression Activity in Icon: This
report describes a system for counting the number of
times each expression in an Icon program is evaluated,
produces a result, fails, and is resumed. The results are
summarized in a program listing in which the counts
appear below the corresponding expressions. The
tabulation system uses an Icon variant translator and
a few simple Icon programs. Examples and program
listings are included.

Single copies of these reports are available, free of
charge. To get copies, simply list the report numbers
as given above on the order form at the end of this
9{ezvs fetter and write "free" in the price column. There
is no charge for shipping.

Upcoming in the Newsletter

The following topics are scheduled for inclusion in
the next 9{ezusfetter in addition to the regular fea

tures:

• The second in the series of articles on the history
of Icon.

• A discussion of what is involved in adding new
functions to Icon (delayed from this issue).

• Contributions from readers (if we get any).

12

Ordering Icon Material
Shipping Information: The prices listed on the

order form at the end of this 9{eivsfetter include han
dling and shipping in the United States, Canada, and
Mexico. Shipment to other countries is made by air
mail only, for which there are additional charges as
follows: $5 per diskette package, $10 per tape or
cartridge package, and $10 per documentation pack
age. UPS and express delivery are available at cost
upon request.

Payment: Payment should accompany orders and
be made by check or money order. Credit card orders
cannot be accepted. Remittance must be in U.S. dollars,
payable to The University of Arizona. There is a $10
service charge for a check written on a bank without a
branch in the United States. Organizations that are un
able to pre-pay orders may send purchase orders, but
there is a $5 charge for processing such orders.

What's Available

Icon program material falls into four categories:
UNIX, VMS, personal computer, and porting.

The UNIX package contains source code, the Icon
program library, documentation in printed and
machine-readable form, test programs, and related
software — everything there is. It can be configured
for most UNIX systems. The documentation includes
installation instructions, an overview of the language,
and operating instructions. It does not include either
of the Icon books. Program material is provided on
magnetic tape or cartridge.

The VMS package contains everything the UNIX
implementation contains except UNIX configuration
information and UNIX-specific software. However,
the UNIX and VMS systems are configured different
ly, and neither will run on the other system. The VMS
package is distributed only on magnetic tape.

Icon for personal computers is distributed on dis
kettes. Because of the limited space that is available on
diskettes, in most cases there are separate packages for
the different components: executable files, source
code, and the Icon program library. Each package con
tains printed documentation that is needed for instal
lation and use.

Icon for porting is distributed on MS-DOS format
diskettes. There are two versions, one with a flat file
system and one with a hierarchical file system. Both
versions are available in either plain ASCII format or
compressed ARC format.

There are two documentation packages that con
tain more than is provided with the program pack
ages: one for the language itself and one for the
implementation. These documentation packages con
tain the language and implementation books, respec
tively, together with supplementary material.

When ordering, use the codes given in parentheses
at the ends of the descriptions that follow.

Program Material

Note: The only program material that has been up
dated since the last 9{ezvsfetter (June 13, 1987) is
marked by the symbol <•".

UNIX Icon: Tapes are $25; both cpio format (UT-C) and
tar format (UT-T) are available. Specify 1600 or 6250
bpi. Cartridges are $40 (DC 300 XL/P, raw mode only);
specify cpio (UC-C) or tar format (UC-T).

*• VMS Icon: Tapes are $25; specify 1600 or 6250 bpi
(VT).

Icon for Personal Computers:

Amiga Icon executables: one 2S/DD 3.5" diskette, $15
(AME).

Atari Icon executables: one 1S/DD 3.5" diskette, $15
(ATE).

** Atari Icon source: one 2S/DD 3.5" diskette, $20
(ATS).

Macintosh (MPW) Icon executables: one 1S/DD 3.5"
diskette, $15 (ME).

Macintosh (MPW) Icon source: one 2S/DD 3.5" dis
kette, $15 (MS).

MS-DOS SMM Icon executables: one 2S/DD 5.25" dis
kette, $15 (DE-S).

MS-DOS LMM Icon executables: two 2S/DD 5.25" dis
kettes, $20 (DE-L).

MS-DOS Icon source and test programs: two 2S/DD
5.25" diskettes, $25 (DS).

MS-DOS Icon program library: one 2S/DD 5.25" dis
kette, $15 (DL).

UNIX PC Icon executables and program library: one
2S/DD 5.25" diskette, $20 (UPEL).

XENIX Icon SMM executables: one 2S/DD 5.25" dis
kette, $15 (XE-S).

XENIX Icon LMM executables: one 2S/DD 5.25" dis
kette, $15 (XE-L).

13

XENIX Icon source and test programs: five 2S/DD
5.25" diskettes, $40 (XS).

XENIX Icon program library: one 2S/DD 5.25" dis
kette, $15 (XL).

Icon for Porting:

Flat file system, ASCII format: four 2S/DD 5.25" dis
kettes, $35 (PF-A).

Flat file system, ARC format: two 2S/DD 5.25" disket
tes, $25 (PF-K).

Hierarchical file system, ASCII format: four 2S/DD
5.25" diskettes, $35 (PH-A).

Hierarchical file system, ARC format: two 2S/DD
5.25" diskettes, $25 (PH-K).

Documentation

Language documentation package: $29 (LD).

Implementation documentation package: $40 (ID).

Back issues of the 9{eiOsfetter: $.50 each for single is
sues (specify numbers), $6.00 for a complete set (#1-
24) (NL). There is no charge for overseas shipment of
single back issues, but there is a $5.00 charge for the
complete set.

Order Form

Icon Project • Department of Computer Science • Gould-Simpson Building • The University of Arizona • Tucson, AZ 85721 USA

Ordering information: (602) 621-2018

name

address

city

(country)

state zipcode

telephone

• check if this is a new address

qty. code description price

subtotal

sales tax (Arizona residents*)

extra shipping charges

u , , . . TU , • • •. < « • purchase-order processing
Make checks payable to The University of Arizona

other charges

total

total

*The sales tax for residents of the city of Tucson is 7%. It is 5% for all other residents of Arizona.

14

