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Odds and Ends 
The Icon Extension Interpreter 

The Icon extension interpreter (EI) described in 
fhfezvsfetterNo. 25 sparked an unusual amount of in
terest. We would like to emphasize that EI is part of a 
research project at the University of Washington. The 
Icon Project does not have EI, nor is EI presently avail
able for distribution. However, Bill Griswold at the 
University of Washington is planning to provide part 
of EI, the ability to call any C procedure from Icon, in 
a future version of Icon, which we then will be able to 
distribute. There is, as yet, no projected completion 
date for this extension to Icon. 

Icon Clip-Art Contest 

We've received several submissions to our clip-art 
contest. Those received by the deadline (January 15) 
appear scattered throughout this 0\[eivsfetter. Credits 
are given at the end of the 9^eu>sfetter. 

We haven't selected artwork for our permanent 
logo yet. We'll continue to accept submissions for 
logos and other artwork related to Icon, and we will 
publish the most interesting material in subsequent 
9\[ezVsfetteis. We now have a scanner, so we can accept 
high-contrast black and white artwork in addition to 
material in machine-readable form. 

Implementation News 
Version 7 of Icon is Released 

Version 7 of Icon is now available. This version con
tains several new features; the major ones are: 

• New functions, ranging from inserting and remov
ing tabs in strings to bit-wise operations on integers. 

• Error traceback for run-time errors that shows pro
cedure calls to the site of the error and the expression 
in which the error occurred. 

• Procedures with a variable number of arguments. 

• Correction of the handling of co-expression return 
points to support coroutine applications, co-expres
sion tracing, and other new co-expression features. 

• Correction of the handling of scanning environ
ments so that the values of &subject and &pos are 
properly restored when a scanning expression is ex
ited. 

• Optional conversion of most run-time errors to ex
pression failure, allowing a program to continue ex
ecution in situations that otherwise would cause 
termination. 

• The ability to save an executable program image on 
UNIX 4.«bsd systems. 

• New keywords that provide access to information 
on storage utilization. 

Version 7 is now available for UNIX systems, 
VAX/VMS (VMS 4.6 or higher), MS-DOS (LMM), 
XENIX (LMM), and for porting to other computers. 
See the order form at the end of this 9vfezvsfetter. 

Version 7 implementations for the Amiga, Atari ST, 
the Macintosh (under MPW), and UNIX PC are in 
process and will be announced in future 9{ezi>sfettem. 

One casualty of Version 7 is the so-called small-
memory model implementation for MS-DOS, PC/IX, 
the PDP-11, and XENIX. Icon has been pushing the 



limits of the small memory model for some time and 
finally exceeded the text-segment limit in a revision to 
Version 6. For a while, we tried to work around the 
problems by subsetting Icon, but it just didn't work. 

We realize that persons whose personal computers 
have only a small amount of memory won't be able 
run the new version of Icon. A large majority of per
sonal-computer users can run Version 7 of Icon, 
however, and many of those have clamored for the in
creased functionality that inevitably means a larger 
program. The future clearly lies in the direction of 
cheaper memory and access to more of it. In fact, most 
of the problems we see in the MS-DOS Icon user com
munity relate to the 640 KB limitation in MS-DOS. 

We will continue to distribute the small-memory-
model implementation of Version 6 of Icon for MS-
DOS, PC/IX, the PDP-11, and XENIX. 
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Update Policy 

Vendors of commercial software make allowances 
for the cost of updates when determining the original 
purchase price. Our charges for software are intended 
only to recover costs, and we do not increase them to 
account for updates. However, we realize that it is un
fair to expect a recent purchaser of Icon to have to buy 
a new version immediately. Consequently, we offer 
updates to Version 7 as follows: Persons who pur
chased Version 6 of Icon for UNIX, VAX/VMS, MS-
DOS (LMM), or XENIX (LMM) after January 15,1988 
may obtain an update to Version 7, free of charge, by 
returning the original media (tape, cartridge, or dis
kettes). This offer is good until April 15, 1988. Please 
use the order form at the end of this fT^ezos fetter when 
requesting an update, marking it as "free". 

Status of the Icon Program Library 

The Icon program library is not yet ready for Ver
sion 7 of Icon. There are several reasons for this: 

• We need to update the program library to use Ver
sion 7 facilities for m a x i m u m efficiency and 
functionality. 

• We have received a large number of contributed 
programs. Adding them to the program library takes 
considerable time. 

• We did not want to delay the Icon Version 7 distribu
tion just because of the library. 

Version 6 of the Icon program library, which is com
patible with Version 7 of Icon, is included with the 
Version 7 UNIX and VMS Icon distributions. Version 
6 of the Icon program library is also available separate
ly for other implementations. 

We expect that Version 7 of the Icon program 
library will be ready for distribution in the summer of 
1988. Its availability will be announced in a forthcom
ing 9{ezosfetter. 

Icon for Prime Computers 

Ed Feustel of Prime Computer has implemented 
Version 6 of Icon to run under their PRIMIX operating 
system. We hope to have copies available for distribu
tion soon. If you are interested, send us a note. 

mailto:icon-project@arizona.edu


ICEBOL3 in April 
Once again, South Dakota State College is hosting 

the annual ICEBOL conference. It will be held April 21 
and 22. Here's a description from their flyer: 

ICEBOL3, the International Conference on Sym
bolic and Logical Computing, is designed for teachers, 
scholars, and programmers who want to meet to ex
change ideas about non-numeric computing. In addi
tion to a focus on SNOBOL, SPITBOL, and Icon, 
ICEBOL3 will feature introductory and technical 
presentations on other dangerously powerful com
puter languages such as Prolog and LISP, as well as on 
applications of BASIC, Pascal, and FORTRAN for 
processing strings of characters. Topics of discussion 
will include artificial intelligence, expert systems, 
desktop publishing, and a wide range of analyses of 
texts in English and other natural languages. Parallel 
tracks of concurrent sessions are 
planned: some for experienced com
puter users and others for interested 
novices . Both ma in f r ame and 
microcomputer applications will be 
discussed. 

For further information, contact: 

Eric Johnson 
ICEBOL Director 
114 Beadle Hall 
Dakota State College 

Madison, SD 57402 U.S.A. 
(605) 256-5270 

eric@sdnet(bitnet) 

Revision of the Icon Language Book 
The Icon Programming Language (Prentice-Hall, 

1983) is the only complete description of Icon. It 
describes Version 5, however, while the current ver
sion of the language is Version 7. We provide a tech
nical report that supplements the book as an interim 
measure, but we are planning to revise the book itself 
to bring it up to date. 

A book revision such as this takes a long time; in 
addition to the writing itself, time is required for 
production and printing. We expect that the revision 
will probably take at least a year to complete. 

We intend to rewrite the book completely. In addi
tion to including new features, we plan to introduce 
generators and string scanning earlier, extend the ex
ercises, and substantially change the form of the 
reference material in the appendices. 

If you have any suggestions about revising this 
book, please let us know. 

Feedback 
The discussion of expression failure in the last 

9{$zvsfetter provoked the following comments from 
three readers: 

David Talmage: 

The problem, it seems, is how to distinguish be
tween an expression that produces no results at all, 

one that produces some that are use
ful (i.e. we want their values) but 
eventua l ly s tops p roduc ing any 
values, and one that produces values 
that we can't use until it runs out of 
values. 

Suppose we use "fail" to describe 
an expression that p roduces no 
values at all. That seems reasonable to 
me. 

Suppose we use "finished" to 
descr ibe an express ion that has 
produced some values we want and 
then produces no more. "Exhausted" 
would also work well in this case. 

Suppose we use "lose" to describe an expression 
that produces no values we can use or that has yet to 
produce a useful value. 

The difficulty here might be in changing the "type" 
of expression from "lose" to "finished". An expression 
could "lose" for its entire life, if you will, only to 
produce a value we want just before it expires. I would 
call that kind of expression "finished" or "exhausted". 

Robert Gustafson: 

Your essay on the semantics of "failure" and "fail" 
as used in Icon was interesting and illustrates a com
mon dilemma: when there are a number of efforts 
moving forward independently (normal for research), 
the nomenclature does not get standardized for awhile 
(if ever). You might look into the realm of multiproces
sor/parallel system languages for a more suitable 



word. As an example, the language Occam uses the 
word SKIP as one way to indicate the termination of 
a process. In this context it means "do nothing and 
move on to another part of the program". In a wider 
context, SKIP might be construed as having the pos
sibility of continuing after having skipped one or more 
times. To counter this thought, you might consider the 
word QUIT as an alternative. 

I agree that implementation of either of these sug
gestions requires rewriting lots of documentation. 

Dav idson Corry: 

The concept of "failure" as discussed in the first 
Language Corner started me thinking. When I first en
countered the idea in SNOBOL2 back in the mid-60s, 
it seemed utterly natural (and a Godsend, for reasons 
I will discuss). But in trying to explain to colleagues 
what sets Icon apart from the mainstream of program
ming languages, I have had to recognize that some 
people don't grasp the concept immediately. 

At this late date, it appears that terminology and 
teaching are the only tools left, since fail is inextricab
ly a keyword (perhaps the key word) in the language. 

Consider the following C function: 

#define NULL 0 
/* return a pointer to the position of character K in string */ 
/* S or NULL if K is not found in S */ 
char *index(s,k) 

char *s; 
char k; 
{ 
for(; *s; ++s) 

if (*s == k) 
return(s); 

return(NULL); 
} 

The use of a NULL pointer is a typical C idiom to in
dicate "failure" of a search. The idiom leads to useful 
abbreviations of code because of two tricks designed 
into the language. First, a pointer to valid data is 
guaranteed to be nonzero (hence a zero-valued 
pointer is "reliably unreliable"). Second, conditional 

expressions are tested on zero/nonzero values, so the 
fragment 

if (p = index(string.k)) 
printf("%c in %s at %x",k,string,p); 

else 
printf("%c not found in %s",k,string); 

works as expected. These two tricks are specified as 
part of the design of the C language, and so program
mers may use them comfortably — but they are tricks! 
Suppose that you need a function which returns a byte 
value, and all 256 possible byte values, including zero, 
are valid ("successful") values. The only way you can 
also indicate an invalid "failure" result is by using an 
auxiliary variable: a "flag" or "signal". 

In a sense the idea of a signal is not incorrect. An 
Icon expression which succeeds gives (I am trying to 
avoid the Icon term "produces") a result which is an 
element of "value space" (that is, the result is &null, a 
string, a cset, a number or ...). An expression which 
fails "gives a result" which is not an element of "value 
space" (i.e. "none of the above"). Whether or not the 
computation concludes within "value space" is the 
signal result. You could say that an Icon expression 
potentially gives two results, one within "value space" 
and the other within "success space". "Success space" 
is a dimension orthogonal to "value space" and com
prises only two states, "success" and "failure". A com
putation which reaches a conclusion must conclude 
either with success (and specifies a result in "value 
space") or with failure (and does not specify a result in 
"value space"). The only other possibility \s a com
putation which does not conclude — a hung machine, 
which is in a class of tools I have not found useful. 

This paradigm isn't much of a teaching aid — be
side it, "failure" appears positively pellucid — but it 
is suggestive. "Success space" is reminiscent of a state 
machine, and that leads us in a useful direction. 

Every Icon expression is a generator. This is 
obscured by the fact that expressions in traditional lan
guages are all "degenerate" generators: they have a 
result sequence of length 1. We are so used to writing 
these degenerate expressions in other languages that 
we write them without thought in Icon — and wonder 
why the program doesn't operate in an Iconesque 
manner. 

An expression whose result sequence consists of a 
single value can (and will) be viewed as complete in 
itself. Every "activation" (evaluation) of the expres
sion re-starts the result sequence and exhausts it. 
There is no connection to the past or future. In fact, the 



only way to "connect" a traditional function to its past 
results is to give it a "memory": static variables which 
preserve older states of a function activation and, in 
essence, import those states into the present via an ex
plicit side-effect. The static variables are informal 
parameters of the function. 

What distinguishes a true generator from these 
"snapshot" expressions is that a generator produces a 
result sequence, not merely a "result". "Sequence" im
plies that the expression produces results over a 
period of time: the generator is an entity which has 
duration. Via the resumption mechanism, Icon 
provides a generator with a memory that is fully en
capsula ted , instead of relying on fragile and 
dangerous static-variable side effects. A generator is a 
module which modifies itself as appropriate to its ex
perience. It evolves ... and that is our illuminating 
metaphor. 

Life can be defined as the property of responding 
to stimulation. If an organism does not respond to 
stimulation, it is dead. "Stimulation" in the Icon con
text corresponds to evaluation or activation of an ex
pression. 

An Icon expression is alive until it dies. (It produces 
results from its result sequence until the sequence ter
minates. It succeeds until it fails.) 

An expression may be stillborn. (Its result sequence 
is empty.) 

It may be immortal. (Its result sequence is infinite, 
does not terminate.) 

A generator may be killed or (sic) terminated. (We 
might nickname the explicit limitation operator \ 
"Clotho".) 

Death is contagious. (If the evaluation of an argu
ment fails, the expression of which the argument is 
part also fails.) 

A dead expression cannot be reanimated. (Once a 
result sequence has ended, further resumption does 
not produce results. In fact, it appears that Icon has no 
way to resume an expression which has failed — 
which makes sense.) However, it can be reborn. (By 
activating the expression again, which restarts the 
result sequence from scratch.) 

The Icon keyword create conceives an expres
sion/generator in embryonic form. (Creating a co-ex
pression "primes" the expression but does not 
"trigger" it.) The embryo can be cloned (refreshing a 
co-expression produces a copy of the co-expression 

with local identifiers reset to their "primed" values) 
but the mature zygote cannot be cloned directly (there 
is no way to capture a co-expression in its "current" 
state, only in its "primed" state). And so on . . . 

From Our Mail 
J want to make copies of the 9{ezvsfetter to give to my 
friends, but I notice it is copyrighted. How does this affect 
implementations (which I thought were in the public 
domain) and other Icon documents? 
The 9(ezvsfetter is copyrighted to protect our right to 
publish material in it at a later date. Our written per
mission is required to make copies of the 'Newsletter. 
We're generally willing to provide such permission, 
but we'll also be happy to mail copies of the 9{ezosfet-
ter to interested persons — just send us their names 
and (postal) addresses. Copyright applies only to 
documents on which the copyright notice appears. Im
plementations of Icon are not copyrighted and may be 
duplicated freely. The same freedom applies to Icon 
documents that do not bear copyright notices. 

I've tried to get Icon from Arizona via FTP, bu t it's very slow 
and I lose the connection before the transmission is complete. 
What's wrong? 
If you're reaching arizona.edu via 192.12.69.1, slow
ness is par for the course. Try using 128.196.6.1 and see 
if you have any better luck. If you can't get satisfaction 
with 128.196.6.1, let us know. 

Any news yet on Icon for the Apollo Workstation? 
We have learned of at least one successful implemen
tation. The problems previously reported seem related 
to the installation process rather than to Icon itself. The 
most recent word we have is that the implementation 
of Version 7 of Icon is proceeding without problems 
under the latest release of the Apollo operating system. 
We presently do not have detailed information or ac
cess to a working version of Icon for the Apollo, but 
we'll try to get more information for persons who are 
interested. 
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Can I get the source code for the public-domain version of 
make that you distribute with MS-DOS Icon source code? 
Sure. In fact, we provide source code as well as ex
ecutable binaries as part of our Version 7 MS-DOS 
source-code distribution. You can also get it from our 
BBS or by FTP to arizona.edu. 

Does MS-DOS Icon compile under the new Microsoft 5.0 
C compiler? 
Version 7 of Icon compiles under Microsoft C 5.0. Ver
sion 6 doesn't, however. If you have Version 6 source 
code, we recommend that you upgrade to Version 7; it 
not only provides changes and workarounds needed 
for Microsoft C 5.0, but it also has many other correc
tions and improvements. 

I've compiled Icon on the Atari ST, but with the Lattice 3.04 
C compiler, producing smaller and faster code. Can you send 
me examples of assembler code that illustrate co-expressions 
and overflow checking so I can add these features to Atari 
Icon? 

We have the co-expression and overflow code for Atari 
ST; these features will be available in Version 7 of Icon 
for the Atari when it's released. We also hope to have 
support for environment variables. 

J got Icon on a data cartridge from you, but I can't read it 
on my HP computer. What's wrong? Help! 
Pata cartridges are a constant source of problems. For 
whatever reason, they aren't a reliable way to transfer 
data between different kinds of computer systems. 
Our cartridges are written on Sun Workstations (as 
raw devices) and generally can be read on other Sun 
Workstations without problems. They also have been 
successfully read on IBM RT PCs. Beyond that, 
cartridges should be considered a last resort in the ab
sence of another available medium. We supply 
cartridges at the user's risk only. If anyone can provide 
more definitive information on the use of cartridges 
for data transfer between different systems, we will be 
happy to include it in a future 9{ezvsfetter. 

CASE 
CREATE 
DEFAULT 

PROCEDURE RECORD REPEAT STATIC SUSPEND 

TO UNTIL WHILE 

ICON PROGRAMMING 

Does Icon run under OS/2? 
Cheyenne Wills reports that Version 7 of Icon runs 
under OS/2 with the compatibility box. (He presently 
is working on a pure OS/2 implementation of Icon.) 

/ am interested in obtaining a source listing of Icon cor
responding to the book The Implementation of the Icon 
Programming Language. 
The implementation of Icon is so large that distribut
ing listings in printed form is impractical — even 
reduced to half size, they fill two good-sized binders. 
However, the source code easily fits on two standard 
diskettes. See the listing of available material at the 
end of this 'Hezvsfetter. Incidentally, the current source 
code differs somewhat from the implementation 
described in the book. While we can provide source 
code that corresponds to the book, we recommend the 
current version. 

In Support of Icon 
Kelvin Ni l sen Responds to an E-Mail Query 

Someone recently enquired on behalf of a friend 
why one should program in Icon even though an en
hanced Pascal language supporting high-level string 
functions might be available. Kelvin Nilsen responded 
as follows: 

In my view, this challenge can be answered at two 
different levels. At the lowest level, Icon supports a 
large variety of high-level language features which are 
probably not provided by a library of high-level string 
processing functions. These language features in
clude run-time typing, implicit type conversion deter
mined at run time depending on context, high-level 
data types such as dynamically sized heterogeneous 
lists, csets, strings (which are dynamically sized), and 
heterogeneous associative tables. Perhaps of greatest 
significance are the benefits of garbage collection. 

As with any high-level language, these features 
protect me from much of the detail of programming 
in lower level languages. In situations where the ex
ecution costs of my programs are not a serious con
cern, I almost always select Icon as my programming 
language of preference. By programming in Icon I 
avoid the possibility of having to explicitly allocate 
and free memory, or search for bugs in my C programs 
caused by type mismatches in parameter lists, or deal 
with core dumps that result from dereferencing dan
gling pointers. I also enjoy the freedom afforded me 
by Icon to build structures comprised of different 
types of objects (C or Pascal would, for example, re-

http://arizona.edu


quire that each element of an array be the same type), 
and I need not concern myself with setting artificial 
limits on the sizes of buffers or checking for their over
flow. All of this adds up to increased productivity 
from me. 

At a higher level though, Icon offers even more ad
vantages over programming in more conventional 
languages. Icon offers goal-directed evaluation as the 
standard expression evaluation mechanism. This 
means the same mechanism that guides backtracking 
in string scanning governs the evaluation of every ex
pression in an Icon program. The concept of success 
and failure in the evaluation of each portion of an ex
pression makes possible such constructs as: 

a < b < c 

which succeeds only if a < b and b < C, or 

max <:= y 

which assigns to max the value of y only if y is greater 
than max. Goal-directed evaluation, which builds 
upon the idea of success and failure, makes possible 
such expressions as: 

findfub", "Rub-a-dub—dub, Three men in a tub") = 8 

which succeeds because the second occurrence of "ub" 
within the longer string appears at index position 8. In 
evaluating this expression, find returns 2 first, because 
"ub" appears at this position in find's second argument. 
But comparison of this returned value with 8 fails, 
causing find to be resumed in order to produce another 
index representing a different matching location. The 
second value produced by find is 8, which succeeds 
when compared with 8. This mechanism is the heart 
of string scanning. It provides many of the same 
capabilities as Prolog. 

It is difficult to describe all of the benefits of a high-
level language like Icon in a small amount of space. 
Icon is the sort of language that causes programmers 
to approach problems in entirely new and different 
ways from more conventional programming lan
guages. My own mind has been warped to the point 
that the most natural solution to many problems pops 
into my head as a simple Icon idiom. To program the 
solution in any other language is uncomfortable and 
awkward. I know, for example, that C provides an 
index library function with capabilities similar to 
Icon's upto. I have never, however, felt comfortable 
using C's index function. I know, in the back of my 
head, that it's not the real thing. Its capabilities are 
more limited than those of upto, and the expression 

evaluation mechanism that governs its use is unable 
to deal with multiple matches and backtracking. 

Undoubtedly, your friend can make do with Pascal 
and an enhanced library of string processing routines. 
However, s /he is probably missing out on an oppor
tunity to learn new ways of thinking about and solv
ing problems, ways that are not only different from his 
or her current thinking, but are also in some sense, bet
ter. 

A Brief His tory of Icon — Continued 
As described in the last O^zvsfetter, the program

ming language SL5, which was designed as a succes
sor to SNOBOL4, was the precursor to Icon. One of the 
goals in SL5 was to provide a wider range of control 
structures in pattern matching — to supplement 
search and backtracking control structures with more 
traditional control structures to make it easier to con
trol the analysis of strings. 

The idea that led to Icon was that pattern matching 
need not be a separate part of a programming lan
guage. Instead, pattern matching can be performed by 
"matching functions" like more traditional computa
tions, provided that search and backtracking control 
structures are available as a general part of expression 
evaluation. 

This idea offered a considerable simplification of 
some language mechanisms and a substantial reduc
tion in vocabulary of SL5. These possibilities were so 
attractive that SL5 was abandoned and work began on 
the programming language that was to become Icon. 

In retrospect, it is interesting that the focus of atten
tion was on pattern matching, which became string 
scanning in Icon. It took us a long time to realize that 
the introduction of search and backtracking control 
structures as a general feature of expression evalua
tion had more impact on "traditional computation" 

than on string analysis. That is, 
we initially did not appreciate 

^ ^ that the generalization of ex
pression evaluation — which 
led to generators, goal-directed 
evaluation, and new control 
structures — would have such 
wide-spread implications and 

• ^ ^ m that string scanning would be-
• ^ ^ ^ ^ M come an essentially trivial by-
™ ^ ^ * product. 



The initial design for Icon resembles the present 
language in many respects. In addition to generators, 
goal-directed evaluation, matching functions, and 
string scanning (represented with reserved words in
stead of an operator symbol), there were several struc
ture types: lists, stacks, tables, and records. Lists and 
tables could be opened and closed. Stacks offered last-
in, first-out access to values. 

Once the idea for Icon was launched, it was clear 
that the implementation of expression evaluation was 
a significant problem. The implementation of expres
sion evaluation in familiar languages like FORTRAN, 
Pascal, and C is well understood and there are 
straightforward models to follow. This is not so with 
expressions that may produce many results and with 
the automatic generation of results to satisfy a "goal". 

The first implementation of Icon, started in 1977, 
was writ ten in FORTRAN, using the RATFOR 
preprocessor to allow better program structuring. The 
primary reason for using FORTRAN as an implemen
tation language was portability. At that time, no other 
programming language was so widely available on so 
many computers. While the implementation was very 
portable in principle, FORTRAN isn't well suited for 
implementing other languages, and only a few 
FORTRAN compilers were robust enough to handle 
Icon. Versions 1 and 2 of Icon, which were imple
mented in this way, are still in use in some mainframe 
environments. 

Meanwhile, the Icon language developed, mainly 
in the areas of control structures and data structures. 
Repeated alternation and limitation were added, and 
the original stack data type was merged with lists to 
produce the present version of lists that support both 
positional and deque access. 

Next time: — A new implementation and the evolu
tion of Icon to its present form. 

Language Corner 
The Nu l l Va lue 

At first sight, the null value may appear to be about 
the most useless feature in Icon. On the contrary, it can 
be very useful, provided you understand its role and 
how Icon treats it. 

The null value came about because a variable has 
to have some value before one is explicitly assigned to 
it. Since Icon does not associate a specific type with a 
variable, an initial value such as zero or the empty 

string would be a bit arbitrary, and a "garbage" value 
would be unacceptable. Instead, every variable is 
given an initial value whose type is different from the 
types used in normal computation. 

This has the effect of distinguishing variables that 
have been assigned values from those that have not. It 
provides a way to tell, for example, if a variable is 
being used for the first time in a procedure call. 
(Granted, a variable can be assigned the null value 
deliberately, but unless this is done, the distinguish
ing aspect of the null value holds.) 

Since the use of a variable that has not been explicit
ly assigned a value probably is an error, the null value 
is treated as erroneous in most computations. This 
catches many errors. For example, in 

procedure sum(f) 
local i 
while i +:= read(f) 
return i 

end 

a call of sum() terminates with an error when the first 
line is read from f, since i has the null value and the at
tempt to add to it is erroneous. 

On the other hand, the null value is not erroneous 
in all computations. For example, write(&null) writes 
an empty line and is equivalent to write(""). This is a 
consequence of the way omitted arguments are 
treated and the provision of default values for the ar
guments of many functions. 

An omitted argument is equivalent to a null-valued 
argument. Thus, write() is equivalent to write(&null). 
Fur thermore, a null-valued argument to write() 
defaults to the empty string. This means that to write 
an empty line, all that is needed is write(). Behind the 
scenes, the omitted argument is supplied as a null 
value and the null value is taken to be the empty string. 

Since many functions are used most frequently 
with specific arguments, this scheme makes it possible 
to use them without having to specify these arguments 
explicitly. And, since it's easier and more readable if 
omitted arguments are in trailing positions, the order 
of arguments in many functions is determined by 
defaults. For example, in trim(s,c) there is no plausible 
default for s, but trim usually is used to remove trail
ing blanks. Consequently, the default for c is a cset that 
contains only a blank and trim(s) produces the desired 
result. If the arguments were the other way around, 
you'd have to write trim(,s). These considerations ex
plain the order of arguments in the lexical analysis 
functions. For example, in the function find(s1,s2,i,j) 



the range of S2 to be examined is specified by the last 
two arguments. They default to 1 and 0 respectively, 
so that all of s2 is considered in the most common 
situation: find(s1 ,s2). For string scanning, S2 can be 
omitted and defaults to &subject. In this case, the 
default for i is &pos. 

You can use the same ideas in designing proce
dures. Suppose, for example, the procedure sum given 
above has a second argument that is an initial value to 
which the numbers in f are to be added: 

procedure sum(f.i) 
while i +:= read(f) 
return i 

end 

It may be that this initial value usually is zero, so that 
the procedure normally would be called as sum(f,0). 
This makes the second argument a good candidate for 
defaulting, so that the procedure can be called as 
sum(f) as shorthand for sum(f.O). If a procedure is 
called with fewer arguments than are declared, the 
omitted arguments are supplied as null values, as they 
are for functions. Thus, sum(f) is equivalent to 
sum(f,&null) and one way to write the procedure is: 

procedure sum(f,i) 
if type(i) == "null" then i := 0 
while i +:= read(f) 
return i 

end 

This way of testing for the null value is unnecessarily 
cumbersome. You might wonder if i === &nu|l would 
do. It would, but Icon provides an operator specifical
ly for testing for the null value: I expr. Using this 
operator, the procedure above can be rewritten as: 

procedure sum(f,i) 
/ i :=0 
while i +:= read(f) 
return i 

end 

Since /expr returns a variable if /expr is a variable, as
signment can be made on the spot. In fact, the operator 
serves to prevent the assignment by failing if the value 
is not null. 

Sometimes the logic is reversed and what's needed 
is a test for a nonnull value. Suppose that count is a list 
produced by count := list(100). The function list has a 
second argument. Here the second argument is 
omitted and is equivalent to count := list(100,&null). 
This is not a default; it's just that an omitted argument 
is supplied as a null value. It might be clearer to give 
the null value explicitly in this case, but the idiom is 
so pervasive in Icon programs that an experienced 

Icon programmer probably would stop and wonder if 
the null value were provided explicitly. 

Suppose now that some computations are per
formed and that, as a result, values are assigned to 
some elements of count but not to others. Assuming 
the assigned values are not null, the elements to which 
assignments have been made can be determined simp
ly by looking for nonnull values. One way to do this 
is exemplified by 

if not /countp] then ... 

This "double negative" is awkward. It's better to use 
Icon's operator that tests for. nonnull values: \expr. 
With this operator, the test above can be written as 

if \count[i] then... 

Similarly, to write only the nonnull values in count, 
you could use the following: 

every write(Mcount) 

You need to be careful to avoid ambiguous failure 
when testing for nonnull values. It would not do to use 

i :=0 
while write(\count[i +:= 1]) 

In this case, the while loop terminates when the first 
null value is encountered, not just when the subscript 
exceeds the size of the list. (If you're not sure why 
every works and while doesn't, you probably have lots 
of company. The distinction is an important one, 
however, and illustrates one of the main advantages 
of generators used in an iterative context.) 

Some Icon programmers have trouble remember
ing which operator tests for the null value and which 
operator tests for nonnull values. It may help to pic
ture the null value as a small, flat "nothing" and to pic
ture all other values as kinds of wheels. The expression 
\expr succeeds if the value of \expr can "roll out", flat
tening the "gate", while /expr succeeds if its value lets 
the gate fall on it. This picture is a bit strained; you may 
prefer a different mnemonic device, but almost any
thing is better than having to stop in the middle of 
writing a program to consult a manual on a point of 
syntax. 

file:///expr
file:///expr
file:///expr


A word on &null: It's common for persons talking 
about an Icon program to say things like "x is &null". 
What they really mean is that x has the null value. 
Granted, Snull has the null value and can be used ex
plicitly as in x := &null. The fact remains that "x is 
Snull" is not literally true — it's just easier to say. 

Incidentally, there is only one null value. So you 
should say "x has the null value", not "x has a null 
value". This isn't a very important point, except to 
note that if x and y are null-valued, then x === y al
ways succeeds, which it would not if there were more 
than one null value. 

Programming Corner 
Timing Expressions 

In the last Newsletter we promised more results 
from benchmarking Icon expressions to see how fast 
they execute. The timings that follow were obtained 
under Version 7 of Icon. In most cases, there should be 
little difference between Version 6 and Version 7 
timings. 

Of course, absolute timings vary greatly from com
puter to computer. The timings that follow are relative 
to a mythical "Icon execution cycle". Relative timings 
may vary somewhat depending on the computer 
used, the C compiler, and so forth. Although we have 
not collected data on differences in relative timings for 
Icon running on different computers, such differences 
usually should be small enough to ignore. (This 
remains to be shown, however.) For reference, the 
relative timings that follow were obtained from run
ning Icon on a VAX 8650 under UNIX 4.3bsd. 

To provide some values for timings, suppose the 
following assignments are made first: 

i := 10 
j := 20 
r1 := 3.0 
r2 :=2e10 

Addition is about as simple and conventional an 
operation as you can imagine. Here are some timings: 

i + j 
r1 +r2 
i + r1 

4.0 
5.6 
7.3 

You probably would expect real (floating-point) arith
metic to take a little longer than integer arithmetic, but 
that's not what accounts for the difference in timings 
for the first two expressions. Icon real numbers are 
stored in small blocks that have to be allocated (12 
bytes each). It's the allocation time that accounts for 
most of the difference above. (The time required for 
possible garbage collection as a result of this allocation 
is not included in the figures above.) The reason why 
the addition of an integer and a real takes even longer 
is because of conversion of the integer to a real. 

Now consider some operations on strings. Suppose 

81 : 
s2: 

•• "abcdef" 
• string(&cset) 

One simple operation is computing the size of a string: 

*s1 
*s2 

2.3 
2.3 

As these figures suggest, the time it takes to determine 
the size of a string does not depend on how long the 
string is. In fact, the size of a string is computed when 
the string is created and is stored as part of the string 
value — it's right there when it's needed. 

String comparison illustrates how subtle some 
operations are and how difficult it is to know how 
much time it takes to perform them. We'll use the fol
lowing strings in lexical comparisons: 

s1 := "abcdef" 
s2 := "abc" || "def" 
s3 :=repl(s1,100) 
s4 :=repl(s1,100) 

The reason for having duplicate strings becomes ap
parent in the timings: 

S1 == S1 
s1 == s2 
s1 == s3 
s3 == s4 

3.8 
5.6 
3.8 

60.6 

What's going on here? It takes the same amount of 
time to compare a string to itself as it does to compare 
a string to a much longer string. But comparing two 
strings with the same value takes longer! The reason 
why there is a difference in the first two timings is that 
s1 and s2 are physically distinct, even though they 
have the same value. (That's a property of the way 
Icon is implemented, not of the language itself.) What 
happens in string comparison is that two checks are 
made right away. First, are the values physically the 
same, as in the first expression above? If so, com
parison succeeds without even looking at the charac-
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ters. Second, are the lengths different, as in the third 
case above? If so, the comparison fails immediately. If 
neither of these cases apply, the characters compared. 
The comparison is from left to right, character by 
character, until there is a mismatch (failure) or there 
are no more characters (success). Consequently, string 
comparison takes the longest when the two strings are 
physically distinct (produced in different computa
tions), have the same length, and have a long common 
initial substring. 

There's not much you can do about this when 
programming—and you probably shouldn't try—but 
this information may keep you from jumping to un
warranted conclusions and doing things that may be 
counterproductive. 

If timings are not intuitive for simple expressions, 
what about something more complicated, like opera
tions on a set? To begin with, how time consuming is 
it to construct a set? 

set() 13.9 

That's probably less than you'd expect. (The expres
sion above uses a feature of Version 7 that allows the 
first argument of set to be defaulted rather than requir
ing an empty list, as in Version 6.) A word of caution, 
however — space has to be allocated for a set; while 
the figure above includes the time for allocation, it 
does not account for time that this allocation may sub
sequently incur in possible garbage collections. 

The next obvious question is how long does it take 
to insert a member in a set. If we start with an empty 
set S, the timing is 

insert(S,1) 15.3 
As you might imagine, that figure doesn't mean much, 
since how long it takes to look up a value in a set must 
depend on how big the set is and what its members 
are. Suppose S contains the first 1,000 integers, as in 

S := set() 
every insert(S, 1 to 1000) 

Here are some figures for looking up integers in S, as 
well as an integer that's not in S: 

member(S,1) 9.2 
member(S,500) 7.5 
member(S,799) 12.5 
member(S,1001) 14.1 

To begin with, it should seem reasonable that it 
takes longer to find out that a value is not in the set — 
whatever technique is used for look up, one way or 
another, everything has to be checked, while if the 
value is in the set, it may be found more quickly. But 
why does it take longer to find 1 than 500? (The dif

ference in timings is real, incidentally.) Can you guess 
anything about how sets are implemented from these 
figures? And, much more importantly, is it faster to 
look u p integers than, say, strings? 

Without trying to answer all these questions (rather 
we hope they will make you think and possibly dig 
deeper into the internal workings of Icon), we'll just 
comment that timings for a language like Icon with all 
its features in all possible combinations, are not really 
subject to reduction to a few simple formulas, 
guidelines, or tables of timings. We hope (someday, if 
there's ever time) to compile an extensive list of 
timings, but the result is more likely to be a curiosity 
than a useful tool for programmers. 

Storage Allocation 

Another dimension of expression evaluation re
lates to the storage that may be allocated. The timings 
above account for the time required for allocation, but 
they don't give an insight into how much storage is in
volved or the time that may be needed later on for gar
bage collection. 

There are several factors involved here. The space 
allocated for an object may be transient and used only 
temporarily, until another value takes its place. That's 
true in expressions like 

while line := read() do 
if check(line) then write(line) 

where space is allocated for each string that is read and 
assigned to line, but then is replaced by the next string. 
Such t r ans ien t a l loca t ion invo lves " s to rage 
throughput", in which space that is no longer needed 
can be reclaimed by garbage collection. On the other 
hand, a set or table may be used to hold many values 
that last from the beginning of program execution 
until the end, tying up storage all the time. 

The interesting thing is that garbage collection 
spends most of its time working on storage that has to 
be retained; it barely notices "garbage" that it collects. 
For this reason, storage throughput, as exemplified by 
the loop above, is comparatively cheap in itself. But if 
there is a lot of it, it does cause garbage collections. 
Such collections are fast if there is a lot of garbage, but 
if there are a lot of "permanent" objects like sets and 
tables, they are paid for each time. 

What all this means is that there is no simple for
mula for associating a timing penalty for garbage col
lection with storage allocation. It depends on the 
storage environment, and in a complicated way. It's 
worth noting that many programs run to completion 
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without ever doing a garbage collection. The alloca
tion piper, as it were, is never paid. 

Nonetheless, it may be interesting to know how 
much space various kinds of objects take in Icon. This 
is something that can be expressed in formulas and 
presented in tables (this is done in the Icon implemen
tation book). However, there are some things about 
storage allocation that you might not expect. 

For example, a string takes only as many bytes of 
storage as there are characters in it (unlike C, Icon's 
strings are not null-terminated). For example, 

s:=repl("x",100) 

takes 100 bytes of storage. But what about the follow
ing expression? 

s[1]:-V 

This expression does not actually change the former 
value of s (another variable might be sharing the value 
and must not have its value changed as the result of 
changing the value of s). Instead, the expression above 
is a shorthand notation for concatenation and assign
ment of a new value to S: 

s := "y" || s[2:0] 

Consequently, you'd expect this operation also to take 
100 bytes of storage. It does take 100 bytes of string 
storage, but it also allocates 20 bytes for a substring 
trapped variable block that is used to keep track of the 
substrings involved and the variable to which the as
signment is made. Something like this is necessary, 
since in the general case, a lot might go on between the 
subscripting operation and the final assignment. For 
example, in 

s[1] :=compute() 

there's no telling what compute may do before an as
signment is made to s. 

Substring trapped variable blocks contribute to 
storage throughput, since they are needed only until 
the assignment is made, which usually is right away. 
Unfortunately, the present implementation of Icon is 
not smart enough to detect when substring trapped 
variables are not needed — it even allocates them 
when no assignment is involved, as in 

write(s[1]) 

Nonetheless, such blocks are transient. They may 
cause garbage collection, but getting rid of them is fast. 

And the implementation could be improved so that 
substring trapped variable blocks would be allocated 
only when they are actually needed. 

Clip-Art Credits 
Page 1. This strange beast is taken from a 16th-century 
engraving by Noel Gamier. It was digitized from a 
book in the Dover Pictorial Archive Series and 
adorned to serve as Icon's temporary mascot. 

Page 3 and 4. Submitted by Robert Gray, using Adobe 
Illustrator. 

Page 5. Submitted by Vint Blackburn and Kelly Tracy 
of the Mad Statter, digitized line art. 

Page 6. Submitted by Richard Colvard, using Mac-
Paint/Superpaint/Canvas. 

Page 7. Submitted by Mary Fletcher, using Postscript. 

Page 9. Submitted by Benson Cardon, using Cricket 
Draw. 

Page 10. Submitted by Vint Blackburn and Kelly Tracy 
of the Mad Statter, digitized line art. 

Thanks to all who contributed! Credits at the "Icon 
Store" have been sent as described in the previous 
9\(g.zvsfetter. 

Ordering Icon Material 
Shipping Information: The prices listed on the 

order form at the end of this tNjzvsfetter include han
dling and shipping in the United States, Canada, and 
Mexico. Shipment to other countries is made by air 
mail only, for which there are additional charges as 
follows: $5 per diskette package, $10 per tape or 
cartridge package, and $10 per documentation pack
age. UPS and express delivery are available at cost 
upon request. 

Payment: Payment should accompany orders and 
be made by check or money order. Credit card orders 
cannot be accepted. Remittance must be in U.S. dollars, 
payable to The University of Arizona. There is a $10 
service charge for a check written on a bank without a 
branch in the United States. Organizations that are un
able to pre-pay orders may send purchase orders, but 
there is a $5 charge for processing such orders. 
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What's Available 

Icon program material falls into four categories: 
UNIX, VMS, personal computer, and porting. 

The UNIX package contains source code, the Icon 
program library, documentat ion in printed and 
machine-readable form, test programs, and related 
software — everything there is. It can be configured 
for most UNIX systems. The documentation includes 
installation instructions, an overview of the language, 
and operating instructions. It does not include either 
of the Icon books. Program material is provided on 
magnetic tape, cartridge, or diskettes. 

The VMS package contains everything the UNIX 
implementation contains except UNIX configuration 
information and UNIX-specific software. However, 
the UNIX and VMS systems are configured different
ly, and neither will run on the other system. The VMS 
package also contains object code and executables, so 
no C compiler is required. The VMS package is dis
tributed only on magnetic tape. Note: VMS Version 4.6 
or higher is required to run Version 7 of Icon. 

Icon for personal computers is distributed on dis
kettes. Because of the limited space that is available on 
diskettes, in most cases there are separate packages for 
the different components such as executable files and 
source code. Each package contains printed documen
tation that is needed for installation and use. Note: Icon 
for MS-DOS requires 512KB of RAM. 

Icon for porting is distributed on MS-DOS format 
diskettes. There are two versions, one with a flat file 
system and one with a hierarchical file system. Both 
versions are available in either plain ASCII format or 
compressed ARC format. 

There are two documentation packages that con
tain more than is provided with the program pack
ages: one for the language itself and one for the 
implementation. These documentation packages con
tain the language and implementation books, respec
tively, together with supplementary material. 

When ordering, use the codes given at the begin
ning of the descriptions that follow. 

Program Material 

Note: All the distributions listed below are for Ver
sion 7 of Icon. Earlier Version 6 implementations that 
are not supported for Version 7 are still available. If 
you wish to order a Version 6 implementation, ask for 
a Version 6 order form, which is free. 

UNIX Icon: 

UT-T: Tape, tar format (specify 1600 or 6250 bpi). $25. 

UT-C: Tape, cpio format (specify 1600 or 6250 bpi). $25. 

UC-T Cartridge, tar format, (DC 300 XL/P, raw mode 
only). $40. 

UC-C: Cartridge, cpio format, (DC 300 XL/P, raw 
mode only). $40. 

UD-M: cpio files: five MS-DOS formatted 2S/DD 5.25" 
diskettes. $40. 

UD-X tar files: seven XENIX formatted 2S/DD 5.25" 
diskettes. $50. 

V M S Icon: 

VT: Tape, (specify 1600 or 6250 bpi). $25. 

Icon for Personal Computers: 

DE: MS-DOS (LMM) Icon executables: two 2S/DD 
5.25" diskettes. $20. 

DS: MS-DOS Icon source: two 2S/DD 5.25" diskettes. 
$25. 

XE: XENIX (LMM) Icon executables: one 2S/DD 5.25" 
diskette. $15. 

Icon for Porting: 

PF-A: Flat file system, ASCII format: four 2S/DD 5.25" 
diskettes. $35. 

PF-K: Hat file system, ARC format: two 2S/DD 5.25" 
diskettes, $25. 

PH-A: Hierarchical file system, ASCII format: four 
2S/DD 5.25" diskettes. $35. 

PH-K: Hierarchical file system, ARC format: two 
2S/DD 5.25" diskettes. $25. 

Documentation 

LD: Language documentation package. $29. 

ID: Implementation documentation package. $40. 

NL: Back issues of the 9{$zvs fetter. $.50 each for single 
issues (specify numbers). $6.00 for a complete set (#1-
25) There is no charge for overseas shipment of single 
back issues, but there is a $5.00 shipping charge for the 
complete set. 
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Order Form 

Icon Project • Department of Computer Science • Gould-Simpson Building • The University of Arizona • Tucson, AZ 85721 USA 

Ordering information: (602) 621-2018 

name 

address 

city 

(country) 

state zipcode 

telephone 

• check if this is a new address 

qty. code description price 

subtotal 

sales tax (Arizona residents*) 

extra shipping charges 

Make checks payable to The University of Arizona p P 9 
other charges 

total 

total 

*The sales tax for residents of the city of Tucson is 7%. It is 5% for all other residents of Arizona. 
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