
Hftt Icon 9\(ezissCetter
No. 31 - September 15,1989

Price Increases
If you look over the order form at the end of this

9^zvsfetter, you may notice a few price increases. We
try to keep the prices down, but inflation and in
creased costs for preparing some distribution material
have led to a few adjustments. In addition, the prices
of the Icon books have been increased by the publish
ers. A publisher's representative once told us that they
increase their prices regularly in anticipation of infla
tion. No wonder we have inflation! In case you've
wondered, authors have no control over the prices that
publishers charge for their books.

Implementation News

Icon for the IBM 370
Icon is now available for computers with IBM 370

architecture. There are implementations for both the
MVS and VM/CMS operating systems. See the order
form at the end of this 'Xg.xitsfttur.

In addition to the implementations distributed by
the Icon Project, there is another VM/CMS implemen
tation done in Germany that may be more accessible to
Euopean users. Contact:

Walter H. Schiller
Lagesche Strafie 32
D-4790 Paderborn
West Germany

There also is another MVS implementation of Icon.
While it is not being distributed, interested persons
may contact the implementor:

Nick Maclaren
University of Cambridge

Computer Laboratory

New Museums Site
Pembroke Street
Cambridge CB2 3QG
England

+44 223 334761

nmml@phx.cam.ac.uk

Other Implementation News

All implementations of Icon distributed by the Icon
Project are now up to Version 7.5. In addition, source
code for the Amiga implementation is now available.

Icon has been implemented for OS-9. This
implementation probably will not be distributed by
the Icon Project, but if you are interested, let us know
and we'll put you in touch with the implementor.

Source Updates for MS-DOS

The source code for Icon changes frequently as
improvements are made and new features are added
to the language. Although we only update our distrib
uted versions of Icon infrequently, we do provide a
subscription update service for persons who are using
Icon code on MS-DOS systems.

This service provides the current version of the
source code about three times a year, together with a
brief description of changes that have been made and
what is in the works. Updates are distributed on 5.25"
diskettes only.

If you're using Icon source code for MS-DOS and
want to stay on top of things, this is the way to do it.
And it's a real bargain: only $50 for 5 updates, includ
ing first-class postage in the United States (add $15 for
air mail overseas). See the order form at the end of this
tyzvsfetter.

A Word of Thanks

Many of the implementations of Icon are done by
persons outside the Icon Project. We greatly appreci
ate their help.

Recent assistance has been provided by Cheyenne
Wills, Robert Knight, and Eric Johnson (VM/CMS);
Alan Beale (MVS); Bob Goldberg (MS-DOS/386); and
Clint Jeffery (Amiga).

mailto:nmml@phx.cam.ac.uk

Geographical Distribution of
Newsletter Subscriptions

In tyzosfetter 29 we published a map of the United
States showing the distribution of subscribers. We've
been working on a more global view, but we haven't
found a good way to do it yet. In the meantime, here's
a list of subscribers by country:

United States
United Kingdom
Canada
West Germany
Australia
The Netherlands
France
Japan
Sweden
Israel
India
Finland
Italy
Brazil
Belgium
Denmark
Poland
Spain
New Zealand
Switzerland
Austria
Mexico
Singapore
Czechoslovakia
Ireland
Norway
Republic of South Africa
Thailand
Korea
Hungary
Portugal
Venezuela
Algeria
Bulgaria
Cuba
Cyprus
East Germany
Fiji
Iceland

2323
229
132
110
73
71
67
31
26
23
22
20
16
12
11
11
10
10
9
9
7
7
7
5
5
5
5
5
4
3
3
3
2
2
2
2
2
2
2

Peoples Republic of China 2
Philippines
Saudi Arabia
Taiwan
Yugoslavia
Argentina

2
2
2
2
1

British West Indies
Chile
Eastern Caroline Islands
Greece
Hong Kong
Iran
Kuwait
Luxembourg
Malaysia
Nigeria
Papua New Guinea
Peru
Romania
USSR

nUe Icon 9{eiusCetter

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon tyzvsfetter is published aperiodi-
cally, usually three times a year, at no cost to
subscribers. For inquiries and subscription in
formation, contact:

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

(602) 621-4049

FAX: (602) 621-4246

Electronic mail may be sent to:

icon-project@arizona.edu

or

...|uunet,allegra,noao}!arizona!icon-project

© 1989 by Madge T. Griswold and Ralph E. Griswold

All rights reserved.

mailto:icon-project@arizona.edu

Improving the Performance
of Sets and Tables in Icon
Editors' Note: This article is contributed by Bill Griswold at
the University of Washington.

Introduction

Icon's current table and set implementations de
pend on a hashing scheme with a fixed number of slots
(i.e., buckets). For large tables or sets this has a bad
impact on performance, since collision-resolution
chains become quite long. Dynamic hashing is a tech
nique that dynamically expands or contracts a hash
table (i.e., the number or slots it has) in proportion to
the number of elements in the table. By assuring that
the number of slots and the number of elements is
related by a constant factor (and assuming even ele
ment distribution), constant-time performance for
insertions and lookups can be achieved. This article
describes the use of this technique to improve the
performance of Icon's table and set implementations.

This work was motivated by a few data-intensive
applications that ran slowly due to poor table per
formance. The solution comes from the article "Dy
namic Hash Tables" by Per-Ake Larson in the April,
1988 Communications of the ACM.

Algorithm Overview

Dynamic table expansion is achieved with dynami
cally-sized arrays. When the average hash-chain length
becomes too long, a slot is added to the hash table.
When all the slots are consumed, a new list of slots
(called a segment) is added. Each new segment doubles
the number of slots in the table. However, elements are
moved into these slots incrementally in order to avoid
long pauses in program execution while handling the
expansion. Only one slot is added (chosen from the
end of the last segment) for every expansion, and only
one slot has to be "split" in order to move all the
appropriate elements to that new slot. This is because
as the table grows the slot computation function
changes both by increasing the modulo factor by 2 and
by sometimes "looking" at two slot indices when all
slots of the last segment are not yet in use. That is,
when the table is growing into a new segment, some
upper slots are not in use yet, so the elements that later
(upon further expansion) will occupy those slots are
still in the lower half of the slots. The effect of doubling
the modulus value is to have one more bit (bit n) of the
hash number become significant. For example, if bit n
is 0, then a lower index i is selected; if it is 1, then the
value 2"+i is selected. So if slot 2"+i is being expanded,
only elements in slot i could have values that have i in
the lower bits and have 1 in the newly significant bit n.

Many of the computations involve numbers that are a
power of 2. This requires (or permits, depending on
how you look at it) integer logarithm (via table look
up) and power (via shifting) operations to compute
the segment address and the index into the segment.

Although the basic ideas of dynamic hashing are
simple, making them fit the needs and requirements
of the Icon interpreter resulted in several changes to
the algorithm and to the Icon interpreter. This is
outlined below.

Hashing
Hash functions were reimplemented for strings and

csets, which had poor distributions under the scheme
described above, although they worked fine under
the old implementation. (The distributions now ap
pear to be very good, judging from profiling.) The
basic problem is that the number of slots is a power of
2, which does not scramble non-random hash num
bers very well. Thus, the hash functions were made
more robust by using scrambling (large prime) multi
pliers and modulus functions. The performance of
hashing integers was improved by calling a macro
that in-lines integer hashing rather than calling the
hash function.

Segment Handling

Larson's algorithm assumes that a table is a central
data structure. An Icon program, however, may cre
ate many tables. Consequently, per-table memory
overhead is an important consideration. This consid
eration requires changes in Larson's segment expan
sion algorithm.

Larson's algorithm adds one slot per expansion, as
does the algorithm described here. However, to add
a new segment of slots, Larson's algorithm adds a
constant number of slots, but the Icon version doubles
the current number. This avoids a large segment
directory.

The Icon algorithm uses 12 segments, but Larson's
has 256 of 256 slots each. Larson's allows about 300,000
elements to be stored before performance degrades.
The doubling scheme with 12 segments starting with
a 32-slot segment allows for approximately 217 ele
ments to be stored before performance degrades.

Since there is an extra level of indirection necessary
to handle a dynamic slot list, some performance is
lost. To overcome this, the first segment is treated as
a special case. The first segment is stored directly in
the header for tables and sets. Then, during slot
indexing, the hash value is tested to see whether it
lands in this first segment. This allows direct access to

lands in this first segment. This allows direct access to
the segment without extra segment and subscript
computation. It improves small table performance
considerably, but has little impact on large tables.

Changes to Operations

Because sets and tables no longer have a uniform
number of slots, the methods used in chaining through
sets and tables have changed considerably. In opera
tions such as element generation (!x) and copy(x), one
more level of looping is added to index through the
dynamically added segments. In the set operations
union, intersection, and difference, basic assumptions
have changed. Previously, to perform set intersection
individual slot element-chains were intersected. This
worked because elements not on the same chain could
not have the same hash number, and hence could not
be the same value. Now two elements with the same
hash number but in different sets can be assigned to
different slots. Thus, it is not possible to make useful
assumptions about the relative positions of a value in
two different sets. This requires that the basic set
operations perform more general lookups. This could
result in a performance penalty, especially for smaller
sets.

Reorganization and Element Generation

The most significant interaction between Icon and
dynamic hashing is in element generation. Element
generation from a table or set can be adversely af
fected by insert or delete operations because they
regularly call expansion and contraction routines.
Element generation visits the slot chains in order.
Reorganization migrates elements between slots,
potentially causing element generation to visit ele
ments multiple times, or not at all. To prevent this, two
fields were added to the internal set and table repre
sentations. One holds a count of the number of ele
ment-generation expressions currently working on
the hash table, and the other keeps track of the maxi
mum possible slot being addressed by any of the
active element-generation expressions.The maximum
value is useful because all reorganizations above this
point cannot affect the element-generation invoca
tions. Since Icon has coexpressions, however, ele
ment-generation expressions do not necessarily start
and complete in a LIFO manner. This means that no
element-generation expression can be sure where in
the table another element-generation invocation is;
the maximum value can only be adjusted "down
ward" if one or no element-generation expressions are
active on a table. Thus, the maximum value is safe, but
not precise.

Performance Measurements

The results of the implementation are very positive.
For a small overhead (approximately 5% in time on
small tables, 10% in space), element access time is
uniform over all tables.

Below are graphs showing the impact of dynamic
hashing on the performance of Icon programs that use
tables or sets. All of these measurements were made
on a Sun 3 running Sun UNIX.

The first graph shows performance snapshots of a
program that loads a table with words from a diction
ary. It was run on both the old and new table imple
mentations, at two different initial memory alloca
tions. Initial allocation has as much impact as the table
implementation.

The second graph shows the performance of a broad
class of applications that use sets and tables inten
sively. The programs concord and sets create large
numbers of small tables and sets, respectively. They
are the only programs that do not show an improve
ment in performance. The performance of sets also
can be attributed to the large number of set unions,
intersections, and differences it performs.

Conclusions
The implementation is complete. Contraction and

expansion are supported for both tables and sets. The
implementation is likely to appear in a future release
of Icon.

The poor performance of built-in abstractions does
not encourage good use of language features. The
choice of flexible algorithms like dynamic hashing for
high-level features in programming languages frees
the programmer from many concerns of implementa
tion by assuring good performance of the abstractions
provided. Although the work required to produce
good performance for tables and sets was large, its
availability to all users of Icon will assure the effort
pays off.

The fact that performance does not improve much
for tables under 1,000 elements is unfortunate. Much
of this is probably due to the dynamic typing of Icon,
which introduces a significant overhead in referenc
ing values. In an efficiently compiled implementation
of Icon the cross-over point likely would appear much
sooner.

Inserting Strings in a Table

I
•x

120

100 -

8 0 -

60"

4 0 .

20 -

small = 64K Heap, 64K String

large = 3M Heap, 2M String

• small, regular

• small, dynamic

• large, regular

« large, dynamic

10000 20000

number of elements

30000

200 -

en
•o c

0) 100 -

Application Benchmarks

small = 64K Heap, 64K String

large = 3M Heap, 2M String

| small, regular

0 large, regular

§H small, dynamic

0 large, dynamic

sieve concord sets letter words crunch newtwo

program

,-s?*%.

SSo^y
*&**&
3<*="

' * - ^ " ^ '£&
#rfi" ^ r

!8ZBi >0^§^ ~ ^ * " 1 ^
^ CJ

^c # * 2 * "
. *J*<*^ ^o^g

•<*&-
'-£**!

• v * & ^ o

Icon Benchmarks
In O&zvsfetter 28 we gave some benchmarks for

Version 7.5 of Icon for different computers and C
compilers. Since that time, we've done more bench
marking and also received some from others. The re
sults are given in the table that follows.

Please note that we cannot verify many of the fig
ures or vouch for their correctness.

The programs used for the benchmarks are the same
as those used previously:

ipxref: This program, similar to the one in Version 7.5
of the Icon program library, produces a cross-refer
ence listing of an Icon program. It does lots of text
processing and some list manipulation. The test input
(the program itself) consists of 7,049 characters and the
output is 5,246 characters.

queens: This program produces the solutions to the
non-attacking n-queens problem, including produc
ing board representations for all solutions. It does a lot
of generation and backtracking, as well as text synthe
sis. For testing purposes, n was 9. The output is 273,171
characters.

rsg: This program, similar to the one in Version 7.5
of the Icon program library, generates randomly se
lected sentences. The program uses tables and lists ex
tensively and synthesizes text. The input is 664 charac
ters and the output is 10,117 characters.

sieve: This program implements the sieve of Eras-
tothenes, using set manipulation. The test produces
the primes in the integers to 2,000. The output is 2,357
characters.

Program output was suppressed in timing runs to
avoid differences due to factors like disk access speed.

This also suppresses differences in performances of
different input/output libraries. Tests without sup
pressing output show minor differences in some cases,
but nothing major. AH tests were done with 65K string
and block regions; none required region expansion.

The times shown on the next page are CPU times
spent in the Icon run-time system (iconx) in seconds.
The last column is a weighted sum that ranks the
programs equally.

There is a considerable range in clock resolution
among systems, ranging from microseconds to sec
onds. In some cases, the full internal clock resolution is
not available at the program level, resulting in crude
timings. In some cases, the figures listed are the aver
ages of several runs. Timings on multi-user systems
tend to vary with load. Where possible, tests were run
on unloaded systems. The times given should be con
sidered only as approximations.

In some cases, information about computer models,
operating systems, and C compilers is incomplete.
Where no C compiler is listed, the one used is the
standard one for the operating system.

In most cases, Icon was compiled with the standard
C optimization. Unoptimized compilations are indi
cated by the symbol 0 .

Our thanks to all the persons — over 30 — who
contributed to the listings on the next two pages.

If you're running Version 7.5 of Icon on a system for
which benchmarks are not listed and you'd like to run
them, let us know. The benchmark programs are avail
able from the Icon Project via RBBS and FTP.

Benchmarks for Version 7.5 of Icon
Computer

IBM 3090-200E
Amdahl 580
Apollo DN10000
Decstation3100
MIPS/R3000
Sun^l/280
Sun SPARCstation 1
IBM 370/3084
IBM 370/3081
Apollo DN10000
DEC VAX 8650
DEC VAX 8650
DEC VAX 8650
DEC VAX 8650
Compaq 3861

IBM 370/4381
Apollo DN10000
Sun-3/280
386 Clone3

Compaq 3864

IBM RT 135
Apollo DN4500
NeXT
IBM PS/2 Model 80s

Sun-3/60
NeXT
Zenith Z-3866

IBM PS/2 Model 80s

Sun-3/140
Apollo DN4000
Apollo DN3500
Macintosh SE/30
Macintosh Hex
Sun-3/50
Apollo DN570T
ATT3B4000
Macintosh II
Zenith Z-3866

ATT 3B2/70
DEC VAX 785
Macintosh II
Zenith Z-3866

DEC VAX 780
Zenith Z-3866

IBM PS/2 Model 80s

IBM PS/2 Model 80s

Apollo DN3000
IBM PS/2 Model 80s

IBM PS/2 Model 80s

ATT 6386

See the footnotes oi

System

VM/CMS
System V
AEGIS
Ultrix
System V
SunOS 4.0
SunOS 4.0
MVS/XA
VM/CMS
AEGIS
System V
4.3 BSD
4.3 BSD
VMS
MS-DOS
VM/CMS
AEGIS
SunOS 4.0
MS-DOS
MS-DOS
ADC
AEGIS
Mach
Xenix/386
SunOS 4.0
Mach
MS-DOS
MS-DOS
SunOS 4.0
AEGIS
AEGIS
MPW
MPW
SunOS 4.0
AEGIS
System V
MPW
System V
System V
4.3 BSD
MPW
System V
System V
MS-DOS
MS-DOS
OS/28

AEGIS
MS-DOS
MS-DOS
System V

i the next paj

C Compiler

Waterloo 3.0

new compiler

SAS4.00
Waterloo 3.0
old compiler

Gnu
PCC

Metaware HighC2

Waterloo 3.0
old compiler 0

Metaware HighC2

Metaware HighC2

(Sun-3 binaries)

0
Metaware HighC2

Metaware HighC2

MPW 3.0
MPW 3.0

MPW 1.02
Green Hills

PCC
MPW 3.0
PCC

Microsoft 5.107

Microsoft 5.107

Microsoft 5.107

Turbo 1.5
Microsoft 5.10'

?e-

Time (seconds)
ipxref

1.40
1.38
2.32
2.45
2.52
2.94
2.75
3.49
4.73
4.90
4.90
5.30
5.40
5.96
6.20
6.90
6.98
7.02
7.00
6.20
9.60
8.50
9.67

10.30
10.38
11.25
12.00
11.00
13.48
14.27
14.00
16.18
16.32
17.50
17.65
18.17
17.40
18.63
20.38
22.28
21.27
20.92
22.07
22.00
23.00
23.00
25.35
23.00
28.00
19.62

queens
6.31
7.12

10.73
11.53
12.23
13.33
12.97
17.21
21.28
22.80
26.08
26.10
27.40
30.02
26.31
31.15
32.08
33.15
34.00
41.73
47.00
44.88
47.40
50.00
50.32
55.62
54.00
56.00
65.37
65.88
73.48
80.53
80.88
85.30
87.03
89.08
87.00
92.15
98.18

104.85
99.08

100.62
118.83
109.00
110.00
111.00
120.00
117.00
131.00
100.10

rsg

0.75
0.78
1.21
1.38
1.43
1.83
2.32
1.67
2.53
3.35
2.78
2.90
3.00
3.04
3.46
3.69
4.88
4.37
5.00
5.27
5.10
5.32
5.48
5.73
5.90
6.27
6.00
7.00
7.70
9.03
8.28
9.43
9.73
9.50
9.60
9.91

10.90
11.70
10.88
11.20
12.40
12.33
11.68
14.00
14.00
14.00
13.37
15.00
16.00
19.20

sieve

0.29
0.28
0.55
0.52
0.52
0.63
0.57
0.64
1.00
0.90
1.23
1.20
1.20
1.24
1.53
1.47
1.22
1.92
2.00
2.32
2.20
2.63
2.33
2.40
2.53
2.48
3.00
3.00
3.25
3.32
3.77
4.02
4.07
4.20
4.12
3.92
4.70
4.82
4.42
4.53
4.97
5.25
5.05
6.00
6.00
6.00
5.70
6.00
8.00

10.93

wt. sum

8.59
8.85

14.69
15.47
15.97
18.92
19.46
20.80
29.12
31.59
33.29
34.11
35.01
37.24
39.48
42.58
44.75
48.38
50.95
55.15
61.44
62.31
63.63
66.76
68.35
72.36
75.75
77.58
88.64
94.38
97.40

108.43
109.96
113.69
114.30
115.44
121.38
128.30
128.37
135.51
138.12
139.72
144.78
154.13
156.16
156.51
159.81
161.44
190.76
194.38

Benchmarks for Version 7.5 of Icon (continued)
Computer

IBM PS/2 Model 80s

IBM PS/2 Model 80s

IBM PS/2 Model 80s

Sun-2/120
ATT3B1
AT turbo clone10

Apollo DN460
AT turbo clone10

AT turbo clone10

AT turbo clone10

Atari 1040ST
Compaq DP 286
Amiga
Macintosh SE
AT clone10

IBM PS/2 Model 80s

IBM PS/2 Model 80s

AT turbo clone10

Compaq DP 286
IBM XT11

AT clone10

IBM XT11

System

MS-DOS
MS-DOS
OS/2
SunOS
System V
MS-DOS
AEGIS
MS-DOS
MS-DOS
MS-DOS
GEMDOS
MS-DOS
AmigaDOS
MPW
MS-DOS
MS-DOS
OS/2
MS-DOS
MS-DOS
MS-DOS
MS-DOS
MS-DOS

Notes:
1 25 Mhz.
2 32-bit protected mode.
3 Norton computing index 28.2.
4 20 Mhz.
516 Mhz, Norton computing index 17
6 Norton computing index 16.8.

C Compiler

Let's C
Let's C 0
Microsoft 5.107

Microsoft 5.107

Turbo 1.5
Microsoft 5.10'
Let's C
Lattice 3.04
Microsoft 5.107

Aztec 3.6a
MPW 3.0
Microsoft 5.107

Lattice 3.22
Lattice 3.22
Lattice 3.22
Lattice 3.22
Microsoft 5.107

Lattice 3.22
Lattice 3.22

7 Large mem<
8 Compatibili
9 Huge mem

Time (seconds)
ipxref aueens

30.00
30.00
30.00
37.80
37.59
45.00
43.88
46.00
46.00
56.00
55.93
58.00
73.00
62.78
78.00

100.00
101.00
175.00
222.00
240.00
301.00
788.00

138.00
143.00
149.00
179.00
177.11
216.00
200.83
227.00
266.00
248.00
272.99
274.00
280.00
298.50
370.00
526.00
532.00
924.00

1176.00
1140.00
1592.00
4276.00

Dry model.
ty mode.
ory model.

10 Norton computing index 9.7.
5 " Norton computing index 1.0.

rsa

18.00
20.00
19.00
21.70
22.94
25.00
26.93
27.00
31.00
34.00
32.81
35.00
35.00
40.53
44.00
61.00
62.00

106.00
136.00
146.00
183.00
472.00

sieve

8.00
7.00
8.00
9.40
9.76

10.00
10.62
11.00
12.00
13.00
12.35
16.00
14.00
16.32
18.00
20.00
20.00
35.00
45.00
66.00
61.00

164.00

wt. sum

202.21
202.98
208.84
249.28
254.16
287.52
289.96
305.29
336.68
362.48
363.31
397.52
411.70
431.82
503.15
655.50
662.09

1146.21
1463.68
1649.00
1979.64
5228.38

Icon Version Numbering
If you've wondered about Icon version numbers

and what they mean, here's the key.

Icon version numbers come in two parts with a
separating decimal point, as in 7.5. The first part
identifies the major version (such as 7), while the
second part indicates the level of modification to the
major version (such as 5). Major versions have signifi
cantly different language features. Modifications
usually reflect implementation changes and correc
tions, but they sometimes include minor language
changes.

Thus, as indicated above, the language differences
between Versions 7.0 and 7.5 are minor, while the
cumulative implementation changes in the five modi
fications are significant.

Graphic Credit
Graphics that appeared in earlier O^zvsfetters are

credited there.

Page 6. Ralph Griswold, Logo Motion, Illustrator 88.

Downloading Icon Material
Several implementations of Icon are available for
downloading electronically:

BBS: (602)621-2283

FTP: arizona.edu (/icon)
(128.196.128.118 or 192.12.69.1)

http://arizona.edu

Programming Corner
We have two

contr ibut ions
from readers
this time. Rich
Clayton sent the
following note:

My Icon pro
grams often are
written as a se
ries of filters on
objects in a

stream. The filters do one object look-ahead on the
stream with a read/pushback sequence, implemented
something like this:

global push_back_o

procedure next_o()
local o

if \push_back_o then {
o := push_back_o
push_back_o := &null
return o

}
else return read_o()

end # next_o

It eventually occurred to me that I could use the local
variable's &null initialization to rewrite thethen part of
the if expression as

return o :=: push_back_o

which lets the procedure body collapse to

return ((\push_back_p & (o :=: push_back_o)) | read_o())

and again to

return (o > : \push_back_o) | read_o()

Alan D. Corre, author of the soon-to-be-published
book, Icon Programming for Humanists, sent the follow
ing:

I wanted to write an Icon procedure to check if a
string has precisely 22 characters (the size of the He
brew alphabet) and no duplicate characters, so I wrote
the following:

procedure checkstring(abc)
local cs, current
if *abc ~= 22 then fail # check length
cs := " # initialize cset
abc ? every 1 to 22 do {

current := move(1) # select a char
rf cs ** current -=== ' ' then fail # already a member
cs ++:= current} # char is ok

return
end

The procedure worked fine, but I said: "That isn't an
Icon procedure. It's a thinly disguised Pascal function.
Now write an Icon procedure." So I forsook "if mouse
in hole" and wrote:

procedure checkstring2(abc)
local t, current

if *abc ~= 22 then fail
t > table(O)
abc ? every 1 to 22 do {

current := move(1)
/t[current] | fail
t[current] := 1 }

return
end

More Icon constructs, but no better really. Then I
wrote:

procedure checkstring3(abc)
return *abc = *cset(abc) = 22

end

Now that's an Icon procedure.

Prolcon Licenses
The Prolcon Group has announced site and net

working licensing for Prolcon, an implementation of
Icon for the Macintosh (see tyzosfetter 30). Discounts
for educational institutions also are available.

For more information, contact

The Prolcon Group
P.O. Box 1123
Salida, Colorado 81201-1123
U.S.A.

719-539-3884

^ v o '

file:///push_back_o
file:///push_back_p
file:///push_back_o

Ordering Icon Material

What's Available

There are implementations of Icon for several per
sonal computers, as well as MVS, UNIX, VAX/VMS,
and VM/CMS.

Source code for Icon is available. There also is a pro
gram library and documentation both on the Icon pro
gramming language itself and on its implementation.

The current version of Icon is 7.5. All the program
material here is for Version 7.5.

Icon Program Material

Personal Computers: Executables and source code
for Icon for personal computers are provided sepa
rately. Each package contains printed documentation
that is needed for installation and use. Note: Icon for
personal computers requires at least 512KB of RAM; it
may require more on some systems.

MVS and VM/CMS: The MVS and VM/CMS pack
ages contain executables, source code, and documen
tation in printed and machine-readable form.

UNIX: The UNIX package contains source code (but
not executables), documentation in printed and ma
chine-readable form, test programs, and related soft
ware. It can be configured for most UNIX systems. The
documentation includes installation instructions, an
overview of the language, and operating instructions.
It does not include either of the Icon books. Program
material is available on magnetic tape, cartridge, or
diskettes. Note: executables for XENIX and the UNIX
PC are available separately.

VAX/VMS: The VMS package contains everything
the UNIX package contains except UNIX configura
tion information and UNIX-specific software. How
ever, the UNIX and VMS systems are configured dif
ferently, and neither will run on the other system. The
VMS package also contains object code and execut
ables, so a C compiler is not required. The VMS pack
age is distributed only on magnetic tape.

Porting: Icon source code for porting to other com
puters is distributed on MS-DOS format diskettes.
There are two versions, one with a flat file system and
one with a hierarchical file system. Both versions are
available in either plain ASCII format or compressed
ARC format.

Source Updates for MS-DOS

Updates to the Icon source code for MS-DOS are
available by subscription. A subscription provides
five complete updates. Updates are released about
three times a year.

Icon Program Library

The Icon program library consists of Icon pro
grams, collections of procedures, and data. Version 7
of Icon is required to run the library. The Icon pro
gram library is being issued in parts. Part 1 presently
is available. Note: Version 7 of the Icon program
library is available only on diskettes. The UNIX tape
and cartridge packages and the VMS tape package
presently contain an older version of the Icon pro
gram library. The Icon program library is not yet
available for MVS or VM/CMS.

Documentation

There are two documentation packages that con
tain more than is provided with the program pack
ages: one for the language itself and one for the
implementation.

Shipping
Except as noted, the prices listed include handling

and shipping in the United States, Canada, and
Mexico. Shipment to other countries is made by air
mail only, for which there are additional charges as
follows: $5 per diskette package, $10 per tape or
cartridge package, and $10 per documentation pack
age. UPS and express delivery are available at cost
upon request.

Payment

Payment should accompany orders and be made
by check, money order, or credit card (Visa or Master
Card). Remittance must be in U.S. dollars, payable to
The University of Arizona, and drawn on a bank with
a branch in the United States. Organizations that are
unable to pre-pay orders may send purchase orders,
subject to approval, but there is a $5 charge for proc
essing such orders.

10

The symbol US' identifies material that is new since
the last fyzusktter. The symbol «•* identifies material
that has been updated to Version 7.5 since the last
tyzvsfetter.

Ordering Instructions

Legend: The following symbols are used to indicate
different types of media:

Q 9-track magnetic tape

[3S DC 300 XL/P cartridge

H 360K (2S/DD) 5.25" diskette

y 400K (IS) 3.5" diskette

H 800K (2S) 3.5" diskette

All cartridges are written in raw mode. All 5.25"
diskettes are written in MS-DOS format. 3.5" diskettes
are written in the format appropriate for the system for
which they are intended.

MVS and VM/CMS tapes are available only at 1600
bpi. When ordering UNIX or VMS tapes, specify 1600
or 6250 bpi (1600 bpi is the default). When ordering
diskettes that are available in more than one size,
specify the size (5.25" is the default).

Use the codes given at the beginning of the descrip
tions that follow when filling out the order form.

Program Material

Amiga:

AME: f j

AMS: H

AML-1: H

Atari ST:

ATE: y

ATS: H

ATL-1: H

Macintosh/MPW:

ME: H

MS: H

ML-1: H

MS-DOS:

DE: H (2) o r H

DS: H (2) o r H

DL-1: I I o r H

DU: a

executables $15

source $15

library $15

executables $15

source $20

library $15

executables $15

source $25

library $15

executables $20

source $25

library $15

source updates $50

«•* MS-DOS/386:

DE-386 B o r U

•3" MVS:

MT: Q

OS/2:

OE: B o r f l

UNIX:

UT-T: O

UT-C: ©

UC-T: a i

UC-C: a !
UD-M:

UL-1:

executables $15

entire system $30

executables $15

entire system (tar) $30

entire system (cpio) $30

entire system (tar) $45

entire system (cpio) $45

I (6) or H (4) entire system (cpio) $40
florQ

UNIX - UNIX PC:

UPE: B

UNIX - XENIX:

XE: BorH

UNIX - XENIX/386:

XE-386: B o r f l

VAX/VMS:

VT: O

« • VM/CMS:

CT: O

library (cpio)

executables

executables

executables

entire system

entire system

$15

$15

$15

$15

$30

$30

Other systems (for porting):

PF-A: B (5) flat system (ASCII) $40

PF-K: B (2) flat system (ARC) $30

PH-A: B (5) hierarchical system (ASCII) $40

PH-K: B (2) hierarchical system (ARC) $30

PL-1: B library (ASCII) $15

Documentation

LD: Language documentation package. The Icon Pro
gramming Language (Prentice-Hall, 1983) and six tech
nical reports. $32.

ID: Implementation documentation package. The Im
plementation of the Icon Programming Language (Prince
ton University Press, 1986) and update. $45.

NL: Back issues of the Icon 9{?zvsfetter. $.50 each for
single issues (specify numbers). $7.50 for a complete
set (Nos. 1-30). There is no charge for overseas ship
ment of single back issues, but there is a $5.00 ship
ping charge for the complete set.

11

Order Form

loon Project • Department of Computer Science • Gould-Simpson Building • The University of Arizona • Tucson, AZ 85721 USA

Ordering information: (602) 621 -4049

name

address

city

(country)

state zipcode

telephone

D check if this is a new address

qty. code description price

subtotal

sales tax (Arizona residents')

extra shipping charges

Make checks payable to The University of Arizona P a
other charges

total

total

'The sales tax for residents of the city of Tucson is 7%. It is 5% for all other residents of Arizona.

Payment • Visa • MasterCard

• check or money order
VISA.,,.

I hereby authorize the billing of the above order to my credit card:

card number exp. date

name on card (please print)

signature

12

