
TTte Icon9{ezus letter
No. 41 - March 15,1993

Contents
New Icon Program Library ... 1

Supporting the Icon Project... 1

IntheWorks.. .2

Moving? ... 2

FTP Files by Electronic Mail... 3

Prolcon Price Reduction ... 3

Noun Stem Generation of Finnish

Programming Corner... 8

Third Icon Workshop ... 8

Ordering Icon Material... 9

New Icon Program Library
The Icon program library is a major resource for

Icon programmers. There are two main parts to
the library: complete programs and collections of
procedures. The programs are useful in their own
right and do not require a knowledge of Icon,
although several of them are useful in building
and processing Icon programs. The procedures
provide a large computational repertoire to aug
ments Icon's built-in one.

In addition to the functionality of the library, it
provides extensive examples of coding style and
techniques used by many different programmers.
As such, it is an excellent source of examples for
novice Icon programmers.

The Icon program library has grown consider
ably since the last release in 1991. The new library
contains 167 complete programs — everything
from text utilities to games. There are 1,158 addi
tional procedures for use in other programs —
again, just about anything you could imagine. In
all, the library contains more the 2.5MB of source
material.

There is now a portion of the library devoted to
X-Icon. The X-Icon applications include a direct-
manipulation interface builder, several color se
lection tools, an intelligent font selector, a capable
text editor, bitmapped graphics editors, and so
on. Procedures include an interface toolkit, turtle
graphics, geometrical transformations, and so on.

The library is the same for all platforms. We're
providing three distribution formats: MS-DOS,
Macintosh, and UNIX. If you're working on an
other platform, you should be able to convert one
of these formats.

If you get the new library, you might also con
sider subscribing to the update service for it.
Library updates are sent to subscribers three or
four times a year (present subscribers to this
update service received all the material in the new
release some time ago). Subscribers to the update
service also get additional material that's not
quite in shape for the library but nonetheless may
be useful.

Note: We've been distributing this new version
of the library for several weeks. If you got the
library recently, you may have received the new
version. It's identified as Version 8.8.

Supporting the Icon Project
The Icon Project is expensive to run. In addition

to the costs of printing and mailing the Hews fetter,
we sometimes need to upgrade the software we
use to produce new versions of Icon. Occasionally
we also have to repair or upgrade the personal

computers that are dedicated to the Icon Project.

Fortunately, we don't have personnel expenses.
The Department of Computer Science here pro
vides technical, secretarial, and clerical support,
as well as working and storage space. In addition,
many persons freely volunteer their time for tasks
ranging from new implementations to documen
tation.

We get income from sales of Icon program
material, books, and subscriptions. Since person
nel costs for distribution are underwritten, our
income from such sales exceeds the costs for
media and shipping.

Of course, we also make Icon program material
and most documentation freely available for elec
tronic transfer via FTP and our RBBS. Recently
many persons who formerly purchased Icon on
diskettes and tapes have obtained FTP access. The
effect on our distribution has been dramatic. The
amount of Icon material downloaded by FTP has
skyrocketed — over 4,500 files in January of this
year alone. At the same time, purchase of Icon
material has declined markedly. We're suffering
"Death by FTP".

There are several things we could to try to do to
deal with this problem, including reducing the
frequency of the Hewsletter, charging a subscrip
tion fee for it, or providing it only in machine-
readable form for downloading. Such measures
are unattractive for a variety of reasons and also
are unlikely to solve the basic problem.

Instead, we hope that some of you who benefit
from Icon and hope to see it continue will be
willing to provide financial support.

We'd prefer support in a form that is beneficial
both to you and the Icon Project. The best way to
do this is to purchase something that's of value to
you and also provides revenue for us. For ex
ample, a subscription to the ̂ Icort jAnalgat is only
$25 a year and brings you interesting technical
material about Icon every two months. A sub
scription to updates to the Icon program library
gives you the latest programs and procedures
long before a new version of the library is offi
cially released. If you're interested in the source
code for Icon and building your own version, a
source-code update subscription gives you peri
odic updates with the latest improvements and
new features.

If you've downloaded Icon material that you
otherwise might have purchased, you can help by
making a small payment toward supporting our
electronic distribution facility. Or you can add a
little extra when you're ordering Icon material.
We've provided a place for this on our order form.

In the Works...
We never leave things alone. We've now added

a built-in preprocessor to Icon. It's comparatively
simple, but it has several features to make writing
Icon programs easier: file inclusion, constant defi
nitions, and conditional compilation. We hope to
have this new version of Icon available for distri
bution sometime this summer.

We've also been working on X-Icon, adding a
few new features, removing redundant ones, and
so on. We've put a lot of effort into reorganizing
the implementation so that it will be easier to port
to new platforms. We have our sights set on a 32-
bit implementation of X-Icon that will run under
Windows 3.1 and NT. Stay tuned.

Moving?
If you're moving, please let us know your new

address. We use bulk rate for the Newsletter in the
United States and we usually aren't informed of
address changes or undeliverable mail. The situ
ation is not much better for other countries. Al
though we use first-class mail outside the United
States, notification of delivery problems is spotty.
The result is that we not only lose track of sub
scribers who have moved, but we continue to
send undeliverable mail, sometimes indefinitely.

You can let us know your new address any way
that you like — by postal mail, electronic mail,
fax, or telephone. See the box on page 5. But do let
us know.

Downloading Icon Material
Most implementations of Icon are available
for downloading electronically:

RBBS: (602) 621-2283

FTP: cs.arizona.edu (cd /icon)

http://cs.arizona.edu

FTP Files by Electronic Mail
If you have access to electronic mail but not to

FTP, you now can get files from our FTP area
through electronic mail. Using a facility called
ftpmail, you can send a script of commands to
our FTP site. Material specified in these com
mands is sent back to you. You can get both
directory listings and files. Large files are auto
matically split into smaller pieces to facilitate
transfer.

To use ftpmail, send a message to

ftpmail@cs.arizona.edu

Your message must begin with the command
open and end with the command quit. (The
subject field of the message is ignored.) There are
a dozen or so commands altogether. We'll list
only the most basic ones here. You can get more
information by sending the following message:

open
help
quit

You'll get a UNIX-style manual page with all the
particulars by return e-mail.

If you want the reply to go to a different ad
dress than the one you're sending from, include
the reply-to command in your message, as in

reply-to georgem@ece.foodom.edu

In fact, if you try ftpmail and don't get a reply,
it's probably because the return address as it
appears in your message header doesn't work.
(We find that to be the case fairly frequently in
mail sent to icon-project.) If this happens, use
reply-to, being careful to give a proper address.

In order to get directory listings and files, you'll
need to specify where they are. The cd (change
directory) command does this. To get to Icon
material, start with

cd /icon

A directory listing of this area then can be
obtained with

dir

The command get is used to get a file. In the
Icon FTP area, there are READ.ME files in all (or
almost all) directories. Thus,

cd /icon

get READ.ME

gets you our top-level READ.ME file.

Binary files, such as archives and executables,
are automatically encoded as ASCII text to allow
transfer via e-mail. The default encoding is
uuencode. btoa encoding also is available. The
commands btoa and uuencode can be used to
specify the encoding you want. You'll need either
uudecode or atob to convert encoded files back
into their binary form. The Icon program library
contains a program iidecode that has the same
functionality as u u d ecod e. It's slow, but it should
work on any platform.

Give ftpmail a try. If you have problems, send e-
mail to icon-project@cs.arizona.edu for assis
tance.

Prolcon Price Reduction
The Prolcon Group has reduced the price of

Prolcon Version 2.0 to $95.

Prolcon includes:

• all features of Version 8.0 of Icon
• a standard Macintosh interface
• an integrated editor
• functions for creating dialog boxes, ma

nipulating windows and the clip board, navigat
ing through folders, and performing other Macin
tosh operations

• access to HyperCard XFCNs and XCMDs
• royalty-free applications
• a separate application for visualizing stor

age management
• a comprehensive, 367-page manual

Prolcon is 32-bit clean and is compatible with
Version 7.0 of the Macintosh operating system.

Prolcon can be ordered from:

Catspaw, Inc.

P.O. Box 1123
Salida, CO 81201-1123
voice: (719)539-3884
fax: (719) 539-4830

©
Add $5 domestic, $10 Canada, $30 all other for
shipping.

mailto:ftpmail@cs.arizona.edu
mailto:georgem@ece.foodom.edu
mailto:icon-project@cs.arizona.edu

Noun Stem Generation of Finnish
Editors' Note: The following article, which describes
an application of Icon in linguistics, was contributed
by Kimmo Kettunen. Kettunen's e-mail address is
kettunen@delphi.com.

Introduction

The rich morphology of the Finnish language
has been studied intensively in computational
linguistics during the last decade or so. In the
beginning of the 1980s, computational morphol
ogy had its major breakthrough in the work of
Koskenniemi (1983), who introduced his so-called
two-level (TWOL) model of computational mor
phology of Finnish. Since those times there have
been at least 20 different kinds of morphological
programs that at some level either analyze or
synthesize Finnish word forms or do both
(Kettunen 1992).

I have also contributed to this computerized
morphological invasion by programming a pro
totype of a Finnish noun stem generator, which I
have named Stemma (a colloquial Finnish form of
the English word stem). The program is able to
produce all the differing major and minor stems
for an input noun that is given to it.

The program is implemented in Icon, which has
not been used much in computational linguistics,
although its characteristics are very well suited at
least for prototypes and non-commercial research
tools. Thus Stemma also shows the relevance of
Icon to the CL community.

Structure of the Program

The working of the program is based on string
and substring matching of the input word. The
program analyzes the word from its end and,
according to its characteristics, sends the process
ing to proper subprocedures. The most important
subprocedures are grade alternation, plural for
mation, and 12 pattern procedures of which each
can handle one or several types of nouns (mostly
one type). The program has also seven small
inherent vocabularies, which contain either all
the tokens of exceptional small paradigms or
exceptional words that are not affected by the
grade-alternation rules. Altogether some 650 -
700 words are included in the vocabularies or in
the rules themselves. Otherwise the program re

lies only on substring matching and pattern analy
sis and does not need comprehensive lexicons or
paradigm markings of words.

The main program of Stemma reads the input,
splits compounds to parts, counts syllables, makes
the basic stem and character variable definitions,
and calls the other procedures. The actual pro
cessing of the word is begun by the patterns
procedure, which first decides whether the word
needs to be handled in grade-alternation proce
dures. If grade alternation seems necessary, the
word is sent to an appropriate alternation proce
dure, either for weakening or strengthening. Oth
erwise it is matched against different pattern rules,
which decide whether any of the 12 special pat
tern procedures have to be invoked. After this, the
word is given to plural formation, which may first
define the nature of the first vowel, if the word
ends with -a or -a. After that, plural stems are
formed according to the plural rules.

When plural stems have been formed, the pro
cessing is finished and the resulting stems can be
given out. When the program stops, it also pro
duces a short list of statistics, which states how
many words it has processed, how many stems
were produced, and the arithmetic mean of the
amount of stems per input word. The processing
time used and the mean processing time per word
also are given. The statistical output of the pro
gram could be enriched very easily to cover dif
ferent needs of usage. It was implemented in the
first place to help in debugging the program, but
since it proved useful also in other respects, it was
embodied in the final version.

The maximal amount of different stem forms
produced by Stemma for the input noun is five,
which includes the input form in the nominative
case. If the input noun is lapsuus ('childhood'),
the program returns the stem forms lapsuus (nomi
native), lapsuude (weak stem), lapsuute (strong
stem), lapsuut (consonant stem), and lapsuuksi
(plural stem). Usually a Finnish noun has two or
three different stem forms.

All 30 different possible case forms of Finnish
(15 both in singular and plural) are formed using
these stems, and once the alternations taking place
in the stems have been produced, full noun forms
can be produced easily by appending the case
endings to proper stems. If the full possibilities of
Finnish noun declination are considered, a noun

mailto:kettunen@delphi.com

theoretically may have over 2,000 different forms,
when different clitic and possessive forms and
their combinations are used. But since all these
different forms are formed using the small amount
of stems, a vast number of different word forms
can be covered by having the stems of a noun
produced.

Linguistic Coverage of the Program

Stemma now covers the generation of Finnish
noun stems almost completely. Adjectives also

The Icon O^ezvsCetter

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Hezusfetter is published three times a
year, at no cost to subscribers. To subscribe,
contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

voice: (602)621-8448

fax: (602) 621-1246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

...uunet!arizona!icon-project

ft

"fttt UNIVERSITY or

ARIZONA
TUCSON ARIZONA

and

H The Bright Forest Company
I I Tucson Arizona

) 1993 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

are covered fairly well. Only comparative stems
and alternations that are category specific to some
types of multisyllabic adjectives are not handled
yet. These could be covered easily in the system,
if the adjectival category was specified in the
input word with a tag (for example, ko va*, 'hard',
matala*, 'shallow'). Pronouns and numerals are
outside the program's present scope.

Normal compounds are handled correctly, pro
vided the last part of the compound is separated
from the rest with / (for example, a vio /liitto, 'mar
riage'). If the last part has not been separated, the
result may be right or wrong depending on the
word. The program does not use comprehensive
dictionaries. No other way of separating the parts
of compounds is reliable, while formation of com
pounds is a pretty loosely structured process.
Some other restrictions apply also, and they are
described in Kettunen (1992).

I have made several test runs on different
amounts of basic noun forms with Stemma. My
largest test file includes 3,736 nouns, which have
been randomly selected from a corpus of some
35,000 non-compound words. When this test file
is run, Stemma gives 12,345 different forms as
output (where of course 3,736 forms are the same
as the input). The percentage of erroneous forms
in this sample is less than one (disregarding the
results of some adjectives, plurale tantums and
opaque historical forms). Other smaller test cor
pora (with 1,000 and 133 different basic word
forms) also have given similar results, and it
seems that the accuracy and coverage of the pro
gram is somewhere between 98 - 99.6 per cent.
Stemma is thus a very robust and reliable produc
tion-quality prototype program for Finnish noun
stem generation.

Technical Information and Choice of the
Implementation Language

Stemma is implemented in Icon. I chose Icon
mainly because I was frustrated with other lan
guages, which seemed to take too much effort in
trivialities like variable typing and so forth and
did not have good string-processing capabilities.
Particularly of delight to me during the work
were Icon's good ready-made string-manipula
tion functions, high-level design, ease of pro
gramming, and its rich repertoire of data struc
tures. Untyped variables of the language were

mailto:icon-project@cs.arizona.edu

also suitable for this kind of loosely structured
work, where new variables often are needed in
the midst of programming. I believe that pro
gramming Stemma was easier and faster using
Icon than it would have been in other more con
ventional languages.

The size of Stemma is now about 23 kilobytes of
source code, which makes some 46 kilobytes of
compiled icode. The whole program has about
450 non-empty and non-commented lines which
include also the seven inherent vocabularies. The
amount of code could still be reduced heavily, if
more abstract pattern-matching procedures were
used (I used mainly find(), uptoO, and match()).
The matching rules are now very concrete and
specific, which makes maintaining of the pro
gram easy. This may, however, lead to loss of
generalization and inefficiency, and a more gen
eral approach could benefit the program. As Icon
is a very high-level language, its characteristics
certainly would be well suited to a more abstract
or meta-level description of the linguistic rules
and processes involved. This would also need
deeper expertise in programming, however, and
thus it is outside the present scope of my project.
While I am a linguist, I am not a professional
programmer.

The implementation of Stemma was done first
with Icon's version 7.5, but it runs as well on any
version from 8.0 up with no modifications up- or
downwards. On an ordinary 12-MHz AT clone
the program handles some 6 to 8 nouns per sec
ond depending on the machine and the complex
ity of processing caused by the words. Stemma
runs on IBM compatible MS-DOS machines that
have at least 640 kilobytes of RAM, but it is also
easily portable to any computer that runs Icon,
including mainframes and workstations. I have
tried the program also in VAX/VMS and had no
troubles.

An Example of Linguistic Rules
Written in Icon

The procedure shown on the next page takes
care of the normal grade alternation, where stops
(k,p,t) and some two letter combinations that
include stops (for example, It, rt, mp) alternate
under certain conditions. The alternation has been
modeled in such a way that if alternation is pos
sible (that is, a stop is found in the second last
position and it is followed by a vowel and pre

ceded by a voiced sound), the alternating se
quence is firstly marked as an uppercase charac
ter (2). These are then processed by rules from 3 to
18 which specify what should happen to the se
quence. (Either it weakens, which may occur as
loss or change, or in exceptional cases it returns to
the original sound.)

Those exceptional words, which do not un
dergo grade alternation, are included in the vo
cabulary named sanastot_6()- The procedure first
checks it, and if the word is included there, it is
returned unaltered (1). The vocabulary of excep
tional words includes the most common words
(such as auto, 'a car'), first names, colloquial words,
and some loan words.

The grade-alternation rules include also some
odd looking formulations like 4,6, and 15, which
are actually crude exception rules to reduce the
size of the exception vocabulary. The rules may
look awkward, but these kinds of "pragmatic"
rules are the only possibility if you do not want to
increase the size of the exception vocabulary.

The flow of the rule application is partially
ordered such that the most general rule is tried
last if no other rules have applied. Otherwise the
application of the rules usually is not dependent
on particular order if the rule contexts (that is,
character strings including the alternating stop)
differ from each other. For example, Rule 7 is the
last and most common rule, which handles grade
alternation of t, and it changes t to d (as in kita ->
kida, 'jaws').

If the input word of Stemma were rotta ('a rat'),
grade alternation Rule 3 would apply, and return
the weak stem form rota. If the input word were
lupa ('permission'), Rule 10 would match and
return the weak form luva.

References

Kettunen, Kimmo. "Stemma, a Robust Noun Stem
Generator for Finnish", Humanistiske Data 1: 26 -
31 (1991).

Kettunen, Kimmo. "Doing the Stem Generation
with Stemma", Proceedings of the 18th Finnish Lin
guistic Symposium, Joensuu, Finland. 1992

Koskenniemi, Kimmo. Two-Level Morphology: A
General Computational Model for Word-Form Recog
nition and Production. Publications of the Depart
ment of General Linguistics, University of
Helsinki, No. 11(1983).

procedure grade_alt2()

change := " " ; sanastot_6(); if member(gradevar_1, wo) # 1
then return

if (upto(klus, wo, -2) & upto(vow, wo, -1) & upto(sll, wo, -3) I #2
(upto(klus, wo, -2) & wo[-2] == wo[-3]))

then wstem[-2] := change := map(wstem[-2], "kpt" , "KPT")

if f ind("kK" I " tT" I "pP"» wstem) & upto(reso, wstem, -4) #3
then return(wstem[-2] := "")

if wstem[-2] == "T" then

{
if f ind("tinTa" I "roTa", wstem) then # 4
return(wstem[-2] := " t ")

if findC'IT" I "rT" I "nT", wstem, -3) & upto(vow, wstem, -4) then # 5
return(wstem [-2] := wstem[-3])

if find("aaTi", wstem) & *wo >= 6 then # 6

return(wstem[-2] := "t")

return(wstem[-2] := "d") } # 7

if wstemt-2] == "P" then
{

if find("aPi" I "oPi" , wstem) then # 8
return(wstem[-2] := "p")

if f ind("mP", wstem) & upto(vow, wstem, -4) then # 9

return(wstem [-2] := wstem[-3])

return(wstem[-2] := "v") } #10

if wstem[-2] == "K" then
{

if f ind("puKu" I "kyKy" I "suKu" I " luKu", wstem) then # 11
return(wstem[-2] := "v")

if match("aiKa"l"poiKa", wstem) then # 12
return(wstem[-3:-1] := " j ")

if f ind("nK", wstem) & upto(vow, wstem, -4,) then # 13
return(wstem[-2] := "g")

if f ind("IKi" I "rKi" I "ylKa", wstem) then # 14
return(wstem[-2] := " j ")

if f ind("hK" I "aaKi" I "haKi" I "kaKi" I "uuKi" I "yyKi" I " luKi" I "muKi" I # 15
"66Ki" I " i iK i" I " loKi" I "niKa" I "riKa" I "t iKa", wstem) then

return(wstem[-2] := "k")

if f ind("rK" I "IK", wstem) then # 16
return(wstem[-2] := " ")

if upto(vow, wstem, -1) & upto(vow, wstem, -3) & #17
wstem[-3] == wstem[-1] & f ind ("W" , can, -4) then

return(wstem[-2] := "V")

return(wstem[-2] : = " ") } #18

end

Procedure for Normal Grade Alternation

Programming Corner
It's common practice

when debugging a
program to insert a
write() expression
where trouble is
expected, as in

write("x=",x)

That works well
enough as long as you
can be sure of the type

of x and that it's something writeO can convert to
a string. But it's not very discriminating — you
get a blank line if x is an empty string, an empty
cset, or null. And there's no way to tell whether x
is an integer or a string that happens to consist of
digits. And if x happens to be something that can't
be converted to a string, such as a list, you get a
run-time error for your trouble.

The function image() takes care of all of these
problems. In the first place, it's safe: image(x)
always produces a string, regardless of the type of
x. Furthermore, image(x) is designed so that you
can tell what the type of x is. Strings are enclosed
in double quotes, csets in single quotes, while
integers and real numbers are not quoted. A value
that corresponds to a keyword is imaged with the
keyword name. For example, the image of the
null value is &null.

In the case of structures, the type, a serial num
ber, and the size are given. For example, the image

of an empty list might be list_l 5(0). The 15 is its
serial number; the fifteenth list created since be
ginning of program execution. The number in
parentheses is the size, zero in this case.

image() has other useful features. For example,
the image of a value of type procedure shows
whether it's built in (function) or declared (pro-
ced u re). There are other things you might want to
know about different kinds of images. See the
Icon book [1]. In any event, it's worth casting
diagnostic output in a form such as

write("x=", image(x))

Incidentally, several very capable extensions to
the built-in image() function are included in the
Icon program library. See fullimag.icn, image.icn,
andximage.icn.

Reference
1. The Icon Programming Language, second edition,
Ralph E. Griswold and Madge T. Griswold,
Prentice Hall, Englewood Cliffs, New Jersey,
1990. pp. 56-57,128-129.

Third Icon Workshop
The Third Icon Workshop was held September

10-11,1992 in La Jolla, California. Fifteen persons
involved in the development and use of Icon met
to present recent work, to discuss their interests,
and to plan future directions.

Presentations included X-Icon, a multi-tasking
version of Icon, the Icon compiler, ISIcon, pro
gram visualization, an X-Icon toolkit and inter
face builder, real-time garbage collection, and a
dialect of Icon for instruction.

An eight-page report summarizing the meeting
is available, free of charge, with any order of Icon
material amounting to $15 or more. Just ask for
IPD206 or the "Third Workshop Report".

We regret that we can't provide documents like
this free of charge to everyone. There just are too
many of you and costs of distributing reports add
up quickly. All reports related to Icon are avail
able, however, for the cost of reproduction and
shipping. For a list of what's available, ask for
EPD117 — it's free to anyone.

Ordering Icon Material

What's Available

There are implementations of Icon for several
personal computers, as well as for CMS, MVS,
UNIX, and VMS. Note: Icon for personal comput
ers requires at least 640KB of RAM; it requires
more on some systems. Source code for most
implementations is available.

There also is a program library that contains a
large collection of Icon programs and procedures,
as well as an object-oriented version of Icon that is
written in Icon.

Icon Program Material

Icon programs provided by the Icon Project are
in the public domain.

All program material is accompanied by docu
mentation in printed and machine-readable form
that describes how to install and use Icon. This
documentation does not, however, describe the
Icon programming language in detail. A book is
available separately.

Personal Computers: Executable files and
source codes are provided in separate packages.
Source code for MS-DOS includes the Icon opti
mizing compiler, configurations for several C
compilers, and also OS/2. Note: Personal com
puter distributions are stored in compressed for
mat, and most diskettes are nearly full. It there
fore is necessary to have a second drive to extract
the material.

CMS and MVS: The CMS and MVS packages
contain executable files, source code, test pro
grams, and the Icon program library.

UNIX: The UNIX package contains source code
(but not executable files), test programs, related
software, and the Icon program library. UNIX
Icon can be configured for most UNIX platforms.

VMS: The VMS package contains executable
files, source code, test programs, and the Icon
program library.

Update Subscriptions: Updates to the Icon
source code and the Icon program library are
available by subscription.

Source-code updates are distributed on MS-
DOS diskettes in LHarc format, and are suitable
for compilation under MS-DOS and OS/2 or for

porting to new computers. Each update normally
provides a completely new copy of the source. A
source-code subscription provides five updates.
Updates are issued about three times a year.

Icon program library updates are available for
MS-DOS, the Macintosh, and UNIX. A library
subscription provides four updates. Updates are
issued three or four times a year.

Documentation

In addition to the installation guides and users'
manuals included with the program packages,
there are three books on Icon. One contains a
complete description of the language, another
describes the implementation of Icon in detail,
and a third is an introductory text designed pri
marily for programmers in the Humanities.

There are two newsletters. The Icon newsletter
contains news articles, reports from readers, in
formation of topical interest, and so forth. It is
free and is sent automatically to anyone who
places an order for Icon material. There is a
nominal charge for back issues of the Newsletter.

tEh* {3can ^rtaigat contains material of a more
technical nature, including in-depth articles on
programming in Icon. There is a subscription
charge for the ^rralrjst.

Payment

Payment should accompany orders and be
made by check, money order, or credit card (Visa,
MasterCard, or Discover). The minimum credit
card order is $15. Remittance must be in U.S.
dollars, payable to The University of Arizona,
and drawn on a bank with a branch in the United
States. Organizations that are unable to pre-pay
orders may send purchase orders, subject to ap
proval, but there is a $5 charge for processing
such orders.

Prices

The prices quoted here are good until April 30,
1993. After that, prices are subject to change
without further notice. Contact the Icon Project
for current pricing information.

Extra Payment

If you wish to support the Icon Project by
making an additional payment, a line is provided
at the bottom of the order form for this.

Versions

Version information is shown
in parentheses.The symbol *•
identifies recently released mate
rial.

Ordering Instructions

Media: The following symbols
are used to indicate different types
of media:

O 9-track magnetic tape
SS data cartridge
9 5.25" diskette
H 3.5" diskette

Tapes are written at 1600 bpi.
Cartridges are written in QIC-24
format. 5.25" diskettes are 360K.
3.5" diskettes are 720/800K un
less otherwise noted.

Diskettes are written in MS-DOS
format except for the Amiga, the
Atari ST, and the Macintosh. When
ordering diskettes that are avail
able in more than one size, specify
the size (the default is shown first).
In some cases, there are several
diskettes in a distribution.

Shipping Charges: The prices
listed include handling and ship
ping by parcel post in the United
States, Canada, and Mexico. Ship
ment to other countries is made
by air mail only, for which there
are additional charges as noted in
brackets following the prices. For
example, the notation $15 [$5]
means the item costs $15 and there
is a $5 shipping charge to coun
tries other than the United States,
Canada, and Mexico. UPS and ex
press delivery are available at cost
upon request.

Ordering Codes: When filling
out the order form, use the codes
given in the second column of the
list to the right (for example, AME,
ATS,...).

Executables
Acorn Archimedes (8.0)

Amiga (8.0)

Atari ST (8.0)

MS-DOS (8.8)

MS-DOS 386/486 (8.8)

Macintosh (8.0)

Macintosh/MPW (8.8)

OS/2 (8.8)

Source

Amiga (8.0)

Atari ST (8.0)

MS-DOS & OS/2 (8.8)

Macintosh (8.0)

Macintosh/MPW (8.8)

MS-DOS updates (5)

ARE

AME

ATE

DE

DE-386

MET

MEM

OE

AMS

ATS

DS

MST

MSM

SU

9 or

y
U1

9 or

9 or

u
y
9 or

y
y
9 or
y
y
9 or

y

y
y

y

y

y

$15

$15

$15

$15

$15

$15

$15

$15

$15

$15

$30

$15

$25

$60

Complete Systems (these contain earlier vers ions of the'.

CMS (8.0)

MVS (8.0)

UNIX (8.7)

UNIX (8.7)

UNIX (8.7)

VMS (8.7)

Program Library

MS-DOS (8.8)

Macintosh (8.8)

UNIX (8.8)

MS-DOS updates (4)

Macintosh updates (4)

UNIX updates (4)

Books

CT

MT

UD

UT

UC

VT

DL «•

ML *•

UL +•

LU-D

LU-M

LU-U

The Icon Programming Language

The Implementation of Icon + update

O

o
y 2

o
rag

o

9 o t

y
9 oi
9 oi
y
H2

LB

IB

Icon Programming for Humanists + diskette HB

Newsletters

The Icon Newsletter (complete, 1-40)
The Icon Hezvsfetter (back issues, each)

Wc\t ,31am ^ n a t g s t (1 year, 6 issues)

Wi\t ,3lcjm ^ n a r g s t (back

'400K.
21.44M.

issues, each)

3 Per order, regardless of the number of
issues purchased.

INC

INS

IA

IAS

a

y

y
y

IS m

$30

$30

$25

$30

$45

$32

$15

$15

$15

$30

$30

$30

$40

$53

$38

$18

$1
$25

$5

[$5]

[$5]

[$5]

[$5]

[$5]

[$5]

[$5]

[$5]

[$5]

[$5]

[$5]

[$5]

[$5]

[$15]

ibrary)
[$10]

[$10]

[$5]

[$10]

[$10]

[$11]

[$5]

[$5]

[$5]

[$12]

[$12]

[$12]

[$13]

[$14]

[$10]

[$5]
[$23]

[$10]

[$23]

0^\
=Slil vVi

tJPfllSI mm n^l

10

Order Form

Icon Project • Department of Computer Science
Gould-Simpson Building • The University of Arizona • Tucson AZ 85721 U.S.A.

Ordering information: (602) 621-8448 • Fax: (602) 621-4246

name

address

city

(country)

CD check if this is a new address

state zipcode

telephone

qty. code

XP

description

Support for the Icon Project

price shipping*

subtotal

Make checks payable to The University of Arizona s a , e s t a x (Arizona residents)
extra shipping charges*

The sales tax for residents of the city of Tucson is 7%. purchase-order processing

It is 5% for all other residents of Arizona.
other charges

• Visa • MasterCard 0 Discover 0 check or money order total

total

I hereby authorize the billing of the above order to my credit card: ($15 minimum)

card number exp. date

name on card (please print)

signature

'Shipping charges apply only to addresses outside the United States, Canada, and Mexico

11

/roft ^6jP /£on
o o ^ o o,

/coh ^o.cr /cor*
p o ^ o o, >s

o"°^ t°0 _

V / A O.X$> S/«-P rt V

r/
.T o V M 0 'Si

