
I7te Icon9{ezvs tetter
No. 43 - November 15,1993

Contents
Implementation News . .1

An Icon-Based Parser Generator ... 2

Icon for Humanists Out of Print... 5

Holiday Closing... 5

From Our Mail... 6

Icon in the Classroom ..

Graphics Credits ... 8

Ordering Icon Material

.7

..9

Implementation News

Recent Updates

Bob Alexander has updated Icon for the
Macintosh ranning under MPW to Version 8.10.
Both executables and source code are available.

Alan Beale has updated Icon for MVS to Version
8.8. Source code is not included in the present
distribution tape.

Icon for NT

Clint Jeffery, who is implementing Icon for NT,
reports that the work is corning along nicely. All
the regular features of Icon are working, includ
ing co-expressions. At present the working graph
ics features include opening a window and draw
ing simple graphics and text. A considerable

amount of work remains to be done to provide
Icon's complete graphics and interface repertoire.

He expects that the NT implementation also will
run under Windows 3.1 using the Win32 libraries.

It's too early to predict when Icon for NT will be
available. If you're interested in this implementa
tion, let us know.

Work in Progress

We're currently working on Version 8.11 of
Icon. New features include the ability to add
several elements to a list in a single function call.

The major thrust of Version 8.11, however, is in
the area of graphics facilities, which will be sub
stantially improved.

We're not sure yet when Version 8.11 will be
available — next summer, perhaps.

Source Updates

We are constantly updating the source code for
Icon to correct errors, add new features, and bring
platform-specific code up to date.

Because of the amount of time and effort it takes
to prepare a full-blown source-code distribution,
we only do that when a significant number of
changes have accumulated or when there's a major
addition to the language itself. This usually hap
pens every two years or so.

Persons who are interested in having the latest
version of the source code can subscribe to our
source update service, which provides the latest
source about three times a year.

The source code for Icon is the same for all
platforms, so these updates can be used for any
implementation of Icon.

Updates now are available on MS-DOS disks in
LHarc and compressed tar formats. See the order
form at the end of this newsletter.

An Icon-Based Parser Generator
Editors' Note: The following article, which describes a
Yacc-like parser generator, was provided by Dr. Rich
ard Goerwitz, a frequent contributor to the Icon pro
gram library.

What is Ibpag2?

Ibpag2 is a so-called "parser generator", that is,
a tool for automating the process of generating a
recognizer and/or parser from an abstract struc
tural specification of an input language. This de
scription might seem to thrust Ibpag2 into the
category of highly specialized tools, but in fact the
purpose of parsers is simply to infer structures
from an input stream — for example, words from
alphabetic sequences, sentences from texts, or
equations from series of symbols. Although pro
grammers may not always label them as such,
parsers are as much a part of their work as sorting,
searching, or anything else. An automated tool
for creating them is therefore of potential use to
almost anyone who writes computer programs.

Despite their general utility, parser generators
like I bpag2 have significant limitations. Virtually
all (Ibpag2 included) use a family of algorithms
that cannot easily accommodate natural languages
and older prograrnming languages like FOR
TRAN. For these, one must use a more powerful
(and less efficient) system, such as a chart parser.
Ibpag2, in fact, does come equipped with a sec
ondary system that gives it this power. Using this
system, however, constitutes an advanced topic,
and will not be discussed here. For more details,
consult the README file that comes with the
Ibpag2 distribution (see the end of this article).

A Bit of Background

During the 50s and 60s, linguists, mathemati
cians, and engineers became quite interested in
the formal properties of languages: Could they be
described as a series of logical structures that
computers could recognize and manipulate effi
ciently? Linguists, in particular, came to realize
that the amount of structural complexity, ambi
guity, and pure noise in natural language would
render it computationally intractable. Mathema
ticians and engineers, however, found that many
of the formalized notations they dealt with could,
in fact, be (re)designed in such a way that efficient
computer processing was — at least in principle
— achievable.

Principle, in this case, did not meet reality until
viable parser generation tools came into being.
Parser generation tools convert abstract struc
tural descriptions of formal notations or "lan
guages" to working computer code. Ideally, the
designer simply makes assertions like:

An expression is composed of either

(1) a term (for example, 10), or

(2) an expression, a + or -, and another
expression.

Parser generator systems translate these asser
tions (the "grammar") into a machine, that is,
automaton, that can recognize and/or manipu
late input streams that conform to the "language"
so described.

Let me dwell, for a moment, on the toy expres
sion grammar offered above. Note that it de
scribes a set of simple mathematical constructs
like:

9 + 3
9 + 3 - 8

According to the specifications given, the 9, 3,
and 8 alone constitute terms — which are also
expressions (via rule 1). Because these terms are
also expressions, 9 + 3 can be reduced to a larger
expression by rule 2. The same is true for 9 + 3 -
8, except that there rule 2 must apply twice—once
for 9 + 3, and then again for that and the remain
der of the line.

If we join addition and subtraction actions to the
above grammar specification, we can create a
calculator-like automaton. Traditionally, LR-fam-
ily automata (like Ibpag2's) contain a parser, one
or more stacks, and a set of action tables. The
parser reads from an input stream segmented into
"tokens" (for example, TERM, +, -), and then
manipulates its stacks according to directives con
tained in its tables. As the parser reads the input
stream, it matches rules with action code specified
by the programmer. For example, rule 2 above
might be matched with code that added/sub
tracted the expressions on either side of the + / -
operator, and produced (in calculator style) the
result. Alternatively, it might be matched with
code that generated an equivalent construct in
another language. The result is a little machine
that understands and processes input.

In general, creating code for such a machine is
difficult and the resulting files are not easily main-

tained. What Ibpag2 and other tools like it do is
allow the programmer to automate the coding
process. Ideally he or she need only declare to
kens and language specifications, then flick a
switch, so to speak. The parser generator creates
the appropriate automaton with little, or no, hu
man intervention. If changes are made to the
grammar, this process can be repeated, making
the actual automaton quite easy to change and
maintain. It is the ease and simplicity tools like
Ibpag2 bring to the automaton-creation process
that made, and in fact still makes, them critical to
the development of not just theoretically feasible,
but truly "practical" computer language design
systems.

Using Ibpag2

To recode the above toy expression grammar in
Ibpag2 format is relatively simple, especially if
we omit the actions. We need only a set of token
declarations and three rules:

%token TERM, '+', ' - '
%%
exp : TERM
exp : exp, '+', exp
exp : exp, '-', exp

TERM, and the addition and subtraction opera
tors, are the tokens (that is, the terminal symbols
out of which the grammar is constructed — the
things into which the input stream is segmented).
The colon means "is composed of". The double
percent sign separates token declarations from
the grammar proper.

Adding in our actions (that is, directions on
what to do with the language as it is recognized)
requires just a few extra lines of Ibpag2 action
code enclosed in braces. Repeated left-hand sides
of rules are indicated by a vertical bar:

%token TERM, '+', ' - '
%%
exp :TERM {return argl}

I exp, '+', exp {return argl + arg3}
I exp, '-', exp {return argl - arg3}

The argn above refers to the nth element of the
right-hand side of the preceding rule. So, for
example, the action {return argl + arg3} above
means: "When you have found an expression
consisting of a sub-expression, a plus operator,
and another sub-expression, use the value of sub
expression 1 plus the value of sub-expression 2 as

the value for the expression as a whole". Were we
to find 1 + 3 in the input stream, this action would
cause the parser to produce 4.

One serious problem with the set of specifica
tions above is that the operators - and + group left
to right. We human beings take this for granted.
The computer, though, has to be told exactly how
to group such expressions. Without explicit in
structions, the parser does not know, after it has
read 9 + 32 and is looking at a minus sign,
whether to shift the minus sign onto the stack,
and eventually try to group it as, say, 9 + (32 - 4),
or to reduce 9 + 32 to an expression and group as
(9 + 32) - 4. This ambiguity is rectified by replac
ing

%token TERM, '-', '+'

with

%token TERM %left ' - ' , '+'

Adding in the unary minus sign to our gram
mar (for example, -4) takes only a little extra
machinery. The main difficulty here is that the
minus sign is also used for subtraction, and yet
the two expression types have different prece
dences and associativities (that is, expressions
with the unary minus sign get done before sub
traction expressions, and group right to left). To
get around the operator conflict we use a
"dummy" token declaration, and a %prec decla
ration:

%token TERM
%le f t '+ ' , ' - '
%right UMINUS
%%
exp :TERM {return argl}

I exp,'+', exp {return argl + arg3}
I exp, '- ' , exp {return argl - arg3}
I '- ', exp %prec UMINUS {return - arg2}

The %prec declaration simply tells the parser
that, even though the rule contains a - operator,
the rule should be handled as if the operator were
UMINUS.

Let us now add in multiplication and division
operators to our calculator specifications:

%token TERM
%le f t ' + ' , ' - '
%left '*', '/•
%right UMINUS
%%

exp :TERM {return argl}
I exp,'+', exp {return argl + arg3}
I exp, ' - ' , exp {return argl - arg3}
I exp, '*', exp {return argl * arg}
I exp, '/ ', exp {return argl / arg3}
I ' - ' , exp %prec UMINUS {return - arg2}

Note that the multiplication and division op
erators were defined after the addition and sub
traction operators. The reason for this is that,
technically speaking, the grammar itself is am
biguous. If we treat all operators identically, the
parser will not be able to tell whether 9 + 1 * 3
should be parsed as (9 + 1) * 3 or as 9 + (1 * 3). As
we all know from our high-school algebra, multi
plication has a higher precedence than addition.
To tell the parser this, we declare * after +.

The only fundamental problem remaining with
the above grammar is that it assumes that the end
of the input coincides with the end of the line. To
make our grammar accept arbitrarily many lines
(printing a result at the end of each), we simply
add another set of productions to the grammar.
Note that only the first rule has an action field and
that epsilon stands for the empty string:

lines :lines, exp, '\n' {write(arg2)}
I lines, '\n'
I epsilon

The rules above ensure that if there is no input
(epsilon), nothing gets printed, because lines :
epsilon has no action field. If the parser sees an
expression and a newline, the parser takes this as
an instance of epsilon, plus an expression, plus a
newline. This, then, becomes the first component
of rule 1 if another expression plus a newline
follows, or if just a newline occurs. Every time an
instance of rule 1 occurs, the action {write(arg2)}

is executed, that is, the value of the expression gets
printed. (In actual practice, this is not nearly as
arcane as it sounds.)

Note that the goal of our parse no longer is just
an exp, but rather lines, lines, that is, is our "start
symbol". By default Ibpag2 assumes that the left-
hand side symbol of the first rule is the start
symbol. This may be overridden with a % start
declaration in the tokens section.

With our new, multi-line start symbol in place,
the only piece that needs to be added, in order to
make our calculator specification a full working
input to Ibpag2, is a tokenizer. A tokenizer is a
routine that reads input from a file or from some
other stream (for example, the user's console), and
then segments this input into %tokens its parser
can understand. Literal values for tokens are speci
fied by setting the global variable, iilval. For ex
ample,

iilval := 10
suspend TERM

For operators there is no need to set iilval. One
simply returns these "literally" as integers (usu
ally via suspend ord(c)).

The tokenizer routine is best $included or ap
pended to the grammar after another double per
cent sign. Everything after this second double
percent sign is copied to the output file. Ibpag2
demands that the tokenizer be called iilex, that the
tokenizer take a single file argument, that it be a
generator, and that it fail when it reaches end-of-
input. Combined with our lines productions, the
addition of an iilex procedure to our calculator
grammar yields the following Ibpag2 input file:

%token TERM
%left '+ ' , '-' "/deft '* ' , '/ '
% right UMINUS
%start lines
%%
exp TERM {return argl}

I exp, '+', exp {return argl + arg3}
I exp, '- ' , exp {return argl - arg3}
I exp, '*', exp {return argl * arg3}
I exp, '/', exp {return argl / arg3}
I ' - ' , exp %prec UMINUS {return - arg2}

lines :lines, exp, '\n' {write(arg2)}
I lines, '\n'
I epsilon

%%

procedure iilex(infile)
local nextchar, c, num

nextchar := create !(!infile II " \n" II "\n")
c := ©nextchar I fail
repeat {

if any(8idigits, c) then
if not (\num ll:= c) then num := c

else{
if iilval :=\num then {
suspend TERM
num := &null
}
if any('+-*/()\n', c) then {

iilval := c
suspend ord(c)
} else {

if not any(' \ f , c) then
deliberate error; handled
suspend otnull

}
}
c := ©nextchar I break

}
if iilval :=\num then {

return TERM
num := &null

}
end

procedure main()
return iiparse(&input, 1)

end

If you like, copy the above code into a tempo
rary file (say tmp.ibp) and then feed it to Ibpag2
by typing

ibpag2 - f tmp.ibp -o tmp.icn

Ibpag2 will turn your grammar specifications
and actions into a procedure called iiparse. When
Ibpag2 is finished creating its output file (tmp.icn
above), compile that file the way you would
compile any other Icon program (for example,
icont tmp). Finally, run the executable. You
should be able to type in various simple arith
metic expressions and have the program spit
back answers each time you hit a return.

There are certainly additional issues that might
be covered here — for example, error detection,
handling, and recovery; debugging; natural lan
guages; efficiency concerns, and many others.
These are all covered in the Ibpag2 RE ADM E file,
included as part of the standard Ibpag2 distribu
tion.

Technically, I bpa g2 is still in beta testing. How
ever, it has been in continuous use by me for some
months now, and I have completed several sub
stantial projects using it. The most recent version
can be obtained either from me at
goer@midway.uchicago.edu or from The Uni
versity of Arizona's RBBSor its FTP server. Ibpag2
should function on any platform that has Icon
Version 8.10 with co-expressions. Please report
problems to me via e-mail, or by the post:

Richard Goerwitz
5410 S. Ridgewood Ct., 2E
Chicago, IL 60615

Editors' Note: To get Ibpag2 via FTP, connect to
cs.arizona.edu, cd /icon/contrib, set binary mode,
and get ibpag2.lzh or ibpag2.tar.Z (compressed
tar). ibpag2. Izh also is availablefrom our RBBS at the
corresponding location.

Holiday Closing
As a cost-saving measure, The University of

Arizona plans to shut down during the holiday
period from December 24,1993 through January
2,1994.

During this period, there will be no one at the
Icon Project to receive telephone calls, faxes, or
postal mail. We flunk electronic mail and FTP will
remain in operation, but we can't be sure of this.

If you're planning to place an order for Icon
material, we suggest youdosoby early December
to assure delivery before the holiday period.

Icon for Humanists Out of Print
Alan Corre's book, Icon Programming for Hu

manists, went of out print in August.

We have only five copies of this book left in
stock. If you want a copy, we suggest you call us
and reserve one.

Downloading Icon Material
Most implementations of Icon are available
for downloading electronically:

BBS: (602) 621-2283

FTP: cs.arizona.edu (cd /icon)

mailto:goer@midway.uchicago.edu
http://cs.arizona.edu
http://cs.arizona.edu

From Our Mail
Wow! I didn't
know I was
going to get
so much
stuffwhen
I ordered
the Icon
program
library.
Neat! But
I'm a bit lost. Any hope of a guided tour to help folks like
me find the best things?

We're glad to hear you're enjoying the library. We
think it's a great resource and one that many Icon
programmers overlook. It does contain a lot of
material, and we continue to add more material
through updates that come out three or four times
a year. You might consider subscribing to our
update service. As to locating things in the library,
you'll find keyword-in-context listings among the
documents that come with the library. These
should tell you where to start looking. There's
also a program called ibrow that lets you look
through the library interactively. You'll also find
pointers to some of the most useful library mate
rial in articles in this Newsletter and the ^rtafgsi.
Still, your point is well taken. We're thinking
about other ways to make it easier to locate mate
rial in the library. Suggestions along this line are
welcome.

The new preprocessor in Version 8.10 of Icon is great.
But it sure would be nice to have a few more features like
macros with arguments and the ability to define and
undefine macros on the command line. Any chance?

We'd also tike such features in the preprocessor.
The problem is finding the resources to imple
ment them. We're pretty well occupied with other
work that has higher priority. We won't say exten
sions to the preprocessor will never happen, but
we have no immediate plans along these lines.

I'm using Icon on a UNIX machine and would like to
keep up to date on the source. It looks like your source
update service is what I need, but it seems to apply only
to MS-DOS.

As mentioned on page 1 of this Newsletter, the
source code for Icon is the same for all platforms.
The problem is distribution format and platform-
specific configuration files. We now offer the
source updates in both LHarc and compressed tar

formats. For UNIX, you'll also need configuration
files. If you already have Version 8.10 of the
source code for UNIX, you have these files. If you
don't, you should first get the 8.10 source and
then subscribe to the update service.

I'm forming a local fan club for Icon called the Iconoids.
Would you please autograph this letter and send it back
so I can show it to my computer buddies?

Uhh, sure ...

One of my friends has an Icon t-shirt with the chess
board from the cover of your book. He says he bought it
from a professor in a computer class he took, but he
doesn 't know where to get another one. I'd really like to
have one of these t-shirts; can you tell me where I can
get one?

Catspaw, Inc. designed the t-shirt you're talking
about. We got some to sell to interested students
at The University of Arizona. There aren't any
more of these t-shirts left, as far as we know.
We've thought about designing a new t-shirt, or
even getting coffee mugs with the Icon logo.
There are, however, lots of restrictions on com
mercial activities in an academic context. We're
working on it, but we can't give you much hope of
seeing anything soon.

In Newsletter 41 you mentioned problems with fi
nancing the Icon Project. I did my bit by subscribing to
the (Analgst. (I should have done this long ago and I
now regret what I missed.) How are things going? Will
you be able to stay out of bankruptcy?

We appreciate your support and are glad to hear
you got something useful in return. We're doing
moderately well. Our income has picked up a bit,
thanks to persons like yourself. Keeping the News
lettergoing should be no problem for the immedi
ate future. We just hope we don't have to replace
a hard disk drive on one of the Icon Project com
puters.

How's the book on graphics in Icon coming?

It's coming along, but more slowly than we'd
hoped. For one thing, we keep coming up with
new features to add to the graphics capabilities of
Icon. We think we're near the end of such prob
lems, but we've been wrong about this before.
Our goal is to have the book complete in draft in
about a year.

How old are you?

The Icon Project is 13 years old. The editors of this
Newsletter are both 39, like Jack Benny.

Icon in the Classroom
As you might expect, we use Icon in several

courses in our Department of Computer Science
at The University of Arizona. Here are some
comments on our experience.

Comparative Programming Languages

Like many computer science departments, we
have an undergraduate course called Compara
tive Programrning Languages. This course is de
signed to educate students about programrning
language features and give them some experi
ence with a variety of different languages. At
present, the course covers Icon, LISP, Prolog, and
Idol (the object-oriented version of Icon). Our
experience using Icon in this course has been
quite positive. Students find Icon interesting and
fun to use. The main problems they encounter are
with pointer semantics for structures and with
string scanning. In string scanning, the main prob
lem seems to be coming to grips with strings as
data values in their own right, as opposed to
arrays of characters (most students' prior pro
gramming experience is limited to Pascal at this
point in their program). These difficulties are not
necessarily bad; the course is designed to intro
duce new ideas.

String and List Processing

We have taught a graduate-level course in string
and list processing for over 20 years. About five
years ago, an upper-division undergraduate sec
tion was added.

icon
o o

.UODI

icon'
o o
UODI

icon'
o 0

.UODI

icon'
o o
J ! 0 3 !
icon*
o o
J! 0 0 !
icon'
o o

.U03I

icon'
o o

.U03I

icon
o o

.yosj

icon
o o
0031

icon'
o o

,U03I

icon'
o o
UODI

icon
o o

.UODI

icon'
o o
UODI

icon
o o

.UOSI

icon
o o
U 0 3 I

icon
o o
UODI

icon
o o
UOSI

icon
o o
UODI

icon
o o
UODI

icon
o o
UODI

icon*
o o

.UODI

icon*
o o

.U03 I

icon'
o o

.U03 I

icon'
o o

.U03 I

icon*
o o

.U03 I

icon*
o o

,U03 j

icon'
o o

.U03 I

icon
o o

.UODI

icon*
o o
U 0 3 I

icon
o o

.UODI

icon
o O
UODI

icon
o o
UODI

icon'
o o
U 0 3 I

icon*
o o

JJ03I

icon'
o o
U 0 3 I

icon
o o

.UOSI

icon'
O O
UOSI

icon
o o

.U03J

icon'
O O

.UODI

icon'
o o
UODI

icon'
o o
UOSI

icon
o o
UOSI

icon
o o
UODI

icon
o o

.UODI

icon*
o o
U03I

icon
o o

.UODI

icon'
o o

JJOD|

icon'
o o
J ! 0 3 !
icon'
o 0
UOSI

icon'
o o

.UOSI

icon'
o o
U03J
icon'
o o
UODI

icon*
o o
ueai

icon
o o
U 0 3 I

icon
o o
UODI

icon
0 0
UODI

icon
o o
UQ3I

icon
o o
UODI

icon
o o
UODI

icon
o o
.yoDj

icon'
o o
UODI

icon
o o
,yo3j

icon'
o o

,U03j

icon'
o o

,UOD|

icon'
o o

.UODI

icon'
o o

.UODI

icon*
o o
.yoDj

icon'
o o
.yoDj

icon'
o o

.U03 |

icon*
o o

,yo3j

icon'
o o
.yoDj

icon'
o o
UODI

This course, which was originally used
SNOBOL4 as a programming vehicle, has used
Icon for the last 10 years or so. The course is
designed to introduce students to prograrnrning
problems and techniques that involve text and
structured data. In many cases, this is an entirely
new experience for students, and the high-level
features of Icon lead students to use program
ming paradigms that are quite different from
ones in their previous experience. If there's any
problem with this course, it's that some students
have so much experience with a lower-level lan
guage (at this point, it's usually C) that they find
it hard to think in a new language.

In recent years, students have been given a large
project in lieu of a final examination. Each student
selects and carries out a project individually. This
project approach has worked out well. Students
learn about a specific problem area, get signifi
cant programming and problem-solving experi
ence, and have the satisfaction of seeing a sub
stantial finished project (at least in most cases).

Two years ago we introduced graphics as an
option for projects. Graphics fit nicely with string
and list processing, where many applications ben
efit from the visual display of information.

Despite the added work inherent in using graph
ics, most students elect this option — 29 of 32
students the last time the course was offered.

Many of the projects have been quite ambitious
and several produced first-class results (although
only rarely has a project been so robust and well-
documented that we've distributed it as part of
the Icon program library). It has been evident
both in the projects and the demonstrations of
them that graphics was a strong motivating fac
tor. In many cases students who used graphics in
a significant way became more involved and got
deeper into the subject area of their projects than
other students.

Compiler Design

Last semester students were given the choice of
using Icon or C in parts of a compiler-design
course. All but one student chose Icon. The in
structor estimates that this student had to write
four times the amount of code that students who
used Icon did. Most of the additional C code
involved implementing structures like sets that
are built into Icon.

As in the comparative programrning languages
course, students new to Icon had trouble with
pointer semantics at first, but only because it
caught them by surprise. After some experience,
students gave Icon very good ratings.

Graphics Programming

The success of using graphics in the string-and-
list-processing course has led us to design an
undergraduate graphics programming course.
The idea of this course is to introduce students to
the use of graphics and user interfaces as a regular
part of prograrnming; it is not intended to be a
computer graphics course or a course on interface
design.

Not surprisingly, Icon will be the programrning
language used. With its high-level graphics facili
ties, students will not have to deal with the te
dious detail that is so discouraging and that so
severely limits the coverage of subject matter
when a language like C is used.

Students that take this course will have had
only a little experience in Icon — perhaps from
our comparative programming languages course.
What else they need to know about Icon, will be
covered in the course.

This course is still in the planning stage and
won't be taught until next year.

Icon as a First Programming Language

Every so often, someone raises the issue of
using Icon as the prograrnming language in a first
course on computing. Our department has con
sidered this possibility when trying to find an
alternative to Pascal, which it presently uses.

Factors in favor of Icon are ease of use, being
able to get to interesting material quickly, and the
possibility of giving students more interesting
kinds of assignments than are possible in a lan
guage like Pascal.

Arguments against Icon are the lack of an intro
ductory text, whether Icon might "spoil" students
who later will have to program in C, the fact that
there is little precedent for using Icon as a first
prograrruning language, and differing opinions
about the technical characteristics a first program
ming language should have so as to encourage
students to approach programming "correctly".

After a lot of discussion, we decided to try

Scheme as an alternative to Pascal, but the issue
seems far from settled.

Graphics Credits
The images on Page 7 and the back cover were

construced with Icon, using the Prolcon icon de
signed by Mark Emmer. The image on the back
cover then was modified in Adobe Photoshop
using a filter from Kai's Power Tools.

I7te Icon 9\(ezus letter

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon hezosfetter is published three times a
year, at no cost to subscribers. To subscribe,
contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

voice: (602)621-8448

fax: (602) 621-4246

Electronic mail may be sent to:

icon-project @ cs.arizona.edu

or

...uunetlarizonalicon-project

THE UNIVERSITY OF

ARIZONA.
TUCSON ARIZONA

ft

and

I I The Bright Forest Company
I I Tucson Arizona

> 1993 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

http://cs.arizona.edu

Ordering Icon Material

What's Available

There are implementations of Icon for several
personal computers, as well as for CMS, MVS,
UNIX, and VMS. Source code for most implemen
tations is available. Note: Icon for personal com
puters requires at least 640KB of RAM; it requires
more on some systems.

There also is a program library that contains a
large collection of Icon programs and procedures.
written in Icon.

Icon Program Material

Icon programs provided by the Icon Project are
in the public domain.

All program material is accompanied by docu
mentation in printed and machine-readable form
that describes how to install and use Icon. This
documentation does not, however, describe the
Icon prograrnming language in detail. A book is
available separately.

Personal Computers: Executable files and
source code are provided in separate packages.
Source code for MS-DOS includes the Icon opti
mizing compiler, configurations for several C
compilers, and also OS/2. Note: Personal com
puter distributions are stored in compressed for
mat, and most diskettes are nearly full. It there
fore is necessary to have a second drive to extract
the material.

CMS: The CMS package contains executable
files, source code, test programs, and the Icon
program library.

MVS: The MVS package contains object files,
source code and test programs, but not source
code.

UNIX: The UNIX package contains source code
(but not executable files), test programs, related
software, and the Icon program library. UNIX
Icon can be configured for most UNTX platforms.

VMS: The VMS package contains executable
files, source code, test programs, and the Icon
program library.

Update Subscriptions: Updates to the Icon
source code and the Icon program library are
available by subscription.

Source-code updates are distributed on MS-
DOS diskettes in LHarc and compressed tar for

mat. Each update normally provides a completely
new copy of the source. A source-code subscrip
tion provides five updates. Updates are issued
about three times a year.

Icon program library updates are available for
MS-DOS, the Macintosh, and UNIX. A library
subscription provides four updates. Updates are
issued three or four times a year.

Documentation

In addition to the installation guides and users'
manuals included with the program packages,
there are three books on Icon. One contains a
complete description of the language, another
describes the implementation of Icon in detail,
and a third is an introductory text designed pri
marily for programmers in the Humanities.

There are two newsletters. The Icon Newsletter
contains news articles, reports from readers, in
formation of topical interest, and so forth. It is
free and is sent automatically to anyone who
places an order for Icon material. There is a
nominal charge for back issues of the Newsletter.

Wc\z (3lrnn jAnalgst contains material of a more
technical nature, including in-depth articles on
programrning in Icon. There is a subscription
charge for the ^nafgsi.

Payment

Payment should accompany orders and be
made by check, money order, or credit card (Visa,
MasterCard, or Discover). The rninimum credit
card order is $15. Remittance must be in U.S.
dollars, payable to The University of Arizona,
and drawn on a bank with a branch in the United
States. Organizations that are unable to pre-pay
orders may send purchase orders, subject to ap
proval, but there is a $5 charge for processing
such orders.

Prices

The prices quoted here are good until February
28,1994. After that, prices are subject to change
without further notice. Contact the Icon Project
for current pricing information.

Extra Payment

If you wish to support the Icon Project by
making an additional payment, a line is provided
at the bottom of the order form for this.

Versions

Version information is shown
in parentheses. The symbol •&
identifies recently released mate
rial.

Ordering Instructions

Media: The following symbols
are used to indicate different types
of media:

O 9-track magnetic tape

gig data cartridge
H 5.25" LD diskette
H 3.5" LD diskette
y 3.5" HD diskette

Tapes are written at 1600 bpi.
Cartridges are written in QIC-24
format. 5.25" diskettes are 360K.
3.5" LD diskettes are 720/800K
except as noted; HD are 1.44 MB.

Diskettes are written in MS-DOS
format except for the Amiga, the
Atari ST, and the Macintosh. When
ordering diskettes that are avail
able in more than one size, specify
the size (the default is shown first).
In some cases, there are several
diskettes in a distribution.

Shipping Charges: The prices
listed include handling and ship
ping by parcel post in the United
States, Canada, and Mexico. Ship
ment to other countries is made
by air mail only, for which there
are additional charges as noted in
brackets following the prices. For
example, the notation $15 [$5]
means the item costs $15 and there
is a $5 shipping charge to coun
tries other than the United States,
Canada, and Mexico. UPS and ex
press delivery are available at cost
upon request.

Order Codes: When filling out
the order form, use the codes given
in the second column of the list to
the right (for example, DE, MSM,
...).

Executables

Acom Archimedes (8.0)
Amiga (8.0)
Atari ST (8.0)
MS-DOS (8.10)

MS-DOS 386/486 (8.10)

Macintosh (8.0)

Macintosh/MPW (8.10)
OS/2 (8.10)

Source
Amiga (8.0)
Atari ST (8.0)
MS-DOS & OS/2 (8.10)
Macintosh (8.0)
Macintosh/MPW (8.10)

Updates, LHarc (5)
Updates, comp. tar (5)

Complete Systems

CMS (8.0)
MVS (8.8)

UNIX (8.10)
UNTX (8.10)
UNIX (8.10)

VMS (8.10)

Program Library

MS-DOS (8.10)
Macintosh (8.10)
UNTX (8.10)
MS-DOS updates (4)
Macintosh updates (4)
UNIX updates (4)

Books

The Icon Programming Language
The Implementation of Icon
Icon Programming for Humanists + diskette HB

Newsletters
The Icon Hezosfetter (complete, 1-42) INC
The Icon Hezosfetter (back issues, each) INS
HI[£ ,31am jAnalrrst (1 year, 6 issues) IA
'(Die 3lr.rm jAnalrrsl (first three years, 1-18)
[S3]

ARE

AME

ATE

DE

DE-386

MET

MEM *

OE

AMS

ATS

DS

MST

MSM *

SU-L
SU-T

CT

MT *

UD

UT

uc
VT

DL

ML

UL

LU-D
LU-M

LU-U

mge

update

H o r

H
H1

Hor
Hor

H
H
H

H
H
Hor
H
H
Hor
Vf'l

o
e
y
o
m
O

Hor
H
Hor
Hor
H
a
LB

IB

fElie <31r.im (Atutlast (back issues, each)
1 400K
2 Per order, regardless of the number of
issues purchased.

10

IAS

$15 [$5]
$15 [$5]
$15 [$5]
$15 [$5]
$15 [$5]
$15 [$5]

$15 [$5]
$15 [$5]

$15 [$5]
$15 [$5]
$30 [$5]
$15 [$5]
$25 [$5]

$60 [$15]
$60 [$15]

$30 [$10]

$30 [$10]

$25 [$5]
$30 [$10]
$45 [$10]
$32 [$11]

$15 [$5]
$15 [$5]
$15 [$5]
$30 [$12]
$30 [$12]
$30 [$12]

$40 [$13]
$53 [$14]
$38 [$10]

$19 [$5]
$1 [$22]

$25 [$10]
IAC $60

$5 [$22]

name

address

Order Form

Icon Project • Department of Computer Science
Gould-Simpson Building • The University of Arizona • Tucson AZ 85721 U.S.A.

Ordering information: (602) 621-8448 • Fax: (602) 621-4246

city

(country)

• check if this is a new address

state zipcode

telephone

qty. code

XP

description

Support for the Icon Project

price shipping*

subtotal

Make checks payable to The University of Arizona s a l e s t a x (A r i z o n a residents)

extra shipping charges*

The sales tax for residents of the city of Tucson is 7%. purchase-order processing

It is 5% for all other residents of Arizona.
other charges

• Visa 0 MasterCard • Discover • check or money order total

total

I hereby authorize the billing of the above order to my credit card: ($15 minimum)

card number exp. date

name on card (please print)

signature

"Shipping charges apply only to addresses outside the United States, Canada, and Mexico
* D \ 1 C ^

11

* • * * R

muff**** ******
MUr*"*!^? icon'ict>n icon icon*
F'm&fi&iZ oo co o o © ©

u Q f i j * j * * J W • * B a i H « = «
"ftr*" ' ^, , »• » _*»» • ^ - . C J^.^.SJ'" ! ^ ^ « J *

n£tf&R *«G <£*5 '£°2 ^ O »£&!! EM —

« <

.««»! iP^i Joli §4
ICOfl *£&f* icew W; r : 0 0 0 0 0 OO OO OO • • Mf • m 1 1 M M M . W J**! J*»!

