
1

Contents
Third Edition of the Icon Book 1

Graphics Programming Book 1

Version 9.3 of Icon 2

Version 9.3 of the Program Library ... 2

New MS-DOS Implementation 2

Icon in Java .. 2

Teaching Icon .. 3

Web Links .. 7

Chicon .. 7

The Icon NewsletterThe Icon NewsletterThe Icon Newsletter
No. 51 – December 1, 1996

Third Edition of The Icon
Programming Language

The third edition of The Icon Programming Lan-
guage is now available.

In preparing the third edition, we revised much
of the material in the second edition and added
chapters on debugging, the Icon program library,
and an overview of graphics. There also are new
appendices and more reference material.

Here‘s the publication information:

The Icon Programming Language, Ralph E.
Griswold and Madge T. Griswold, Peer-to-
Peer Communications, Inc., ISBN 1-57398-
001-3, $34.95.

The book can be ordered from the Icon Project,
which pays handling and shipping costs to ad-

dresses in the United States, Canada, and Mexico.
There is an additional charge for shipping to
addresses in other countries. See the order form
enclosed with this Newsletter.

The book also can be ordered from the pub-
lisher:

Peer-to-Peer Communications, Inc.
P.O. Box 640218
San Jose, California 95164-0218
U.S.A.

voice: 408-420-2677
fax: 408-435-0895
info@peer-to-peer.com
http://www.peer-to-peer.com

Peer-to-Peer Communications’ books are dis-
tributed to bookstores worldwide through Inter-
national Thomson Publishing. In the United States,
contact ITP at:

7625 Empire Drive
Florence, KY 41042

For addresses of ITP offices in other countries,
contact Peer-to-Peer.

Graphics Programming Book
We have contracted with Peer-to-Peer Commu-

nications, Inc., the publisher of the third edition of
the Icon Programming Language, to publish Graph-
ics Programming in Icon as well.

The date of publication is uncertain at this point,
but we are aiming for late in the summer of 1997.

Details are subject to change, but we expect a
book about 512 pages with eight color plates and
a CD-ROM. The price should be around $45.

We’re contemplating the following content for
the CD-ROM, which will be “universal“ and us-
able on different platforms:

2

The section Program Library has links to indexes
for the library that lead to the individual files. The
complete collection can be downloaded by fol-
lowing the FTP Area link.

New MS-DOS Implementation
A new MS-DOS/386 implementation of Ver-

sion 9 of Icon with graphics is nearing comple-
tion. This implementation also will run under
various versions of Windows in a DOS box in full
screen mode, or in OS/2 2.0 similarly.

Completion of this implementation is outside of
our control, but it seems likely it will be ready
before the end of 1996.

Icon in Java
Todd Proebsting is heading a project to con-

struct an entirely new Icon translation system.
The compiler will translate Icon into Java for
execution in any Java environment. The system
will also include a completely new Icon run-time
system. While we don’t plan to change the Icon
language, modest extensions to data types are
anticipated (for example, using Unicode charac-
ters in strings and csets). The project is a large
undertaking and has just begun — it will be some
time before it bears fruit.

This is an experiment, and we will continue to
support the present C implementation of Icon
regardless of the outcome.

Teaching Icon
Editor’s Note: The following article was contributed by
Bill Mitchell.

I’ve taught Icon only once, in the context of a
comparative programming languages class, C.Sc.
372 at The University of Arizona. Icon was the
second of four languages studied in turn. Icon
followed ML and in turn was followed by C++
and Prolog. Nine hours of lecture were budgeted
for Icon.

During the course I came across a few things
that perhaps are worth mentioning, as follows.

Overall Strategy

A fundamental decision made when planning
the order of presentation was to present first the

1. Material from the book

program segments
images
reference material from appendices

2. Icon material

source code
executables for various platforms
program library
documentation
data

3. Tools

compression and archiving
file conversion
image viewing

4. Images

pictures
color palettes
patterns and backgrounds
icons and ornaments

Let us know if you have any suggestions for
other content for the CD-ROM.

Version 9.3 of Icon
Version 9.3 of Icon is in the final stages of

testing. This version contains a few new features
and improvements to the graphics facilities. It
also fixes several bugs.

Watch our Web site for announcements of re-
leases of the source and executable files for vari-
ous platforms as they become available.

Version 9.3 of the Program Library
Version 9.3 of the Icon program library now is

available. This version of the program library not
only contains new material, but more of the pro-
cedures have been packaged in modules to re-
duce the number of files in the library and to make
it easier to find commonly needed procedures.

Version 9.3 files can be downloaded from our
FTP site:

ftp.cs.arizona.edu

From there, cd /icon/library. That area contains
library packages in several different forms.

Or you can use our Web site:

http://www.cs.arizona.edu/icon/

3

aspects of Icon that are close to conventional
languages and later bring in generators and string
scanning operations. This is based on the obser-
vation that one can do quite a number of interest-
ing things without using either generators or
string scanning.

A fair amount of time was spent describing
Icon’s place in the programming language com-
munity. My experience is that Icon’s greatest
strength is that it can be used to build tools easily,
the construction of which would not be cost-
effective in conventional languages.

ie — The Icon Evaluator

Being a great fan of Icon, I wanted to introduce
the language in the best light possible, but follow-
ing ML presented an immediate problem: ML has
an interactive mode and Icon does not.

I felt that ML’s interactive mode, the commonly
seen read-evaluate-print loop, proved to be a
great aid in learning ML, and I wanted something
similar for Icon. I produced a hasty solution, the
Icon Evaluator (ie) based on the idea of interpe.icn
in the Icon program library. interpe.icn takes an
arbitrary Icon expression, wraps it in a main
procedure, and then translates and runs the pro-
gram. ie extended that idea a bit to provide con-
text so that expressions can use the results of
previous expressions.

With ie in hand it was possible to present over-
head slides that showed expressions and the re-
sult of evaluating them. For example:

%
ie Icon Evaluator, Version 0.0, ? for help
][3+4;
 r1 := 7 (integer)
][3.4*5.6;
 r2 := 19.04 (real)
]["x" || "y" || "z";
 r3 := "xyz" (string)
][reverse(r3);
 r4 := "zyx" (string)
][center("hello",20,".");
 r5 := ".......hello........" (string)

ie provided benefits to both the instructor and
the student. When preparing slides, ie made it
possible to see easily if an expression produced
what was expected. For students, ie made it easy
to try out code in a controlled environment that
presented results in an unambiguous fashion.

Expression Failure

Failure is a fundamental concept in Icon and I
wanted to be sure that students really understood
it. The example of an out-of-bounds string sub-
script was used to introduce the concept:

][s := "testing";
 r := "testing" (string)
][s[50];
 Failure

String subscripting was chosen because the same
construct presents conventional languages with a
problem: What should happen in this situation?
With the notion of failure, Icon avoids the two
common solutions of throwing an exception or
producing a contrived value of some sort (per-
haps a null string).

It was said that “s[50] fails — it produces no
value” and then this rule was cited:

 “An operation is performed only if a
value is present for all operands. If a value
is not present for all operands, the opera-
tion fails.”

Examples were built on that rule:

]["x" || s[50];
 Failure
][reverse("x" || s[50]);
 Failure
][s := reverse("x" || s[50]);
 Failure
][s;
 r := "testing" (string)

My personal experience is that a very common
source of bugs in Icon programs is due to unan-
ticipated failures. Based on that I cited this rule:

“Unexpected failure is the root of mad-
ness.”

Text Processing with split()

An observation of mine is that a number of text
processing problems can be addressed with a
simple paradigm: split a line into pieces based on
delimiters and then process those pieces. Without
showing the implementation I introduced a pro-
cedure called split(). From the slides:

There is a procedure split(s, delims) that
returns a list consisting of the portions of the
string s delimited by characters in delims:

][split("just a test here ", " ");

4

The Icon Newsletter
Ralph E. Griswold, Madge T. Griswold,

 and Gregg M. Townsend

Editors

The Icon Newsletter is published three times a
year and is available on the World Wide Web. To
receive printed copies, contact:

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

e-mail: icon–project@cs.arizona.edu

and

© 1996 by Ralph E. Griswold, Madge T. Griswold,
 and Gregg M. Townsend

All rights reserved.

®

Bright Forest Publishers
 Tucson Arizona

 r := L1:["just","a","test","here"] (list)
][split("...1..3..45,78,,9 10 ", "., ");
 r := L1:["1","3","45","78","9","10"] (list)

A simple example then was posed:

Consider a file whose lines consist of zero or
more integers separated by white space:

5 10 0 100 50
200 1 2 3 4 5 6 7 8 9 10

A program to sum the numbers in such a file:

link split
procedure main()
 sum := 0
 while line := read() do {

 nums := split(line, " \t")
 every num := !nums do sum +:= num
 }
 write("The sum is ", sum)
end

split() provides an easy way to turn input text
into lists of strings. By using split() it was possible
to delay string scanning but at the same time
immediately work with nontrivial text process-
ing problems.

Generators

A basic question in presenting generators is
whether to start with a built-in generator or with
an Icon procedure. The latter approach was taken
and this procedure was used:

procedure Gen()
 write("Gen: Starting up...")
 suspend 3
 write("Gen: More computing...")
 suspend 7
 write("Gen: Still computing...")
 suspend 13
 write("Gen: Out of results...")
 fail
end

procedure main()
 every i := Gen() do
 write("Result = ", i)
end

The code still has the mystery of how suspend
works, but I think it clearly shows that generation
is a single computation punctuated with the pro-
duction of values.

Debugging Aids

Three debugging aids were discussed in some
detail. The first was procedure call tracing. Icon’s
procedure call tracing facility is a wonderful de-
bugging aid, and use of tracing was strongly
encouraged. This program was used to show
tracing in action:

Downloading Icon Material
Most implementations of Icon are available
for downloading via anonymous FTP:

ftp.cs.arizona.edu (cd /icon)

5

Icon on the Web

Icon is on the World Wide Web at

http://www.cs.arizona.edu/icon/

procedure main()
 write(sum(3))
end

procedure sum(n)
 return if n = 0 then 0 else n + sum(n – 1)
end

For UNIX csh users, two aliases to facilitate
tracing were suggested:

alias tn setenv TRACE –1
alias tf unsetenv TRACE

The second debugging aid discussed was the
Image() function and it was prefaced with a dis-
cussion of the built-in image(). Image() was dis-
cussed after lists but before tables, and it was used
to help in the presentation of tables.

The third debugging aid discussed was a proce-
dure snap(), based on snapshot() from the Icon
program library. snap() differed from snapshot()
by displaying strings with blanks interspersed
and by being less verbose to conserve space on
slides. An example from a slide:

]["testing" ? while move(1) do {
... snap()
... write(move(1))
... };
&subject = t e s t i n g
&pos = 2 |
e
&subject = t e s t i n g
&pos = 4 |
t

Type Checking

Languages like Icon are typically described as
being weakly typed, but Ralph Griswold claims
Icon to be strongly-typed. I couldn’t reconcile this
for a long time, but now I find myself agreeing
with his claim. The point stressed to the class was
the one aspect of type-checking is when the check-
ing is done. In Icon that checking is done at run
time and the ramifications of that choice were
discussed.

Minor Points

• The design philosophy of Icon was said to be:

Provide a “critical-mass” of types and op-
erations.

Free the programmer from worrying
about details.

Put the burden of efficiency on the lan-
guage implementation.

• Lists as stacks and queues

After presenting each of push(), pop(),
get(), pull(), and put(), I used this visual
summary, which I first saw used by Rich
Saunders:

push ==> ==> pull
pop <== List <== put
get <==

• The / and \ operators

“Think of /x as succeeding when x is null
because the null value allows the slash to
fall flat.”

• The & operator

 It was emphasized that & is simply a
trivial operator that returns its right-hand
operand — the failure mechanism is what
really does the work.

• tab() and move()

The precise operation of tab() was illus-
trated by showing this version of tab() in
Icon:

procedure Tab(n)
 oldpos := &pos
 &pos := n
 suspend &subject[oldpos:n]
 &pos := oldpos
end

• Considerable use was made of reading from a
pipe (via open(…, "rp")) to get some real-world
textual data to work with. One of the program-
ming problems did some simple analysis of the
files in a directory tree by constructing a UNIX
“find” command and processing output from it.

• A portion of an essay question on the final
examination suggested that the student cite his or
her favorite language among the four covered. Of
those students who addressed the question, half
chose Icon as their favorite.

6

explicit conversions
procedures

basics
call by value
omitted arguments
call tracing
scoping

generators
basics
every
to-by
!
alternation

lists
basics
reference semantics
stack and queue functions
sort()

text processing with split()
Image()
tables
string scanning

snapshots with snap()
move()
tab()
csets
upto()
many()
find()
match()
any()
pos()
default arguments for scanning
backtracking

multiple generators
the random operator

Due to time constraints, records and co-expres-
sions were not covered.

Editor’s Note: An improved version of ie under the
name of qei is included in Version 9.3 of the Icon
program library.

Web Links
The Icon Analyst

We frequently get inquiries about The Icon
Analyst from persons who are interested in sub-
scribing but who are not sure it fits their needs or
is worth the subscription price to them.

Headaches

By far the greatest difficulty in teaching Icon
was determining an order of presentation that
didn’t have “forward references” — uses of con-
cepts not covered yet. The features of Icon inter-
lock very tightly and that produces a language
that’s easy to remember but difficult to unravel.

There was only one construct that created a
problem that was inordinately difficult to ad-
dress:

 T := table([])

Interestingly, a number of students employed
this construct without trouble by using list con-
catenation to add elements to the “lists”:

 T[x] |||:= val

Course Outline

This is the complete order of presentation that
was followed:

introduction with brief history
notion of type associated with values not
 variables
arithmetic operations
strings
simple i/o
expression failure
if-then-else
compound expressions
semicolon insertion
while
break and next
not
&
comparison operators

7

John Shipman’s pages on writing CGI handlers
in Icon and his “Cleanroom” protocol (with links
to several other Icon-related pages):

http://www.nmt.edu/tcc/help/lang/icon/
cgi.html

http://www.nmt.edu/~john/soft/clean/

Chicon
Several persons

have asked us about
the meaning of the
Chinese characters for
Chicon, Chinese Icon.
Here’s the response
we got from the
project:

[It is] pronounced “kin kwun” in
Cantonese. Originally it was a phonetic
translation of “Chicon” (Chinese Icon).
Nevertheless, “kin kwun” means some-
thing “special” and “wonderful”.

— Jason

We’re happy to
send free sample
copies of the
Analyst to inter-
ested persons,
but you also can
learn a lot by
browsing our
Web site. From

our home page,
follow the link The Icon Analyst in the
Documentation section. That takes you
to a page that provides a brief descrip-
tion of the Analyst and has links to a
sample copy, a contents listing for all
issues of the Analyst, and a permuted
index of topics covered in the Analyst to
date. Snapshots of portions of the last
two are shown below and at the right.

Other Links

Here are a few other Icon-related Web pages.

Clint Jeffery’s work on Icon work at the Univer-
sity of Texas at San Antonio (with links to several
Icon-related pages):

http://www.cs.utsa.edu/research/icon/

Portion of the Contents for the Analyst

Portion of the Permuted Index for the Analyst

