
Using Version 8 of Icon under VMS

Gregg M. Townsend
Sandra L. Miller

Department of Computer Science
The University of Arizona

Introduction
This paper describes the use of Icon under the VAX/VMS operating system.
Several commands for running Icon programs are described here. These commands are not a standard part of

VMS and so they must be defined before they can be used. Unless the system administrator incorporates definitions
into the system login procedure, explicit setup action is needed. This is performed by the command

$ @[directory]DEFICON
which you may wish to put in your LOGIN.COM file for convenience. directory is the directory containing the
Icon binaries and is dependent on the particular installation.

Translation and Linking
Icon source programs must be transformed into an internal code before they can be executed. This is done

through use of the ICONT program. Its command arguments consist of options (if any), then one or more files, then
!x and any program arguments if execution is desired. It is important to note that the options must precede all file
names. The command may be summarized as:

$ ICONT [options] files [!x arguments]
Used in its simplest form, ICONT produces a file suitable for interpretation by the Icon interpreter. Processing con-
sists of two phases: translation and linking. During translation, each Icon source file is translated into an intermedi-
ate language called ucode; during linking, the one or more ucode files are combined and a single icode file is pro-
duced. Unless the !o option is specified, the name of the resulting icode file is that of the first input file but with a
.ICX file type. If the !x argument is used, the file is automatically executed by the interpreter and any arguments
following the !x are passed as execution arguments to the Icon program itself.

Files of type .ICN are assumed to be Icon source programs; .ICN is assumed if no file type is specified. These
programs are translated, and the intermediate code is left in two ucode files of the same name with .U1 and .U2 as
file types. The ucode files normally are deleted when ICONT completes. Icon source programs may be read from
standard input by giving "!" (including the quotation marks) as a file name. In this case, the ucode files are named
STDIN.U1 and STDIN.U2 and the icode file is named STDIN.ICX.

Files of type of .U, .U1, or .U2 call for inclusion of ucode from a previously translated source file. Only one of
these types should be named; the corresponding .U1 and .U2 files are both read. These files are included in the
linking phase after any .ICN files have been translated. Explicitly named ucode files are not deleted.

The following options are recognized by ICONT:
!c Suppress the linking phase. The ucode code files are not deleted.
!e efile

Connects efile to &errout.

IPD121a ! 1 ! April 17, 1990



!o output
Name the icode file output.

!s Suppress informative messages from the translator and linker. Normally, both informative messages
and error messages are sent to standard error output.

!t Arrange for &trace to have an initial value of !1 when the program is executed. Normally, &trace
has an initial value of 0.

!u Issue warning messages for undeclared identifiers in the program. The warnings are issued during the
linking phase.

!L Enable linker debugging.
Icon has a number of tables related to the translation and linking of programs. These tables are large enough for

most programs, but their sizes can be changed, if necessary, by the !S option. This option has the form "!Scn",
where the key character c specifies the table and n is the number of storage units to allocate for the table. This
option must be quoted because it and its suboptions are case sensitive. Key characters, meanings, and default sizes
are:

c constant table 100
f field table 100
g global symbol table 200
i identifier table 500
l local symbol table 100
n line number space 1000
r field table for records 100
s string space 20000
t tree space 15000
C code buffer 15000
F file names 10
L labels 500

The units depend on the table involved, but the default values can be used as a general guide for appropriate settings
of !S options without knowing the units.

The logical name IPATH controls the location of files specified in link directives. The value of IPATH should
be a blank-separated form p1 p2 ... pn where the pi name directories. Each directory is searched in turn to locate
files named in link directives. The default value for IPATH is the current directory.

Program Execution
An Icon program produced by ICONT is run by calling the interpreter, ICONX, with the linked program as its

argument. Additional arguments may be given and are passed to the Icon program. For example, the command

$ ICONX MYPROG PARAM1 PARAM2 PARAM3
executes the file MYPROG.ICX with three parameters.

Program arguments of the form <ifile and >ofile cause ifile and ofile to be used for &input and &output respec-
tively. An argument of the form "!e efile" immediately following the ICONX keyword connects efile to &errout.
File redirection arguments are not passed to the Icon program.

The IEXE command, which takes a file name as its single argument, defines a command allowing an icode file
to be executed by name. For example,

$ IEXE MYPROG
defines MYPROG as a command equivalent to ICONX MYPROG.

When an Icon program is executed, several logical names are examined to determine certain execution parame-
ters. These logical names should have numeric values. The variables that affect execution and the interpretations of
their values are as follows:

IPD121a ! 2 ! April 17, 1990



TRACE
Initialize the value of &trace. If this variable has a value, it overrides the translation-time !t option.

NOERRBUF
By default, &errout is buffered. If NOERRBUF is defined, &errout is not buffered.

STRSIZE
The initial size of the string space, in bytes. The string space grows if necessary, but it never shrinks.
The default value of STRSIZE is 65000.

BLOCKSIZE
The initial size of the allocated block region, in bytes. The block region grows if necessary, but it
never shrinks. The default value of BLOCKSIZE is 65000. HEAPSIZE and BLKSIZE are
synonyms for BLOCKSIZE.

COEXPSIZE
The size, in words, of each co-expression block. The default value of COEXPSIZE is 2000.

MSTKSIZE
The size, in words, of the main interpreter stack. The default value of MSTKSIZE is 10000.

STATSIZE
The size, in bytes, of the static region in which co-expression blocks are allocated. The default value
of STATSIZE is 20480.

STATINCR
The size of the increment used when the static region is expanded. The default increment is one-
fourth of the initial size of the static region.

MEMMON
The name of an output file, if memory allocation information is to be recorded.

MAXMEM
The maximum amount of memory, in bytes, that can be allocated in total by all of Icon’s memory
regions. The default value of MAXMEM is 1000000.

The Programming Environment
The main procedure is always called with a single argument that is a list of strings. This list contains any argu-

ments passed to the program by the command that executed it. When there are no such arguments, the list is empty.
If the main procedure returns or fails, the DCL status is set to 1 indicating normal termination. If stop(s) is

called, the value is hexadecimal 10000000, indicating an error but producing no additional messages. A call to
exit(i) terminates the program with the status specified.

The call system(s) executes s as a command and produces its DCL status.
The call open(s,"rp") spawns a process to execute command s and produces a file that will read the standard

output of that command. Similarly, open(s,"wp") spawns a command that will read its input from data written to
the file produced by the call.

Memory Monitoring
The Icon interpreter is instrumented to provide a history of memory allocations. This tracing is enabled by set-

ting the MEMMON logical name. The MMPS program can be used to produce PostScript snapshots of the
interpreter’s memory layout. This facility is described in more detail in [3]

Warnings and Known Problems
Ucode and icode files produced under earlier versions of Icon are incompatible with this version. Such pro-

grams must be recompiled.
Stack overflow is checked using a heuristic that is not always effective.

IPD121a ! 3 ! April 17, 1990



References

1. R. E. Griswold and M. T. Griswold, The Icon Programming Language, Prentice-Hall, Inc., Englewood Cliffs,
NJ, second edition, 1990.

2. R. E. Griswold, Version 8 of Icon, The Univ. of Arizona Tech. Rep. 90-1, 1990.
3. G. M. Townsend, The Icon Memory Monitoring System, The Univ. of Arizona Icon Project Document

IPD113, 1990.

IPD121a ! 4 ! April 17, 1990


