
Writing Execution Monitors for Icon Programs

Ralph E. Griswold

Department of Computer Science
The University of Arizona

Clinton L. Jeffery

Division of Mathematics, Computer Science, and Statistics
The University of Texas at San Antonio

1. Introduction
The execution of a program in a high-level programming language results in a many computational activities at

a lower level. Some of these events mirror the semantics of the language, although superficially simple language
operations may involve many low-level events. Other events may not be directly related to the semantics of the
language. In Icon, for example, storage allocation accompanies the evaluation of some expressions, but the details
of allocation depend on properties of the implementation, not the language, and may depend on the history of pro-
gram execution as well [1]. Similarly, garbage collection usually occurs at unpredictable times, and what actually
happens during garbage collection usually is not evident in the results of program execution. There also are lower-
level events, such as the execution of instructions for the virtual machine that provides the framework for the inter-
pretive implementation of Icon [2].

To a large extent, the purpose of a high-level programming language is to hide low-level events from the pro-
grammer. Nonetheless, in order to understand a program, to debug it, or to measure the resources it uses, it may be
necessary to go beneath the surface. This report describes facilities that have been added to the MT Icon [3] for
such purposes.

Effective use of information about low-level events requires tools that can bridge the gap between the semantics
of the programming language and the lower-level events that occur during program execution. MT Icon has been
extensively instrumented to report, on request, those events that are most relevant to understanding the execution of
an Icon program. This instrumentation is done in a way that does not affect program execution except to slow it
down.

The instrumentation is designed so that an Icon program being monitored (the target program, or TP) reports
events to another Icon program (the execution monitor, or EM). The interface through which events are reported is
invisible to the TP except for delays that may occur during processing by the EM.

Events
An event consists of two components: (1) a code that identifies the nature of the event, and (2) an associated

value. Two typical events are the allocation of space for a newly created string and the subscripting of a list.
Event codes are one-character strings with meaningful symbolic names in the form of global identifiers that are

available to the EM. For example, the code for string allocation is named E_String, the code for a list reference is
named E_Lref, and the code for the execution of a virtual-machine instruction is named E_Opcode.

An event value can be any Icon value. In the case of E_String, it is an integer corresponding to the number of
bytes allocated. In the case of E_Lref, it is the list referenced in the TP. Note that such events provide a EM with
direct access to data in the TP.

Events fall into a few general categories:
control flow events
structure access events
string scanning events

IPD192d ! 1 ! June 17, 1994

assignment events
type conversion events
allocation events
garbage collection events
miscellaneous events

The appendix contains a list of event codes by category.

The Monitoring Interface
The monitoring interface consists of functions, keywords, and a library of support procedures named evinit.
The procedure EvInit(s) loads the icode file named s for monitoring. EvInit() also performs various initialization

tasks. For example,

EvInit("concord")
loads the icode file concord, creates a thread for it [3], and prepares for monitoring. In addition, the value of
&eventsource is set to the TP (the thread for concord, in this case).

If EvInit() is called with a list instead of a string, the first element of the list is taken to be the name of the icode
file and the remainder of the list is passed to the icode file as the argument of its main procedure.

EvInit() has three optional additional arguments corresponding to the files for standard input, standard output,
and standard error output for the TP. These arguments default to EM’s &input, &output, and &errout. In this case
the EM and the TP share these files.

The function EvGet(c) returns the code for the next event, which is one of the characters in the cset event mask
c. Events with codes not in c are ignored. If EvGet() is called without an argument, any event is returned.

EvGet() also also sets two keywords:
&eventcode the code for the event (the same as the value returned by EvGet())
&eventvalue the value for the event

These keywords are variables and values can be assigned to them to, for example, filter a stream of events.
EvGet() fails if there are no more events — that is, when the TP has terminated.
The function

event(code, value)
produces an event at the source level (as opposed to in the instrumentation in the interpreter). Such events are
called artificial events. The value of code is not limited to a one-character string; it can be any value. Normally,
only one-character strings event codes are returned by EvGet(). However, EvGet() has an optional second argu-
ment, which if nonnull accepts event codes that are not one-character strings.

Programs that need the definitions provided by evinit but that do not perform monitoring themselves (and hence
do not call EvInit()) can include evdefs.icn.

Masks
Masks serve to limit the events that are reported to those of interest to a EM. The event mask normally is given

as the first argument of EvGet() as described above. The event mask also can be set by
eventmask(C, c)

which associates the event mask c with the thread C (for example, &eventsource). If the second argument is omit-
ted, the function returns the event mask for C.

There also is a mask for selecting a specified set of virtual-machine instructions (‘‘opcodes’’) associated with
E_Opcode. The function

opmask(C, c)
limits the virtual-machine instructions that are reported to those specified in c. If the second argument is omitted, the

IPD192d ! 2 ! June 17, 1994

function returns the opcode mask for C.
Virtual-machine instructions are represented by small non-negative integers. For example, the virtual-machine

instruction for removing a bounded expression (given symbolically in the implementation as Op_Unmark) is 78
(hexadecimal 4e). Virtual-machine instructions are given in the opcode mask as characters with corresponding
numerical codes. Thus, an opcode mask to limit reporting of virtual-machine instructions to Op_Unmark could be
given as \x4e. (This string value is automatically converted to a cset by opmask().)

The library include file opdefs.icn contains definitions for all virtual-machine instructions for use in opmask().
For example, as a result of including opdefs.icn Op_Unmark has the value "\x4e".

An Example
The following EM tabulates procedure events and writes a summary when the TP terminates. The name of the

TP is given as the first argument of the EM’s command line. The remainder of the command line is passed to the
TP. ProcMask is a mask that includes only procedure events. See the appendix for an explanation of procedure
events.

link evinit

procedure main(args)

EvInit(args) | stop("*** cannot load icode file ***")

proact := table(0)

Tabulate procedure events.

while EvGet(ProcMask) do
proact[&eventcode] +:= 1

List the results

write("procedure calls: ", right(proact[E_Pcall], 6))
write("procedure returns: ", right(proact[E_Pret], 6))
write("procedure suspensions: ", right(proact[E_Psusp], 6))
write("procedure failures: ", right(proact[E_Pfail], 6))
write("procedure resumptions: ", right(proact[E_Presum], 6))
write("procedure removals: ", right(proact[E_Prem], 6))

end

For example,

proact rsg rsg.cfg <rsg.dat
causes proact to run rsg as if the command line

rsg rsg.cfg <rsg.dat
had been used.

Programming Guidelines for Monitors
The ucode file evinit must be linked in the EM.
Both TPs and EMs must be compiled using MT Icon.
EvInit() must be called at the beginning of the EM. It not only loads the specified icode file, but it initializes glo-

bal variables and performs other tasks that must be done before monitoring begins.
Since a TP usually produces a very large number of events, efficiency is an important consideration in writing

EMs. Events should be restricted to only those of interest (the argument of EvGet()). The argument should be
changed if the events of interest change in a specific situation.

IPD192d ! 3 ! June 17, 1994

Monitors that use visual displays should pay special attention to how graphics facilities [4] are used. In particu-
lar, frequent calls to WAttrib() should be avoided. Where foreground or background colors needs to be changed fre-
quently, it is better to create separate graphic contexts for the attributes needed and to use the appropriate graphic
context.

It is worth knowing that a TP and an EM have separate program states and storage regions. Allocation of space
in a EM does not affect storage management in the TP. On the other hand, a EM has access to data in the TP
through event values. Care should be taken not to modify data in the TP unintentionally.

Support Procedures for Monitors
Several support procedures are available for use in EMs. See [5] for descriptions of these.

Disclaimer
The instrumentation of MT Icon for event monitoring is still in process and is subject to change. Some existing

event codes are not listed here because they are subject to change, inoperable, or correspond to events that are too
obscure to be useful in monitoring.

Much of the instrumentation is relatively untested.

Acknowledgement
Gregg Townsend assisted in the development of the interface between TPs and EMs. Ken Walker provided help

with the instrumentation of the interpreter.

References

1. R. E. Griswold and M. T. Griswold, The Icon Programming Language, Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1983.

2. R. E. Griswold and M. T. Griswold, The Implementation of the Icon Programming Language, Princeton
University Press, 1986.

3. C. L. Jeffery, The MT Icon Interpreter, The Univ. of Arizona Icon Project Document IPD169, 1993.
4. C. L. Jeffery, G. M. Townsend and R. E. Griswold, Graphics Facilities for the Icon Programming Language;

Version 9.0, The Univ. of Arizona Icon Project Document IPD255, 1994.
5. R. E. Griswold, Support Procedures for Icon Program Monitors, The Univ. of Arizona Icon Project

Document IPD193, 1994.

IPD192d ! 4 ! June 17, 1994

Appendix — Event Codes and Masks

Global variables for event codes are listed below. The actual event codes are given in evdefs.icn.

Control Flow Events

name event value

E_Fcall Function call function
E_Ffail Function failure !1
E_Fresum Function resumption 0
E_Fret Function return value produced
E_Fsusp Function suspension value produced
E_Frem Function suspension removal 0
E_Ocall Operator call operation
E_Ofail Operator failure !1
E_Oresum Operator resumption 0
E_Oret Operator return value produced
E_Osusp Operator suspension value produced
E_Orem Operator suspension removal 0
E_Pcall Procedure call procedure
E_Pfail Procedure failure procedure
E_Prem Suspended procedure removal procedure
E_Presum Procedure resumption procedure
E_Pret Procedure return value produced
E_Psusp Procedure suspension value produced
Notes: FncMask, OperMask, and ProcMask contain the codes for function, operation, and procedure events,
respectively. The event values for E_Fcall, E_Ocall, and E_Pcall all have type procedure. More specific
information can be obtained using image().

Structure Access Events

name event value

E_Lbang List generation list
E_Lcreate List creation list
E_Lpop List pop list
E_Lpull List pull list
E_Lpush List push list
E_Lput List put list
E_Lrand List random reference list
E_Lref List reference list
E_Lsub List subscript subscript
E_Rbang Record generation record
E_Rcreate Record creation record
E_Rrand Record random reference record
E_Rref Record reference record
E_Rsub Record subscript subscript
E_Sbang Set generation set
E_Screate Set creation set
E_Sdelete Set deletion set
E_Sinsert Set insertion set
E_Smember Set membership set
E_Srand Set random reference set
E_Sval Set value value produced

IPD192d ! 5 ! June 17, 1994

E_Tbang Table generation table
E_Tcreate Table creation table
E_Tdelete Table deletion table
E_Tinsert Table insertion table
E_Tkey Table key generation table
E_Tmember Table membership table
E_Trand Table random reference table
E_Tref Table reference table
E_Tsub Table subscript subscript
E_Tval Table value value
Notes: ListMask, RecordMask, SetMask, and TableMask contain the codes for list, record, set, and table events,
respectively. StructMask contains all structure events. In most cases, structure reference events occur in pairs with
the referencing event first and the corresponding subscript or value next.

String Scanning Events

name event value

E_Sfail Scanning failure old subject
E_Snew Scanning environment creation new subject
E_Spos Scanning position position
E_Sresum Scanning resumption restored subject
E_Ssusp Scanning suspension current subject
E_Srem Scanning environment removal old subject
Notes: E_Spos events occur for all changes to the scanning position except when a new scanning environment is
created. An E_Snew event implies changing the scanning position to 1. ScanMask contains the codes for
scanning events.

Co-Expression Events

name event value

E_Coact Co-expression activation co-expression
E_Cofail Co-expression failure co-expression
E_Coret Co-expression return co-expression

Assignment Events

name event value

E_Assign Assignment variable name information
E_Value Assignment value value assigned
Notes: AssignMask contains the codes for assignment events. The event value for E_Assign is based on the string
produced by name(). In the case of identifiers, the event value for E_Assign contains additional information about
the type of identifier, and in the case of local and static identifiers, the procedure name is listed also. A + after an
identifier name indicates a global variable, :, a static variable, !, a local variable, and ˆ, a parameter. In the last three
cases, the procedure name follows the symbol, as in

count!tabulate
which identifies the local identifier count in the procedure tabulate. The E_Value event occurs after the
assignment has been made. Thus, an EM can change the value of a variable in a TP following an E_Value event
and have the change be effective.

IPD192d ! 6 ! June 17, 1994

Type Conversion Events

name event value

E_Aconv Conversion attempt input value
E_Fconv Conversion failure input value
E_Nconv Conversion not needed input value
E_Sconv Conversion success input value
E_Tconv Conversion target representative value of type
Notes: ConvMask contains the codes for conversion events. Each conversion consists of three events. The first is
E_Aconv, which is followed by E_Tconv. Next is one of the other events depending on whether the conversion
failed, was unnecessary (conversion of a value to its own type), or successful (conversion of a value to another
type). The actual output value is not always available in Icon form, so a representative value of the type is used for
the value associated with E_Tconv. Note that the event values for the codes E_Fconv, E_Nconv, and E_Sconv
are not useful.

Allocation Events

name event value

E_Alien Alien allocation bytes alloced
E_BlkDeAlc Block deallocation bytes deallocated
E_Coexpr co-expression allocation bytes allocated
E_Cset Cset allocation bytes allocated
E_External External allocation bytes allocated
E_File File allocation bytes allocated
E_Free Free allocation bytes alloced
E_Lelem List element allocation bytes allocated
E_List List allocation bytes allocated
E_Lrgint Large integer allocation bytes allocated
E_Real Real allocation bytes allocated
E_Record Record allocation bytes allocated
E_Refresh Refresh allocation bytes allocated
E_Selem Set element allocation bytes allocated
E_Set Set allocation bytes allocated
E_Slots Hash header allocation bytes allocated
E_StrDeAlc String deallocation bytes deallocated
E_String String allocation bytes allocated
E_Table Table allocation bytes allocated
E_Telem Table element allocation bytes allocated
E_Tvsubs Substring trapped variable allocation bytes allocated
E_Tvtbl Table-element trapped variable allocation bytes allocated
Notes: AllocMask contains the codes for all allocation events (but not deallocation events). See also the next
section on garbage collection events.

Garbage Collection Events

name event value

E_Collect Garbage collection region number
E_EndCollect End of garbage collection null value
E_TenureBlock Tenure block region size
E_TenureString Tenure string region size
Notes: If E_EndCollect is in the event mask for EvGet(), the data objects saved by garbage collection are reported
as allocation events using the same event codes as for allocation. Such events occur after the E_Collect event but

IPD192d ! 7 ! June 17, 1994

before the E_EndCollect event. This dual use of event codes occurs only if E_EndCollect is in the event mask.
Monitors that request E_EndCollect events need to take into account the context in which allocation events are
reported.

Interpreter Stack Events

name event value

E_Intcall Call of interpreter signal
E_Intret Return of interpreter signal
E_Stack Stack depth change stack depth

Other Events

name event value

E_Error Run-time error error number
E_Exit Program exit exit code
E_Loc Program location change line/column number
E_MXevent Event in EM window event
E_Opcode Virtual-machine instruction operation code
E_Tick Clock tick number of ticks
Notes: On a Sun 4, the clock ticks once every 10 milliseconds. The event value for an E_Loc event contains the TP
source-program column number in the high-order 16 bits and the line number in the low-order 16 bits.

Artificial Events

name event value

E_Disable Disable monitoring varies
E_Enable Enable monitoring varies
E_ALoc Program location change line/column number
Notes: The use of artificial events requires the cooperation of TPs and their production of appropriate event values.
The E_ALoc event is an artificial version of the E_Loc event and is provided so that TP source-program location
information can be easily communicated between monitors.

IPD192d ! 8 ! June 17, 1994

