
Version 8.10 of Icon for MS-DOS 386/486 Platforms

Ralph E. Griswold

Department of Computer Science, The University of Arizona

1. Overview
This implementation of Icon runs on MS-DOS 386/486 PCs in 32-bit protected mode. It was built using the Intel

386/486 C Code Builder Kit and the Intel DOS extender. See config.doc on the distribution diskette for current
information about system compatibility.

It uses memory above the 1MB of conventional memory. It runs comfortably on a 2MB 386 PC. It is doubtful if
it will run on a 1MB 386 PC. It uses a math co-processor if one is present; otherwise it uses software emulation.

This implementation uses the 386/486 small memory model, which supports segments up to 4GB. There are no
64KB memory limitations.

This implementation of Icon is in the public domain and may be copied and used without restriction. The Icon
Project makes no warranties of any kind as to the correctness of this material or its suitability for any application.
The responsibility for the use of Icon lies entirely with the user.

The basic reference for the Icon programming language is a book [1]. This book is available from the Icon Pro-
ject at the University of Arizona. It also can be ordered through any bookstore that handles special orders. Note that
the first edition of this book, published in 1983, describes an older version of Icon and does not contain information
about many of the features of Version 8.

A brief overview of Icon is contained in technical report [2]. Features that have been added to Icon since the
book was written are described [3]. These technical reports, together with this document provide enough informa-
tion to write and run simple Icon programs, but persons who intend to use Icon extensively will need the book.

2. Installing MS-DOS Icon
Two executable binary files are needed to run Icon:

icont.exe translator
iconx.exe executor

These files should be located at a place on your PATH specification.
The distribution is contained in several files in LHarc (lzh) format. A copy of lharc.exe is included for dear-

chiving. The distribution files are:

docs.lzh documents
icon.lzh executable binary files
lharc.exe dearchiving utility
readme installation overview and recent notes
samples.lzh Icon programs and data

To install the .exe files, set your current directory to the desired place, place the appropriate distribution diskette
in drive A, and dearchive the files there using lharc.exe. For example, to dearchive the executable binary files, the
following will do:

a:lharc x a:icon.lzh
The same technique can be used for extracting the remaining files.

IPD222 ! 1 ! March 13, 1993



3. Running MS-DOS/386 Icon — Basic Information
Files containing Icon programs must have the extension .icn. Such files should be plain text files (without line

numbers or other extraneous information). The command processor icont produces an ‘‘icode’’ file that can be exe-
cuted by iconx. For example, an Icon program in the file prog.icn is translated and linked by

icont prog.icn
The result is an icode file with the name prog.icx. This file can be run by

iconx prog.icx

The extensions .icn and .icx are optional on the command line. For example, it is sufficient to use
icont prog

and

iconx prog

iconx will find an icode file if it is in the current working directory or at a place on your PATH specification.

4. Testing the Installation
There are a few programs on the distribution diskette that can be used for testing the installation and getting a

feel for running Icon:
hello.icn This program prints the Icon version number, time, and date. Run this test as

icont hello
iconx hello

cross.icn This program prints all the ways that two words intersect in a common character. The
file cross.dat contains typical data. Run this test as

icont cross
iconx cross <cross.dat

meander.icn This program prints the ‘‘meandering strings’’ that contain all subsequences of a
specified length from a given set of characters. Run this test as

icont meander
iconx meander <meander.dat

roman.icn This program converts Arabic numerals to Roman numerals. Run this test as

icont roman
iconx roman

and provide some Arabic numbers from your console.
If these tests work, your installation is probably correct and you should have a running version of Icon.

5. More on Running Icon
For simple applications, the instructions for running Icon given in Section 3 may be adequate. The icont com-

mand processor supports a variety of options that may be useful in special situations. There also are several aspects
of execution that can be controlled with environment variables. These are listed here. If you are new to Icon, you
may wish to skip this section on the first reading but come back to it if you find the need for more control over the
translation and execution of Icon programs.

IPD222 ! 2 ! March 13, 1993



5.1 Arguments
Arguments can be passed to the Icon program by appending them to the command line. Such arguments are

passed to the main procedure as a list of strings. For example,

iconx prog text.dat log.dat
runs the icode file prog.icx, passing its main procedure a list of two strings, "text.dat" and "log.dat". These argu-
ments might be the names of files that prog.icn reads from and writes to. For example, the main procedure might
begin as follows:

procedure main(args)
in := open(args[1]) | stop("cannot open input file")
out := open(args[2], "w") | stop("cannot open output file")...

5.2 Translating and Linking
icont can accept several Icon source files at one time. When several files are given, they are translated and com-

bined into a single icode file whose name is derived from the name of the first file. For example,

icont prog1 prog2
translates and links the files prog1.icn and prog2.icn and produces one icode file, prog1.icx.

A name other than the default one for the icode file produced by the Icon linker can be specified by using the !o
option, followed by the desired name. For example,

icont !o probe.icx prog
produces the icode file named probe.icx rather than prog.icx.

If the !c option is given to icont, only translation is performed and intermediate ‘‘ucode’’ files with the exten-
sions .u1 and .u2 are kept. For example,

icont !c prog1
leaves prog1.u1 and prog1.u2, instead of linking them to produce prog1.icx. (The ucode files are deleted unless
the !c option is used.) These ucode files can be used in a subsequent icont command by using the .u1 name. This
avoids having to translate the .icn file again. For example,

icont prog2 prog1.u1
translates prog2.icn and links the result with the ucode files from a previous translation of prog1.icn. Note that only
the .u1 name is given, the as in

icont prog2 prog1.u
Ucode files also can be added to a program when it is linked by using the link declaration in an Icon source pro-
gram.

Icon source programs may be read from standard input. The argument ! signifies the use of standard input as a
source file. In this case, the ucode files are named stdin.u1 and stdin.u2 and the icode file is named stdin.icx.

The informative messages from the translator and linker can be suppressed by using the !s option. Normally,
both informative messages and error messages are sent to standard error output.

The !t option causes &trace to have an initial value of !1 when the program is executed. Normally, &trace has
an initial value of 0.

The option !u causes warning messages to be issued for undeclared identifiers in the program. The warnings
are issued during the linking phase.

IPD222 ! 3 ! March 13, 1993



5.3 Environment Variables
When an Icon program is executed, several environment variables are examined to determine execution parame-

ters. The values assigned to these variables should be numbers.
Environment variables are particularly useful in adjusting Icon’s storage requirements. This may be necessary if

your computer does not have enough memory to run programs that require an unusually large amount of data. Par-
ticular care should be taken when changing default sizes: unreasonable values may cause Icon to malfunction.

The following environment variables can be set to affect Icon’s execution parameters. Their default values are
listed in parentheses after the environment variable name:

TRACE (undefined). This variable initializes the value of &trace. If this variable has a value, it over-
rides the translation-time !t option.

NOERRBUF (undefined). If this variable is set, &errout is not buffered.
STRSIZE (256000). This variable determines the size, in bytes, of the initial region in which strings are

stored.
HEAPSIZE (512000). This variable determines the size, in bytes, of the initial region in which Icon allo-

cates lists, tables, and other objects.
COEXPSIZE (2000). This variable determines the size, in 32-bit words, of each co-expression block.
MSTKSIZE (10000). This variable determines the size, in words, of the main interpreter stack.

6. Features of MS-DOS/386 Icon
MS-DOS/386 Icon supports all the features of Version 8.10 of Icon, with the following exceptions and addi-

tions:
Pipes are not supported. A file cannot be opened with the "p" option.
The extended function repertoire for MS-DOS [4] is not supported.
Path specifications can be entered using either a / or a \. Examples are:

A:\ICON\TEST.ICN
A:/ICON/TEST.ICN

The following MS-DOS device names can be used as file names:

console CON
printer PRN LST LPT LPT1
auxiliary port AUX COM RDR PUN
null NUL NULL

For example,

prompt := open("CON", "w")
causes strings written to prompt to be displayed on the console. Use of a null file name means no file is
created.
The option !x to icont to obtain automatic execution after linking is not supported.

7. Reporting Problems
Problems with Icon should be noted on a trouble report form (included with the distribution) and sent to

IPD222 ! 4 ! March 13, 1993



Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, AZ 85721
U.S.A.

(602) 621-8448 (voice)
(602) 621-4246 (fax)

icon-project@cs.arizona.edu (Internet)
... uunet!arizona!icon-project (uucp)

Acknowledgements
Many individuals contributed to the design and implementation of Icon. Clint Jeffery and Gregg Townsend col-

laborated with the author in the development of Version 8.10.

References

1. R. E. Griswold and M. T. Griswold, The Icon Programming Language, Prentice-Hall, Inc., Englewood Cliffs,
NJ, second edition, 1990.

2. R. E. Griswold, An Overview of Version 8 of the Icon Programming Language, The Univ. of Arizona Tech.
Rep. 90-6, 1990.

3. R. E. Griswold, C. L. Jeffery and G. M. Townsend, Version 8.10 of the Icon Programming Language, The
Univ. of Arizona Icon Project Document IPD212, 1993.

4. R. E. Griswold, Version 8.10 of Icon for MS-DOS, The Univ. of Arizona Icon Project Document IPD221,
1993.

IPD222 ! 5 ! March 13, 1993


