
Building Version 9.0 of MPW Icon

Ralph E. Griswold
Department of Computer Science, The University of Arizona

Robert J. Alexander

1. Background

The implementation of Version 9.0 of the Icon programming language is written
almost entirely in C, and it is designed to be portable to a wide range of computers and
operating systems. This document concerns the compilation of Icon for Macintosh under
MPW (MPW Icon).

Version 9.0 of Icon requires at least a 1024K (1M) Macintosh to run. It runs all but
very large programs well if the MPW Shell is given a MultiFinder partition size of 1024K
(and can run small programs in as little as 600K). Of course, programs with very large
code size or that accumulate large amounts of data will require that the partition size be
increased. Compiling Version 9.0 of Icon requires MPW, MPW C (Version 3.0 or
beyond), and the MPW assembler, as well as HFS. At least 2M of RAM is recommended
for Version 3.x of MPW C — building MPW Icon Version 9.0 with less available memory
has not been attempted as of this writing.

The Icon language book [1] and a technical report provided with this distribution [2]
together comprise a complete description of Version 9.0 of the Icon programming
language. See Section 4 for information about the implementation itself.

2. Organization of the Implementation

The source code for Icon is organized in a hierarchy. The distribution is on a high-
density disk. The files are in a self-extracting archive (.sea file).

The illustration that follows shows the folder hierarchy normally used to work on
MPW Icon.

Your MPW
Disk iconMPW V9 src

common

icont

tests

stand

local

h

preproc

rtt

runtime

bin

iconc

If a different arrangement is used, it may be necessary to make changes to Makefiles
and other supporting files.

To install the Icon source-related files:

1. Create the folders to the left of the dashed line using either the Finder or MPW
Shell.

2. Create the folder bin.

3. Extract the source files by opening src.sea on the distribution disk; navigate to
the folder V9 and unload them there. This will create the additional folders to
the right of the dahsed line.

4. Extract the test program from tests.sea in a similar manner.

2.1 Source Files

The seven source-code folders under src contain files related to the various
components of Icon as follows:

common source code for modules common to several components of Icon.

h header files used by files in the other folders.

icont source code for the Icon translator/linker for the interpreter. The
translator converts source-language programs to ucode, an assembly
language for an abstract “Icon machine”. The linker combines one or
more ucode files into a single binary icode file in executable format
for the Icon machine.

iconc source code for the Icon compiler. As of this writing, the compiler
has not been built under MPW and doing so may require a
considerable amount of work.You may wish to delete this folder

preproc source code for the run-time system translator.

rtt source code for a translator that builds files for the run-time system.

runtime source code for the Icon run-time system, including the interpreter.

The seven source-code folders under src contain files for related to the various
components of Icon as follows:

There are three executable components related to building and running Icon:

The Translator and Linker

The translator and linker, icont, performs both source code translation and linking
functions. The translator is relatively straightforward. It contains a lexical analyzer, a
parser, a code generator, and support routines. The translator produces printable ucode
files. The linker is somewhat more complex than the translator. It reads ucode files and
outputs binary code and data structures that are needed during execution.

The Run-Time Translator

The run-time translator, rtt, translates files for Icon’s run-time system, which are
written in a superset of C, to standard C. It is used only to build the interpreter.

The Interpreter

The interpreter, iconx, is large and complex. It includes code for all the operations in
the Icon language. In addition, it manages storage dynamically.

2.2 Binary Files

The bin subdirectory in V9 is where the executable files for Icon will reside after
compilation and linking.

3. Building the Icon Interpreter

Building the Icon interpreter is straightforward. Go to these subdirectories in src in
the following order:

common
icont
rtt
runtime

In each of these subdirectories, do the following:

1. Enter a make command.

2. Look for resulting make commands in the output. If there are any, recursively
select and execute these first.

3. Finally, select the resulting compilation, linking, and other commands and
execute them.

As a result, the executable for the Icon interpreter will be placed in the bin subdirectory of
V9.

4. Testing Icon

The folder tests contains a large battery of Icon programs and a folder stand that
contains the “standard” output of running these programs. Files whose names end in .icn
are the test program source files, those ending in .dat are files containing test data, and .lst
files are lists of test programs to be run as a group. The lists are:

intrcoex.lst co-expressions
intrlarg.lst large-integer arithemtic
intrmain.lst main features

(There are corresponding lists for the Icon compiler.)

Normally, the tests are run by using the script Test-icont, which is in the tests
folder.For example,

Test-icont intrmain

tests the main features of the Icon interpreter.

Taken together, these tests run for quite a while. You may wish to redirect the output
of the scripts to a file or files for easier examination.

Since the standard test results were obtained from a UNIX implementation, several
differences will exist between the test output produced by MPW Icon and the standard test
files (if they don’t, you’ve done something wrong!). The differences are due to

• Differences in the time of day, date, name of the host machine, and other minor
implementation differences.

• Differences in internal processing capacity and external formatting of floating
point numeric output (real numbers).

All of the above differences will be reported as discrepancies when the test scripts are
run. The reported differences must be scanned to determine whether they are due to the
above causes or are real errors.

5. The Implementation Book

If you are interested in the larger view of the implementation of Icon, or if you are
interested in modifying or extending Icon, you may want to acquire the book The
Implementation of the Icon Programming Language. This book concentrates on the
run-time system and covers data structures, the virtual machine, the interpreter, the
implementation of generators, and storage management. It also contains material
specifically related to making modifications to the source code.

The publication information is: The Implementation of the Icon Programming
Language, by Griswold and Griswold, Princeton University Press, ISBN 0-691-08431-9,
hardbound, 336 pages, $61.00. The book may be ordered from the Icon Project.

The implementation book corresponds to Version 6.2 of the Icon source code. There have
been several changes in the source code between Version 6.2 and the present version.
Reports describing these changes are available free of charge from the Icon Project. Ask for
IPD112, IPD215, and IPD239.

6. Trouble Reports and Feedback

If you run into problems, contact the Icon Project:

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, AZ 85721
U.S.A.

(602) 621-2018 (voice)
(602) 621-4246 (fax)

icon-project@arizona.edu (Internet)

... uunet!arizona!icon-project (uucp)

We cannot promise to solve your problems, but we will try. We also may be able to
place you in contact with other persons who are compiling Icon and who may have similar
problems.

Please also let us know of any suggestions for improvements to the compilation
process or its documentation.

References

1. R. E. Griswold and M. T. Griswold, The Icon Programming Language, second
edition, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1990.

2. R. E. Griswold, Clinton L. Jeffery, Gregg M. Townsend, Version 9.0 of the Icon
Programming Language, The Univeristy of Arizona, technical report IPD236, 1994.

