
Writing Icon Program Execution Monitors

Ralph E. Griswold

Department of Computer Science
The University of Arizona

Clinton L. Jeffery

Division of Mathematics, Computer Science, and Statistics
The University of Texas at San Antonio

1. Introduction

The execution of a program in a high-level programming language results in a many computational activities at
a lower level. Some of these events mirror the semantics of the language, although superficially simple language
operations may involve many low-level events. Other events may not be directly related to the semantics of the
language. In Icon, for example, storage allocation accompanies the evaluation of some expressions, but the details
of allocation depend on properties of the implementation, not the language, and may depend on the history of pro-
gram execution as well [1]. Similarly, garbage collection usually occurs at unpredictable times, and what actually
happens during garbage collection usually is not directly evident in the results of program execution. There also are
lower-level events, such as the execution of instructions for the virtual machine that provides the framework for the
interpretive implementation of Icon [2].

One of the purposes of a high-level programming language is to hide low-level events from the programmer.
Nonetheless, in order to understand a program, to debug it, or to measure the resources it uses, it may be necessary
to go beneath the surface. This report describes facilities that have been added to the MT Icon [3, 4] for such pur-
poses.

Effective use of information about low-level events requires tools that can bridge the gap between the semantics
of the programming language and the lower-level events that occur during program execution. MT Icon has been
extensively instrumented to report, on request, those events that are most relevant to understanding the execution of
an Icon program. This instrumentation is done in a way that does not affect program execution except to slow it
down somewhat.

The instrumentation is designed so that an Icon program being monitored (the source program, or SP) reports
events to another Icon program (the execution monitor, or EM). The interface through which events are reported is
invisible to the SP except for delays that may occur may occur when the EM is running.

Events

The report of an event consists of two components: (1) a code that identifies the nature of the event, and (2) an
associated value. Two typical events are the allocation of space for a newly created string and the subscripting of a
list.

Event codes are one-character strings. Symbolic names, which are defined in evdefs.icn, are used for referring
to event codes. For example, the code for string allocation is E_String and the code for a list reference is E_Lref.

Event values are Icon values. In the case of E_String, the event value is an integer corresponding to the number
of bytes allocated. In the case of E_Lref, it is the list referenced in the SP. Note that such an event provides an EM
with direct access to data in the SP.

Events fall into a few general categories:

g control flow events

g structure access events

g string scanning events

IPD264 − 1 − September 20, 1994

g assignment events

g type conversion events

g allocation events

g garbage collection events

g miscellaneous events

Appendix A contains a list of event codes by category.

The Monitoring Interface

The monitoring interface consists of functions, keywords, a library of support procedures in evinit.icn, and
definitions in evdefs.icn.

The procedure EvInit(s) loads the icode file named s for monitoring. EvInit() also performs various initialization
tasks. For example,

EvInit("concord")

loads the icode file concord, creates a thread for it [3], and prepares for monitoring. In addition, the value of
&eventsource is set to the SP (the thread for concord, in this case).

If EvInit() is called with a list instead of a string, the first element of the list is taken to be the name of the icode
file and the remainder of the list is passed to the icode file as the argument of its main procedure.

EvInit() has three optional additional arguments corresponding to the files for standard input, standard output,
and standard error output for the SP. These arguments default to EM’s &input, &output, and &errout. In this case
the EM and the SP share these files.

EvInit() fails if the SP cannot be loaded. It is important to check for this possibility.

The function EvGet(c) returns the code for the next event, which is one of the characters in the cset event mask
c. Events with codes not in c are ignored. If EvGet() is called without an argument, any event is returned.

EvGet() also also sets two keywords:

&eventcode the code for the event (the same as the value returned by EvGet())
&eventvalue the value for the event

These keywords are variables and values can be assigned to them to, for example, filter a stream of events.

EvGet() fails if there are no more events — that is, when the SP has terminated.

The function

event(code, value)

produces an event report from the program itself, as opposed to reports from the instrumentation in the interpreter.
Such events are called artificial events. The value of code is not limited to a one-character string; it can be any
value. Normally, only one-character strings event codes are returned by EvGet(). However, EvGet() has an
optional second argument, which if nonnull allows EvGet() to accept event codes that are not one-character strings.
For example,

EvGet(′′, 1)

requests only artificial events.

Masks

Masks serve to limit the events that are reported to those of interest to an EM. The event mask normally is given
as the first argument of EvGet() as described above. The event mask also can be set by

eventmask(C, c)

which associates the event mask c with the thread C (for example, &eventsource). If the second argument is omit-
ted, the function returns the event mask for C.

IPD264 − 2 − September 20, 1994

There also is a mask for selecting a specified set of virtual-machine instructions (‘‘opcodes’’) associated with
E_Opcode. The function

opmask(C, c)

limits the virtual-machine instructions that are reported to those specified in c. If the second argument is omitted, the
function returns the opcode mask for C.

Virtual-machine instructions are represented by small non-negative integers. For example, the virtual-machine
instruction for removing a bounded expression (given symbolically in the implementation as Op_Unmark) is 78
(hexadecimal 4e). Virtual-machine instructions are given in the opcode mask as characters with corresponding
numerical codes. Thus, an opcode mask to limit reporting of virtual-machine instructions to Op_Unmark could be
given as \x4e.

The include file opdefs.icn contains definitions for all virtual-machine instructions. For example, as a result of
including opdefs.icn, Op_Unmark has the value "\x4e".

An Example

The following EM tabulates procedure events and writes a summary when the SP terminates. The name of the
SP is given as the first argument of the EM’s command line. The remainder of the command line is passed to the
SP. ProcMask is a mask that includes only procedure events. See Appendix A for an explanation of procedure
events.

link evinit

$include "evdefs.icn"

procedure main(args)

EvInit(args) | stop("*** cannot load icode file ***")

proact := table(0)

Tabulate procedure events.

while EvGet(ProcMask) do
proact[&eventcode] +:= 1

List the results

write("procedure calls: ", right(proact[E_Pcall], 6))
write("procedure returns: ", right(proact[E_Pret], 6))
write("procedure suspensions: ", right(proact[E_Psusp], 6))
write("procedure failures: ", right(proact[E_Pfail], 6))
write("procedure resumptions: ", right(proact[E_Presum], 6))
write("procedure removals: ", right(proact[E_Prem], 6))

end

For example,

proact rsg rsg.cfg <rsg.dat

causes proact to run rsg as if the command line

rsg rsg.cfg <rsg.dat

had been used.

Aother example EMs are given in Appendix B.

IPD264 − 3 − September 20, 1994

Programming Guidelines for Monitors

Both SPs and EMs must be compiled using MT Icon.

The ucode file evinit must be linked in the EM.

The include file evdefs.icn must be included in any EM that specifies event codes symbolically.

EvInit() must be called before an event report is requested.

Since a SP usually produces a very large number of events, efficiency is an important consideration in writing
EMs. Events requested should be restricted to those of interest. of EvGet()).

Monitors that use visual displays should pay special attention to how graphics facilities are used [5].

A SP and an EM have separate program states and storage regions. Allocation of space in an EM does not affect
storage management in the SP. On the other hand, an EM has access to data in the SP through event values. Care
should be taken not to modify data in the SP unintentionally.

There are several support procedures for use in EMs. See [6].

Bugs

If the main procedure returns by an explicit return or suspension instead of failing (typically by flowing off the
end of the procedure), Icon hangs in a hard loop. When possible, SPs should be examined for this possibility in
situations where monitoring may allow them to run to completion.

Disclaimer

The instrumentation of MT Icon for event monitoring is still in process and is subject to change. Some event
codes are not listed here because they are subject to change, not presently working, or correspond to events that are
too obscure to be useful in monitoring.

Some of the instrumentation is relatively untested.

Acknowledgement

Gregg Townsend assisted in the development of the interface between SPs and EMs. Ken Walker provided help
with the instrumentation.

References

1. R. E. Griswold and M. T. Griswold, The Icon Programming Language, Prentice-Hall, Inc., Englewood Cliffs,
NJ, second edition, 1990.

2. R. E. Griswold and M. T. Griswold, The Implementation of the Icon Programming Language, Princeton
University Press, 1986.

3. C. L. Jeffery, The MT Icon Interpreter, The Univ. of Arizona Icon Project Document IPD169, 1993.

4. C. L. Jeffery, A Framework for Program Execution Monitoring in Icon, Doctoral Dissertation, The University
of Arizona, 1993.

5. C. L. Jeffery, G. M. Townsend and R. E. Griswold, Graphics Facilities for the Icon Programming Language;
Version 9.0, The Univ. of Arizona Icon Project Document IPD255, 1994.

6. R. E. Griswold, Support Procedures for Icon Program Monitors, The Univ. of Arizona Icon Project
Document IPD193, 1994.

IPD264 − 4 − September 20, 1994

Appendix A — Event Codes and Masks

Control Flow Events

name event value

E_Fcall Function call function
E_Ffail Function failure −1
E_Fresum Function resumption 0
E_Fret Function return value produced
E_Fsusp Function suspension value produced
E_Frem Function suspension removal 0
E_Ocall Operator call operation
E_Ofail Operator failure −1
E_Oresum Operator resumption 0
E_Oret Operator return value produced
E_Osusp Operator suspension value produced
E_Orem Operator suspension removal 0
E_Pcall Procedure call procedure
E_Pfail Procedure failure procedure
E_Prem Suspended procedure removal procedure
E_Presum Procedure resumption procedure
E_Pret Procedure return value produced
E_Psusp Procedure suspension value produced

Notes: FncMask, OperMask, and ProcMask contain the codes for function, operation, and procedure events,
respectively. The event values for E_Fcall, E_Ocall, and E_Pcall all have type procedure. More specific
information can be obtained using image() on the event value. Note that the event values for E_Ffail, E_Fresum,
E_Frem, E_Ofail, E_Oresum, and E_Orem are not useful. Useful values are not provided because the necessary
information is not available when these events occur.

Structure Access Events

name event value

E_Lbang List generation list
E_Lcreate List creation list
E_Lpop List pop list
E_Lpull List pull list
E_Lpush List push list
E_Lput List put list
E_Lrand List random reference list
E_Lref List reference list
E_Lsub List subscript subscript
E_Rbang Record generation record
E_Rcreate Record creation record
E_Rrand Record random reference record
E_Rref Record reference record
E_Rsub Record subscript subscript
E_Sbang Set generation set
E_Screate Set creation set
E_Sdelete Set deletion set
E_Sinsert Set insertion set
E_Smember Set membership set
E_Srand Set random reference set

IPD264 − 5 − September 20, 1994

E_Sval Set value value produced
E_Tbang Table generation table
E_Tcreate Table creation table
E_Tdelete Table deletion table
E_Tinsert Table insertion table
E_Tkey Table key generation table
E_Tmember Table membership table
E_Trand Table random reference table
E_Tref Table reference table
E_Tsub Table subscript subscript
E_Tval Table value value

Notes: ListMask, RecordMask, SetMask, and TableMask contain the codes for list, record, set, and table events,
respectively. StructMask contains all structure events. In most cases, structure reference events occur in pairs with
the referencing event first and the corresponding subscript or value next.

String Scanning Events

name event value

E_Sfail Scanning failure old subject
E_Snew Scanning environment creation new subject
E_Spos Scanning position position
E_Sresum Scanning resumption restored subject
E_Ssusp Scanning suspension current subject
E_Srem Scanning environment removal old subject

Notes: ScanMask contains the codes for scanning events. E_Spos events occur for all changes to the scanning
position except when a new scanning environment is created. An E_Snew event implies changing the scanning
position to 1.

Co-Expression Events

name event value

E_Coact Co-expression activation co-expression
E_Cofail Co-expression failure co-expression
E_Coret Co-expression return co-expression

Assignment Events

name event value

E_Assign Assignment variable name information
E_Value Assignment value value assigned

E_Ssasgn Assignment to substring length of resulting string

Notes: AssignMask contains the codes for E_Assign and E_Value, but not for E_Ssasgn. The event value for
E_Assign is based on the string produced by name(). In the case of identifiers, the event value for E_Assign
contains additional information about the type of identifier, and in the case of local and static identifiers, the
procedure name is listed also. A + after an identifier name indicates a global variable, :, a static variable, −, a local
variable, and ˆ, a parameter. In the last three cases, the procedure name follows the symbol, as in

count−tabulate

which identifies the local identifier count in the procedure tabulate. An E_Value event occurs after the assignment
has been made. Thus, an EM can change the value of a variable in a SP following an E_Value event and have the
change be effective.

IPD264 − 6 − September 20, 1994

E_Ssasgn events occur as the result of evaluating expressions such as

s1[i:j] := s2

which is equivalent to

s1 := s1[1:i] || s2 || s1[j:0]

(assuming i and j are positive and in nondecreasing order).

Type Conversion Events

name event value

E_Aconv Conversion attempt input value
E_Fconv Conversion failure input value
E_Nconv Conversion not needed input value
E_Sconv Conversion success output value
E_Tconv Conversion target representative value of type

Notes: ConvMask contains the codes for conversion events. Each conversion consists of three events. The first is
E_Aconv, which is followed by E_Tconv. Next is one of the other events depending on whether the conversion
fails, is unnecessary (conversion of a value to its own type), or is successful (conversion of a value to another type).
Since the potential output value is not available when a E_Tconv event occurs, a representative value of the type is
used. This allows the types for an attempted conversion to be determined in cases where the conversion fails. Note
that the event values for the codes E_Fconv and E_Nconv are not particularly useful.

Allocation Events

name event value

E_Alien Alien allocation bytes allocated
E_BlkDeAlc Block deallocation bytes deallocated
E_Coexpr co-expression allocation bytes allocated
E_Cset Cset allocation bytes allocated
E_External External allocation bytes allocated
E_File File allocation bytes allocated
E_Free Free allocation bytes allocated
E_Lelem List element allocation bytes allocated
E_List List allocation bytes allocated
E_Lrgint Large integer allocation bytes allocated
E_Real Real allocation bytes allocated
E_Record Record allocation bytes allocated
E_Refresh Refresh allocation bytes allocated
E_Selem Set element allocation bytes allocated
E_Set Set allocation bytes allocated
E_Slots Hash header allocation bytes allocated
E_StrDeAlc String deallocation bytes deallocated
E_String String allocation bytes allocated
E_Table Table allocation bytes allocated
E_Telem Table element allocation bytes allocated
E_Tvsubs Substring trapped variable allocation bytes allocated
E_Tvtbl Table-element trapped variable allocation bytes allocated

Notes: AllocMask contains the codes for all allocation events (but not deallocation events). See also the next
section on garbage collection events.

IPD264 − 7 − September 20, 1994

Garbage Collection Events

name event value

E_Collect Garbage collection region number
E_EndCollect End of garbage collection null value
E_TenureBlock Tenure block region size
E_TenureString Tenure string region size

Notes: If E_EndCollect is in the event mask for EvGet(), the data objects saved by garbage collection are reported
as allocation events using the same event codes as for allocation. Such events occur after the E_Collect event but
before the E_EndCollect event. This dual use of event codes occurs only if E_EndCollect is in the event mask.
Monitors that request E_EndCollect events need to take into account the context in which allocation events are
reported.

Interpreter Evaluation Stack Events

name event value

E_Intcall Call of interpreter procedure interpreter signal
E_Intret Return of interpreter procedure interpreter signal
E_Stack Stack depth change stack depth

Notes: The stack depth reported in the event value for E_stack is erroneously large. Use the event value of the first
E_Stack event as a base for subsequent values.

Other Events

name event value

E_Error Run-time error error number
E_Exit Program exit exit code
E_Loc Program location change line/column number
E_MXevent Event in EM window window event
E_Opcode Virtual-machine instruction operation code
E_Tick Clock tick number of ticks

Notes: E_Tick events are obtained by checking the system clock during program interpretation. During garbage
collection and other time-consuming activities the suspend interpretation, several clock ticks may occur before they
are reported. This is reflected in the event value for E_Tick. On a Sun 4, the clock ticks once every 10 milliseconds.
The event value for an E_Loc event contains the SP source-program column number in the high-order 16 bits and
the line number in the low-order 16 bits.

Artificial Events

name event value

E_Disable Disable monitoring varies
E_Enable Enable monitoring varies
E_ALoc Program location change line/column number

Notes: These events are provided for communication between EMs running under the control of a monitor
coordinator. The use of artificial events requires the cooperation of EMs and their production of appropriate event
values. The E_ALoc event is an artificial version of the E_Loc event and is provided so that SP source-program
location information can be communicated between monitors.

IPD264 − 8 − September 20, 1994

Appendix B — Example EMs

Virtual-Machine Presentation

This EM lists every virtual-machine instruction followed by all events that occur before the next virtual-machine
instruction.

link evinit
link evsyms
link opnames
link options

$include "evdefs.icn"

procedure main(args)
local codes, esmap, opmap, mask, opts, output

opts := options(args, "o:")
output := open(\opts["o"], "w") | &output

EvInit(args) | stop("*** cannot load SP")

opmap := opnames() # table to map opcodes to their names
esmap := evsyms() # table to map event codes to their symbols

mask := cset(E_Opcode)

When a program starts, there are a few pseudo opcodes before real ones
Skip these.

while EvGet(mask) do {
if opmap[integer(&eventvalue)] == "Invoke" then {

writes(output, "Invoke |")
break()
}

}

while EvGet() do {
if &eventcode === E_Opcode then {

write(output)
writes(output, left(opmap[integer(&eventvalue)], 10), "|")
}

else writes(output, " ", esmap[&eventcode])
}

write(output)

end

IPD264 − 9 − September 20, 1994

Typical output:

Invoke | E_Pcall E_Loc
Mark |
Pnull |
Global |
Pnull |
Global |
Global | E_Loc
Keywd | E_Loc
Invoke | E_Ecall E_Fcall E_Aconv E_Tconv E_String E_Sconv E_Fret E_Loc
Asgn | E_Ocall E_Assign E_Value E_Oret E_Loc
Asgn | E_Ocall E_Assign E_Value E_Oret
Unmark |
Mark |
Pnull |
Global |
Pnull |
Global |
Pnull |
Pnull |
Global | E_Loc
Size | E_Ocall E_Oret
Int | E_Loc
Div | E_Ocall E_Oret E_Loc
Asgn | E_Ocall E_Assign E_Value E_Oret E_Loc
Asgn | E_Ocall E_Assign E_Value E_Oret
Unmark |
Mark |
Pnull |
Global |
Str | E_Loc
Asgn | E_Ocall E_Assign E_Value E_Oret
Unmark |
Mark |
Pnull |
Global |
Global |
Str |
Global | E_Loc
Invoke | E_Ecall E_Fcall E_Aconv E_Tconv E_Nconv E_String E_Fret E_Loc
Asgn | E_Ocall E_Assign E_Value E_Oret
Unmark |

IPD264 − 10 − September 20, 1994

Summary of Numeric Computation

This EM summarizes numerical computation, listing the number of times each operation is performed. The
output is divided into integer and real arithmetic

link evinit
link options
link procname

$include "evdefs.icn"

procedure main(args)
local opts, itime, output, inttbl, reltbl, cmask, rmask, numlist, op
local pos, neg, plus, minus, mpy, div, pwr, mod

opts := options(args, "o:t")

output := open(\opts["o"], "w") | &output

if \opts["t"] then itime := &time

EvInit(args) | stop("*** cannot load SP")

inttbl := table(0)
reltbl := table(0)

cmask := E_Fcall ++ E_Ocall
rmask := E_Fret ++ E_Oret ++ E_Ffail ++ E_Ofail

pos := proc("+", 1)
neg := proc("+", 1)
plus := proc("+", 2)
minus := proc("+", 2)
mpy := proc("*", 2)
div := proc("/", 2)
mod := proc("%", 2)
pwr := proc("ˆ", 2)

while EvGet(cmask) do {

Check to see if the operation is a numeric one.

if (op := &eventvalue) === (
plus | minus | mpy | div | neg | pwr | mod |
iand | ior | ixor | icom | ishift | pos)

IPD264 − 11 − September 20, 1994

If it is, look for the return event.

then {
EvGet(rmask)
if &eventcode === (E_Ofail | E_Ffail) then next# skip failures
case type(&eventvalue) of {

"integer": inttbl[op] +:= 1
"real": reltbl[op] +:= 1
}

}
}

write(output, "\nInteger computation:\n")
numlist := sort(inttbl, 3)
while write(output, left(procname(get(numlist)), 6), right(get(numlist), 9))

write(output, "\nReal computation:\n")
numlist := sort(reltbl, 3)
while write(output, left(procname(get(numlist)), 6), right(get(numlist), 9))

write(output, "\nelapsed time: ", &time − \itime, "ms")

end

Typical output:

Integer computation:

+1 1
%2 16
*2 90
+2 28324
−2 23194
/2 16
ior 6415
ishift 21876
ixor 7730

Real computation:

/2 1

IPD264 − 12 − September 20, 1994

