
Visual Interfaces for Icon Programs

Gregg M. Townsend and Ralph E. Griswold

Department of Computer Science
The University of Arizona
Tucson, Arizona 

IPD284a
February 13, 1998
http://www.cs.arizona.edu/icon/docs/ipd284.htm

VIB (Visual Interface Builder) is a program for building visual interfaces (GUIs) and custom dialogs for
use in Icon programs. A visual interface consists of a canvas on which interface tools are placed.
Interface tools are called vidgets (virtual input devices) and include buttons, menus, sliders, and so forth.

User actions on vidgets, such as clicking the mouse on a button or dragging on a slider, cause events.
Such events produce callbacks, which are calls to procedures in the application that handle user events.

VIB produces code for the interface. A complete application consists of interface code, event handling
procedures, and the functionality for the application itself.

VIB also can construct custom dialogs.

1. The VIB Window

The VIB window has a menu bar at the top. Below this there is a vidget bar with icons representing the
various kinds of vidgets. The remaining portion of the VIB window contains the canvas for the interface
or dialog, which is indicated by a rectangular area with a box on its lower-right corner.



2. VIB Menus

The File  menu provides several services related to files and the overall application:

The new item creates a new file for an interface or dialog. The open  item opens an existing interface file.
The save  and save as  items write interface files. The refresh  item redraws the canvas, which is
needed occasionally if something does not appear correctly. The prototype  item is used to run the
interface or canvas as if were being used in an application. And, of course, the quit  item terminates the
VIB session.

A notation like @S indicates a keyboard shortcut for the item in question. The @ indicates the meta key is
to be depressed while typing the letter (s in this example), which can be upper- or lowercase.

The Edit  menu provides services related to manipulating vidgets:



The copy  item copies a vidget, while the delete  item deletes one. The undelete  item can be used to
restore the last deleted vidget. The final two items allow vidgets to be visually aligned.

The Select  menu allows one of the vidgets to be selected for manipulation:

3. Vidgets

VIB provides several kinds of vidgets. These are described below in the order they appear in the vidget
bar. Examples of the visual appearances of vidgets accompany the descriptions.

 

There are two types of buttons: regular buttons that just
produce a callback when pushed and toggle buttons that also
maintain an on/off state. Different styles provide different
visual appearances for buttons. 

 

Radio buttons allow the user to select one of a number of
choices. 



 

Menus are buttons concealing lists of items. The items are
exposed when the menu’s button is pushed. The user then can
drag to a desired item to select it. Menus can have submenus. 

 

Text lists allow the user to scroll though lines of text and
select one or more of them. 

 

Text-entry fields provide the user with an area to enter and
edit text. 

 

Sliders have a thumb that can be moved to select a numerical
value within a specified range. Sliders can be oriented
vertically or horizontally. 

 

Scrollbars perform the same function as sliders, but they
have buttons on the ends as well as a thumb for adjusting the
position. 

 

Regions delimit rectangular areas and can accept user events
within those areas. Regions are available in several styles to
provide different visual appearances. 



 

Labels provide text but do not accept events. 

 

Lines can be used to decorate the interface. Lines do not
accept events. 

The application canvas is configured by using the box on its lower-right corner. Dragging this box
resizes the application canvas. Clicking the right mouse button on this box brings up a dialog:

The dialog window button is checked when a custom dialog instead of an application interface is being
constructed. In this case, the name of a procedure for invoking the dialog can be specified. Neither of
these are relevant for building an application interface.

Note: The VIB window can be resized using the window manager if it is not large enough to
accommodate the application canvas.

4. Creating Vidgets

A vidget is created by clicking on its icon in the vidget bar and dragging it into position on the
application canvas. It can be repositioned later.

The result of creating and placing a slider vidget is shown below:



5. Vidget Attributes

Vidgets have a variety of attributes, some of which are common to all vidgets and some that are specific
to the type of the vidget. When a vidget is created, it has default attributes. These attributes can be
changed later.

Clicking with the right mouse button on a vidget brings up a dialog showing the vidget’s attributes. The
default attributes for a slider vidget are shown below:

Every vidget has an ID attribute. Vidgets are identified by their IDs, both in VIB and in the application
that uses the interface. All vidgets also have a position, given as the x-y coordinates of its upper-left
corner. Most kinds of vidgets have size attributes as well. All vidgets except for labels and lines have a
callback attribute that names the application procedure that is called when the user manipulates the
vidget. In the case of a slider vidget, there also is an attribute for orienting it vertically or horizontally.
Finally, numerical values can be set for the endpoints of the slider, and the filter option controls the
circumstances under which the callback procedure is invoked.



The initial default values for vidget attributes usually should be changed. For example, it usually is
advisable to choose IDs and callback names that have mnemonic meanings for the vidget in question.

Configuration dialogs for the various kinds of vidgets are given in Appendix A. The attributes of vidgets
are described in more detail in Appendix B.

6. Manipulating Vidgets

Selecting and Deselecting Vidgets

A vidget can be moved or modified only when it is selected. Only one vidget can selected at a time. A
vidget can be selected by clicking on it, which highlights its corners to indicate it is selected. When a
vidget is selected, any previously selected vidget is deselected. Clicking on the canvas at any place other
than on a vidget deselects the currently selected vidget, leaving no vidget selected.

A vidget also can be selected by using the Select  menu, which displays the IDs of all vidgets as shown
earlier. This method of selection is useful if a vidget is "lost" because it is behind another vidget or
because it is too small to be selected by clicking on it.

Resizing Vidgets

A vidget can be resized by selecting it, pressing the mouse on one of its four corners, and dragging that
corner to a new location. The diagonally opposite corner remains anchored, and the size changes. Some
vidgets enforce constraints on resizing. For example, a button cannot be made smaller than its label.
Other vidget types, such as menus, cannot be resized at all.

Positioning Vidgets

A vidget can be repositioned by selecting it and dragging with the left mouse button depressed. A
selected vidget can be moved one pixel at a time by using the arrow keys on the keyboard. This is useful
for small movements and precise positioning. A vidget also can be repositioned by using its dialog and
changing the x-y coordinates of its upper-left corner.

Vidgets can be aligned by selecting an "anchor" vidget and the choosing align horiz  or align vert

from the Edit  menu. Horizontal alignment aligns the left edges of vidgets with the left edge of the
anchor vidget, while vertical alignment aligns the tops.

When an alignment is chosen from the Edit  menu, the mouse pointer chnages to a shape that indicates
horizontal or vertical movement, corresponding to the type of alignment chosen. Subsequently, clicking
on a vidget aligns it with the anchor vidget. Several vidgets can be aligned in this manner. Clicking on
the canvas off any vidget restores the cursor to an arrow and its normal functionality.

The following image shows four scrollbars that need to be aligned horizontally with the topmost one
selected as the anchor:



After selecting align horiz  and clicking on each of the three scrollbars below the anchor, the result is

Note that the anchor vidget still is selected.

Deleting Vidgets

The selected vidget can be deleted by choosing delete  (@X) from the Edit  menu or by pressing the
delete  key. This operation can be undone by choosing undelete  (@U) from the Edit menu, provided
no other action has been performed since the vidget was deleted.



Copying Vidgets

The selected vidget can be copied by choosing copy (@C) from the Edit  menu.

The copied vidget is selected when it is created. It is offset vertically and horizontally from the vidget
from which it was copied. Attributes other than the ID, callback, and position are inherited from the
vidget from which it was created.

7. Custom Dialogs

A custom dialog is very similar to a visual interface for an application: Vidgets with various
functionalities can be positioned as desired.

There are two noticeable differences between custom dialogs and visual interfaces:

Menus, regions, and text lists cannot be used in custom dialogs. They may be created and placed,
but they are ignored when the dialog is saved. 
A custom dialog must have at least one regular button, so that it can be dismissed. VIB refuses to
save a custom dialog without a regular button. 

VIB must be told that it is creating a custom dialog rather than a visual interface, which is the default.
This is done in the canvas dialog that comes up as a result of clicking with the right mouse button on the
lower-right corner of the application canvas.

Two things are needed to create a custom dialog: providing a procedure name by which the dialog will
be called and setting the dialog window toggle, as shown in this example:

One button can be designated as the default button for dismissing a custom dialog. This is done by
setting the dialog default toggle in the attribute dialog for the button:



8. Prototyping

The application canvas as shown by VIB is very similar to the way it appears in an application. The
dashed lines that show the boundary of a region with an invisible border do not, of course, show when
the visual interface is used in an application.

The exact appearance of the interface can be obtained by selecting prototype (@P) from the File menu.
This constructs and launches an application with the current interface and a dummy program for
handling events.

Manipulating vidgets on the prototype produces information about callbacks, IDs, and vidget values.

A prototype for a visual interface can be terminated by typing q with the cursor not on a vidget. The
prototype for a custom dialog can be dismissed by clicking on one of its regular buttons. A dialog is
presented to confirm that you wish to terminate the prototype instead of continuing to test it.

9. Callbacks

When the user presses a button, selects an item from a menu, or activates some other interface tool, a
procedure associated with the vidget is called. Such procedures are called callbacks because user actions
on the interface result in calls back to procedures in the application.

Callback procedures have the following form:

procedure cb(vidget, value)

The first argument identifies the vidget that produced the callback, and the second argument gives a
value. The vidget argument is not always needed, but it can be used to distinguish among different
vidgets that share the same callback procedure. The value often is important, since in many cases it
indicates the nature of the user action.

For a toggle button, the value is null when the toggle is turned off and 1 (nonnull) when it is turned on.
This makes testing of the state of a toggle easy, as in

procedure pause_cb(vidget, value)



   if \value then       # stop display
   else                 # continue display

   return

end

The callback value for a radio button is the (string) label of the selected button, as in

procedure shape_cb(vidget, value)

   case value of {
      "discs":         # set shape to filled circle
      "rings":         # set shape to output circle
      }

    return

end

Since menus can have submenus, their callback values are lists whose first elements are the text for the
item selected from the main menu, whose second elements are the text for the item selected from the
first submenu, and so on. If there are no submenus, the callback value for a menu is a one-element list,
as illustrated by

procedure file_cb(vidget, value)

    case value[1] of {
      "snapshot @S":      # take snapshot
      "quit     @Q":      # shut down the application
      }

    return

end

Notice that the list element is the complete text for the item selected.

The callback value for a text-entry field is the text in the field at the time the user presses return with the
I-beam cursor in the field. There is no callback until the user presses return.

The callback value for a slider or scrollbar is the numerical value in the given range, as determined by
the position of the thumb. A slider or scrollbar can be configured in two ways: to provide callbacks as
the user moves the thumb, or "filtered" to provide a callback only when the user releases the thumb.
Filtering is appropriate when only the final value is important, as in

procedure density_cb(vidget, value)

    density := value     # set global variable

    return

end

Unfiltered callbacks may be needed when the application needs to respond while the user moves the
thumb, as in scrolling an image.



The callback value for a text-list vidget depends on the kind of the text list. If the vidget allows selection
of only a single item, the value is the selected line. If the vidget allows multiple selections, the value is a
list of the selected lines. There is no callback for a text list that does not allow selection.

The form of callback procedures for regions is somewhat different from the callback procedures for
other vidgets. The second argument is the event produced by the user, and there are two additional
arguments that indicate where on the application canvas (not the region) the event occurred:

procedure  cb(vidget, e, x, y)

Note in particular that e is not a value associated with the region vidget, as it is for other kinds of
vidgets; it is the actual event, such as a mouse press or a character from the keyboard.

Labels and lines do not produce callbacks; they provide decoration only.

10. The Structure of a VIB Application

An application with a VIB interface usually has several relatively distinct components:

The sections above the thick line are written by the programmer of the application. VIB produces the
section of code below the thick line. It is used to create the interface. Here is a typical example.

#===<<vib:begin>>===    modify using vib; do not remove this marker line
procedure ui_atts()
   return ["size=600,455", "bg=pale gray"]
end

procedure ui(win, cbk)
return vsetup(win, cbk,
   [":Sizer:::0,0,600,455:kaleido",],
   ["file:Menu:pull::12,3,36,21:File",file_cb,
      ["snapshot @S","quit     @Q"]],
   ["label01:Label:::13,180,21,13:min",],
   ["label02:Label:::152,180,21,13:max",],
   ["label03:Label:::13,240,21,13:min",],
   ["label04:Label:::152,240,21,13:max",],
   ["label05:Label:::13,300,21,13:min",],
   ["label06:Label:::152,300,21,13:max",],
   ["label07:Label:::7,120,28,13:slow",],
   ["label08:Label:::151,120,28,13:fast",],
   ["lbl_density:Label:::67,160,49,13:density",],
   ["lbl_max_radius:Label:::43,280,98,13:maximum radius",],



   ["lbl_min_radius:Label:::44,220,98,13:minimum radius",],
   ["lbl_speed:Label:::74,100,35,13:speed",],
   ["line:Line:::0,30,600,30:",],
   ["pause:Button:regular:1:33,55,45,20:pause",pause_cb],
   ["reset:Button:regular::111,55,45,20:reset",reset_cb],
   ["sld_density:Slider:h:1:42,180,100,15:1,100,50",density_cb],
   ["sld_max_radius:Slider:h:1:42,300,100,15:1,230,115",max_radius_cb],
   ["sld_min_radius:Slider:h:1:42,240,100,15:1,230,115",min_radius_cb],
   ["sld_speed:Slider:h:1:42,120,100,15:500,0,250",speed_cb],
   ["region:Rect:raised::188,42,400,400:",],
   )
end
#===<<vib:end>>===      end of section maintained by vib

The procedure ui() in the VIB section opens the application, draws and initializes the vidgets, and
returns a table that contains the vidget records.

A program with a VIB interface typically begins with

vidgets := ui()

The keys in the table returned by ui()  are the vidget IDs. Their corresponding values are the vidget
records. One vidget in the table returned by ui()  is particularly important: a "root" vidget that encloses
all other vidgets and processes events that occur on them. The root vidget has the ID root .

In an application with a VIB interface, events are not handled by Event()  but by higher-level
procedures that understand vidgets and the meaning of events that occur on them. There are two
procedures that handle vidget events, ProcessEvent()  and GetEvents() .

ProcessEvent(root, missed, all, resize)  processes a single event. If the event takes place on a
vidget and is appropriate for the vidget (such as a mouse press within the area of a button), a callback for
that vidget occurs. The arguments missed, all, and resize are optional procedures that are called for
events that occur when the mouse pointer is not on a vidget or are not appropriate for that vidget (such
as a keyboard event with the mouse cursor on a button), for all events, and for resize events,
respectively. For example,

ProcessEvent(root, , shortcuts)

might be used to call shortcuts()  for all events in order to handle keyboard shortcuts that are entered
whether the mouse pointer is on a vidget or not.

The procedure ProcessEvent()  is used when an application wants to handle events one by one. Such
programs typically have an event loop of the form

repeat {
   while *Pending() > 0 do
      ProcessEvent(vidgets["root"])
     # work performed between processing events
   }

In the repeat loop, if there are any pending events, they are processed before going on. This assures
prompt response to the user. If no events are pending, other work is done. The amount of computation
done before checking again for user events should be small, so as to assure a responsive interface.



The procedure GetEvents(root, missed, all, resize) , whose arguments have the same meaning
as those for ProcessEvent() , handles all events and does not return control to the program.
GetEvents()  is appropriate for applications that are entirely "event-driven" and perform processing
only in response to user events and the resulting callbacks.

11. Using Custom Dialogs

A custom dialog is invoked by calling the procedure named in VIB’s canvas dialog. The argument of the
procedure is a table whose keys are the IDs of the vidgets in the dialog and whose corresponding values
are the states of these vidgets.

When a dialog is dismissed, it returns the text of the button used to dismiss it (as for standard dialogs).
Before returning, it also changes the values in the table to correspond to the states of the vidgets when
the dialog was dismissed.

Here’s a custom dialog as shown in VIB:

Here’s the code for a procedure to use this custom dialog:

link dsetup                      # dialog setup

procedure attribs(win)
   static atts

   initial atts := table()       # table of vidget IDs

   /win := &window

   # Assign values from current attributes.

   atts["linewidth"] := WAttrib(win, "linewidth")



   atts["linestyle"] := WAttrib(win, "linestyle")

   # Call up the dialog.

   repeat {
      attributes(win, atts) == "Okay" | fail
      # Set attributes from table.
      WAttrib(win, "linewidth=" || atts["linewidth"]) | {
         Notice("Invalid linewidth.")
         next
         }
      WAttrib(win, "linestyle=" || atts["linestyle"])
      return
      }

end

#===<<vib:begin>>===   modify using vib; do not remove this marker line
procedure attributes(win, deftbl)
static dstate
initial dstate := dsetup(win,
   ["attributes:Sizer::1:0,0,256,160:",],
   ["cancel:Button:regular::164,102,60,30:Cancel",],
   ["linestyle:Choice::3:155,20,78,63:",,
      ["solid","striped","dashed"]],
   ["linewidth:Text::3:10,20,115,19:line width: \\=",],
   ["okay:Button:regular:-1:31,102,60,30:Okay",],
   )
return dpopup(win, deftbl, dstate)
end
#===<<vib:end>>===   end of section maintained by vib

If the value for the line width is invalid, an attempt to set it fails. If this happens, the user is notified and
the dialog is presented again. The radio button choices, on the other hand, are guaranteed to be legal by
virtue of the button names used.

An example of the use of an attribute dialog is

12. Limitations

VIB has several limitations that should be considered before designing an interface:

VIB can handle only one interface section in a file. 
The location and attributes of vidgets cannot be changed when an application is running. 
There is no provision for adding new kinds of vidgets. 
There is no provision for decorating vidgets with images. 



Acknowledgments

Jon Lipp created the vidgets under Clint Jeffery’s direction. Mary Cameron produced the first version of
the interface builder as a class project.

Appendix A -- Vidget Configuration Dialogs

Button Configuration Dialog

The dialog for configuring a button is shown below with initial defaults. The label attribute is what
appears on the button. The radio buttons in the center and the outline button at the right provide choices
for the visual appearance of the button. The toggle button allows a choice of a regular button or one that
maintains an on/off state. The dialog default button is used to designate a default button used to dismiss
a custom dialog when the user enters return.

Radio Button Configuration Dialog

The configuration dialog for a set of radio buttons is shown below with its default values. Three buttons
are provided initially with default names. These names can be changed by editing the text-entry fields.
Additional buttons can be added by clicking on one of the add  buttons that appear at the left; the top and
bottom add  buttons insert a field above and below the first and last fields, respectively. The other add
buttons insert fields between existing ones, as indicated by their positions. The del  buttons at the right
delete the fields to their immediate left.

Menu Configuration Dialog



The configuration dialog for a menu is shown below with its default values. Three items are provided
initially with default names. The items can be edited and items can be added and deleted in the manner
used for radio buttons.

Clicking on create submenu brings up a dialog for a submenu as shown below.

Text-List Configuration Dialog

In the dialog for configuring a text-list vidget, there are three choices for user selection: read only, which
allows the user to scroll through the lines but not select any; select one, which allows the user to select a
single line; and select many, which allows selection of any or all lines.

Text-Entry Configuration Dialog

In the dialog for configuring a text-entry vidget, the label field provides for text that appears at the left
of the field. An initial value for the text can be entered and the number of characters allowed in the field
can be specified.



Slider Configuration Dialog

The configuration dialog for a slider vidget allows its dimensions and orientation to be changed as
indicated. The default values of the extreme positions of the thumb default to 0.0 and 1.0, allowing
scaling in the application. If the filter toggle is on, a callback only occurs when the user releases the
thumb. Otherwise, a callback occurs whenever the user moves the thumb.

Scrollbar Configuration Dialog

The configuration dialog for a scrollbar is the same as the dialog for a slider, since the only differences
between the two types of vidgets are their visual appearance and the functionality by which the user can
change the position of the thumb.



Region Configuration Dialog

The configuration dialog of a region provides four choices for the appearance of the border.

Label Configuration Dialog

Label vidgets are the simplest of all vidgets.

Line Dialog

A line vidget differs from other vidgets in having x,y coordinates for its end points.



Appendix B -- Vidget Information

Vidgets are implemented by Icon records, with a different record type for each kind of vidget. The set of
vidgets is fixed and there are no provisions for adding new kinds of vidgets.

Vidget Fields

Vidgets have fields that contain their attributes. Some fields are common to all kinds of vidgets, while
some are peculiar to a particular kind of vidget. The attributes of a vidget can be accessed through these
fields.

Every vidget has an id  field, which is the identifying name given to the vidget in VIB.

The most commonly used fields are the ones that give the locations and sizes of vidgets:

ax   x coordinate of the upper-left corner of the vidget
ay   y coordinate of the upper-left corner of the vidget
aw   width of the vidget
ah   height of the vidget

The a stands for "absolute". All vidgets except for lines have these attributes. Lines are specified by their
end points:

x1   x coordinate of the beginning of the line
y1   y coordinate of the beginning of the line
x2   x coordinate of the end of the line
y2   y coordinate of the end of the line

Regions also have attributes that give their usable dimensions inside the decorating border they may
have:

ux   x coordinate of the upper-left corner of the usable area
uy   y coordinate of the upper-left corner of the usable area
uw   width of the usable area
uh   height of the usable area

Vidget States and Callbacks

The following vidgets can have callbacks. Some maintain states; for these, the values passed generally
are the same as their states at the time the callback occurs.

For text lists, the state always is a list of integers; this differs from the callback value. The first integer



indexes the top line currently displayed; this reflects the position of the scrollbar thumb. Additional
integers, if any, index the currently selected items.

vidget                     state    callback value

regular button                    1     
toggle button                x    1 if on, null if off  
radio buttons                x    text of selected button       
menu                              list of selected items
single-selection text list   x    selected item, or null if nothing is selected
multiple-selection text list x    list of selected items
text-entry                   x    text entered
slider                       x    numerical value for position
scrollbar                    x    numerical value for position
region                            event and the x,y coordinates where it  occur r

The state of some vidgets when they are not activated is indicated visually:

vidget          visual indication
        
toggle button   highlighted if on (foreground and background reversed),
                  not highlighted if off
radio buttons   selected button highlighted
text list       selected lines highlighted
text-entry      current text displayed
slider          slider thumb position
scrollbar       slider thumb position

Vidget Activation

A vidget is activated by pressing a mouse button while the mouse pointer is positioned
within the area of the vidget. (Note that the entire area occupied by a vidget may not be
visually evident.) For a vidget that has a callback procedure, the callback occurs in the
following situations following the activation of the vidget:

vidget          callback time

button          when the mouse button is released               
radio buttons   when the mouse button is released       
menu            when the mouse button is released with the mouse cursor
                  on a selected item
text list       when the mouse button is released
text-entry      when return is entered with the mouse pointer within the field  
slider          if unfiltered, when the mouse is dragged on the slider;
                  otherwise when the mouse button is released   
scrollbar       if unfiltered, when the mouse is dragged on the slider or
                  released on an end button; otherwise when the mouse button
                  is released           
region           when any keyboard or mouse event occurs within the region

The state of some vidgets is indicated visually while they are activated:

vidget          visual indication
        
button          highlighted (foreground and background reversed)
menu            items pulled down, with the potentially selected one highlighte d
radio buttons   selected button highlighted



text list       selected lines highlighted
text-entry      text highlighted
slider          thumb position
scrollbar       thumb position

There is no visual indication when the callback occurs for a slider or scrollbar vidget. The user cannot
tell if the vidget is filtered or if a callback only occurs when the mouse button is released. There is no
visual indication when a callback occurs when the user finishes with a text-entry vidget. To produce a
callback for a text-entry vidget, the user must type return while the I-beam cursor is in the text-entry
field. If the user forgets this, no callback occurs. Since this is easy to forget, the user may think there has
been a callback to accept the contents of the text-entry field when there has not been one. For this
reason, text-entry vidgets are best used in dialogs and not directly on an interface. 

Setting and Getting Vidget States

For vidgets that have states, VSetState(vidget, state)  sets the state of vidget . It does this by
producing a callback to the vidget as if the user had done it. Similarly, VGetState(vidget)  returns the
state of vidget . 

For a text-list or menu vidget, VSetItems(vidget, lst)  sets the list of items for vidget  to lst .
Similarly, VGetItems(vidget)  returns the current list of items. 


