
IPD285 - 1 - June 1, 1998

Introduction
It has long been known that modular arith-

metic often produces interesting numerical pat-
terns. These patterns can be made easier to com-
prehend and more interesting by rendering them
as images with colors associated with numeri-
cal values.

The example most often cited is Pascal’s
Triangle, which exhibits the binomial coeffi-
cients. If you take the coefficients modulo m for
various m, you get different but interesting pat-
terns. Figures 1 through 3 show a portion of
Pascal’s Triangle for m = 2, 3, and 5, using m
uniformly spaced shades of gray from black (for
0) to white (for m–1).

Figure 1. Pascal’s Triangle Modulo 2

Figure 2. Pascal’s Triangle Modulo 3

Figure 3. Pascal’s Triangle Modulo 5

See References 1 and 2 for extensive treat-
ments of this subject.

Our interest in the subject came from a pa-
per entitled “Carpets and Rugs: An Exercise in
Numbers” [3]. This brief and informal paper de-
scribes the results of generating integers on a
square array according to a “neighborhood” rule.
The results are reduced modulo m and colored
according to the resulting values.

Computing the values of the elements of an
array according to the values of their neighbors
is the basis for cellular automata [4,5]. Cellular
automata may be one dimensional, two dimen-
sional, or of higher dimension. The two-dimen-
sional Game of Life is the best known [6].

Cellular automata are characterized by three
properties:

• Parallelism: The values of all cells are up-
dated at the same time at discrete inter-
vals t1, t2, t3,… .

• Locality: The value of a cell at time tn+1
depends only on the value of the cell and
its neighbors at time tn.

• Homogeneity: The same update rules ap-
ply to all cells.

Various neighborhoods can be used. For
two-dimensional cellular automata, the neighbor-
hood of a cell typically consists of the cell and

Numerical Carpets
Ralph E. Griswold

Department of Computer Science, The University of Arizona

IPD285 - 2 - June 1, 1998

the eight physically adjacent neighbors, as shown
in Figure 4:

nw

w

sw

c

n

s

ne

e

se

Figure 4. The Neighborhood of a Cell

Here we have labeled the cells according to com-
pass points with the center cell labeled c. Which
of the cells in the neighborhood contribute to the
value of the center cell varies with the automa-
ton.

The “Carpets and Rugs” article we men-
tioned above differs from cellular automata in that
the values of the array elements are not computed
in parallel, but rather one after another in a regu-
lar way in which previously computed values po-
tentially affect newly computed values. Once a
value is computed, it is not changed.

An n × n array is initialized along the top
row and down the left column with all other val-
ues being zero initially. The rule used to com-
pute new values is very simple:

ai , j = (a
j, i–1

 + a
i–1, j–1

 +

a

i–1, j
) mod m 2 ≤ i, j ≤ n

Note that the initialized cells are not changed.
The neighborhood used is shown in Figure

5, where the value of the center cell is the sum of
the values in the gray cells.

nw

w

sw

c

n

s

ne

e

se

Figure 5. The Carpet Neighborhood

Thus, in terms of the labeling, c = n + nw + w. Note
that the new value of c does not depend on its
prior value.

The paper does not mention the order in
which the array is traversed (“woven” seems apt
for carpets), but with this neighborhood, the same
results can be obtained either by a row-primary
traversal, left to right, top to bottom, or by a col-
umn-primary traversal.

Having filled in the array, a color is assigned
to each integer based on its value and the values
of neighboring cells. The result then is displayed
as a computer-generated image. The paper does
not say how the colors are assigned, but simply
assigning a different color to each integer 0 ≤ i ≤
m–1 produces images similar to the ones shown
in the paper.

Only two initialization schemes are de-
scribed in the paper: (1) all ones across the top
row and down the left column, and (2) alternat-
ing zeros and ones across the top and down the
left side.

Even with these simple initialization
schemes and the simple rule for computing val-
ues, the results for different moduli are fascinat-
ing. Figures 6 and 7 show “carpets” similar to
the ones in the paper.

Figure 6. Carpet from All-Ones Initialization

IPD285 - 3 - June 1, 1998

.

Figure 7. Carpet from One-Zero Initialization

Other moduli produce similar images.
The paper raises more questions than it an-

swers. Some of the more obvious ones are:

• What is the effect of different initializa-
tion values?

• What is the effect of initializing different
portions of the array?

• What happens if the array is not square?

• What happens if the neighborhood com-
putation is different?

• How do different color schemes affect the
visual result?

• What happens if different traversal paths
are used?

• What if …

The first issue to resolve is whether any such
changes yield results that are both significantly
different from those using only the method given
in the paper and also are interesting. A few simple
experiments answered this question, at least for
us. See Figures 8 and 9. (Such images cannot be
produced using only the methods described in
the paper.)

Figure 8. “Pascal” Carpet

Figure 9. “Open Weave” Carpet

With so many independent variables, some
of which offer not only endless but very different
possibilities, two things are obvious: (1) an ex-
perimental approach is appropriate, and (2) a gen-
eral, flexible, and easily used tool is needed.

This leads us to “programmable numerical

IPD285 - 4 - June 1, 1998

carpets” in which a user can use programming
techniques to experiment and explore. A visual
interface in which various possibilities can be
tried and evaluated interactively adds to power
and ease of use.

There are, of course, too many independent
variables posed by the preceding questions. We
decided to stay within the confines of the method
described in the paper with only a few extensions
that do not affect the underlying ideas:

• separate specifications for carpet width and
height (length)

• specification of different neighborhood
computations (but using only the n, nw,
and w cells)

• separate specifications for row and column
initialization

• specification of various initialization val-
ues

The width, height, and modulus are just con-
stants that the user can specify. The challenging
issue is initialization. Providing the user with a
choice among a list of predefined initializations
is easy, but it obviously is very limiting. Instead,
the user should be able to specify the sequences
of numbers for initialization.

We used the word “sequence” in the last sen-
tence for a purpose. We could have used other
words, such as “list”, to convey the idea of order.
But in Icon, the concept of sequence runs so
deeply and is such a powerful programming tech-
nique that thinking sequences is something that
should come naturally.

For example, the initializations used in the
paper can be represented as sequences generated
by the expressions |1 and |(0 | 1). Now think of
all the other possibilities! Possibilities such as
seq(), which generates 1, 2, 3, … and fibseq()
from the Icon program library, which generates
the Fibonacci sequence 1, 1, 2, 3, 5, 8, … , and
many more.

But this idea takes us into deep water. It im-
plies the ability to evaluate an arbitrary Icon ex-
pression during program execution. It is, of
course, possible to write a program in which the
initialization expressions are edited before the

program is compiled and run. But this is too la-
borious and time-consuming for exploring the
vast space of numerical carpets.

How can you evaluate an arbitrary Icon ex-
pression within a running program? You can’t.
But you can accomplish the equivalent.

One method is to write out a file consisting
of the expression wrapped in a declaration for a
main procedure. For example, to “evaluate”
seq(), the file might look like this:

procedure main()
 every write(seq())
end

If the file is to be named expr.icn, a proce-
dure to produce the file is just:

procedure expr_file(expr)
 local output

 output := open("expr.icn", "w") |
 stop("∗∗∗ cannot open file for expression")

 write(output, "procedure main()")
 write(otuput, " every write(", expr, ")")
 write(output, "end")

 close(output)

 system("icont –s expr –x")

 return

end

The –s option suppresses informative output
from icont, while the option –x causes the pro-
gram to be executed after compilation.

There is one thing very wrong with expr.icn:
an expression like seq() is an infinite generator;
output continues until something intervenes.
That’s easily fixed by limiting the generator. For
the initialization of the top row, this might be used:

every write(seq()) \ width

where width is the width of the array.
Before doing this, however, there is the ques-

tion of how to get the output of expr back into
the program that created it. One way would be to
write it to a known file and read from the file
when expr completes execution.

An alternative is to open the command line
as a pipe instead of using system():

input := open("icont –s expr –x", "pw")

IPD285 - 5 - June 1, 1998

This has the same effect as the use of system()
above, except it creates a pipe, input, from which
the values produced by expr can be read one at a
time as needed. Using this method, it’s not neces-
sary to add limitation to expr.icn. Depending on
the operating system, expr may produce a few
more values than are ever used, but in most
situations, this is not a problem. Of course, the
operating system must support pipes.

Note that pipes have to be created for every
expression that needs to be evaluated to produce
a carpet. There are at least three, one for each
initializer and one for the neighborhood compu-
tation. We also found it helpful for the user to be
able to specify the modulus as an expression, such
as &phi ^ 2, and it just might be useful to allow
the dimensions to be specified by expressions.

We have used this monolithic approach suc-
cessfully, using exprfile.icn from the Icon pro-
gram library to manage the details. We prefer a
different approach, however; one that is simpler
and more flexible. In this approach, a carpet-con-
figuration program writes a file that contains pre-
processor definitions for the various carpet pa-
rameters and expressions. It then uses system()
to compile and execute a carpet-generation pro-
gram that includes the definition file and con-
structs the carpet.

The advantage of this approach is that it’s
easy to write the preprocessor definitions and they
are “magically” there when the carpet-generation
program is compiled.

Separating the construction into two appli-
cations has the additional advantage of separat-
ing two quite different functionalities into two
programs as opposed to
packing them all into one
program.

There are downsides
to the separation. Since
carpet generation is done
by a separate application,
the user needs to shift at-
tention to this application
to view the image it pro-

duces. Another problem is that the carpet-con-
figuration program must know the location of the
source code for the carpet-generation program.

Less obvious, perhaps, is error checking. In
the monolithic approach, a user syntax error in
an initialization expression can be detected be-
fore carpet construction begins. With the
“duolithic” approach, that can’t be done without
“evaluating” expressions in the carpet-configu-
ration application, which would defeat the pur-
pose of the separation. Instead, the syntax error
does not occur until the carpet-generation pro-
gram is compiled.

But this is, after all, an application for Icon
programmers; they don’t make mistakes. Or, if
they do, they know intuitively what is wrong and
how to fix it … .

In case you are wondering about speed, the
“duolithic” approach is faster.

The interface for the carpet-specification
program is simple: It consists of menus for file
operations and setting specifications, a single but-
ton to create a carpet, and a “logo” for decora-
tion. See Figure 10.

Figure 10. Carpet-Specification Interface

Figure 11 shows the dialog for entering and
editing initializers.

Figure 11. The Initializer Dialog

IPD285 - 6 - June 1, 1998

The text-entry fields are long to allow compli-
cated expressions to be entered.

Figure 12 shows the dialog for entering and
editing the neighborhood expression.

Note that the variables n, nw, and w are used
to refer to the cells relative to the current one when
the carpet is generated. The values of these vari-
ables are supplied in the carpet-generation pro-
gram. The Default button restores the expression
to n + nw + w.

Here is an example of a definition file pro-
duced by the carpet-specification program.

$define Comments "October 14, 1997"
$define Name "untitled"
$define Width (128)
$define Height (128)
$define Modulus (5)
$define Hexpr (seq())
$define Vexpr (fibseq())
$define Nexpr (n + nw + 2 ∗ w)
$define Colors "c2"

The definition for Colors is the name of a color
palette.

Carpet Specifications

Dimensions

The size of a carpet usually affects its “com-
pleteness” as shown in Figure 13.

Figure 13. One Effect of Carpet Size

In some cases, the dimensions may affect
the scale of the pattern. The patterns for carpets
that are not square usually resemble the patterns
for square ones.

In most cases, modest dimen-
sions, such as 64 × 64 give an indi-
cation of the nature of the carpet.
Considerable time can be saved by
starting with small sizes to find
promising candidates for larger
carpets.

It is, of course, possible to
contrive specifications that produce
very different patterns depending

on the dimensions of the carpet. Consider, for ex-
ample,

(|0 \ 100) | 1

for both initializers. Since the first 100 cells are
zero, carpet with dimensions less than 101 × 101
will be a solid color, while a 200 × 200 carpet is as
shown in Figure 14.

Figure 14. Another Effect of Carpet Size

Moduli

The patterns produced vary considerably in
appearance depending on the modulus. Even the
simplest initializer, a lone one on the upper-left
corner, produces interesting patterns for differ-
ent moduli. The results for a 128 × 128 array with
moduli from 2 through 17 are shown in Figure
15.

Figure 12. The Neighborhood Dialog

IPD285 - 7 - June 1, 1998

Figure 15. Effects of the Modulus

The patterns that result from different moduli
often show significant differences between prime
and composite moduli. There is, of course, a
strong interaction between the modulus and the
initializers.

Initializers

Initializers provide the most fertile ground
for designing interesting carpets. There are end-
less possibilities, which is a problem in itself.

Even the simplest initializers often produce
interesting results, as shown in Figure 15. If the
initializers for the top row and left column are
the same and the default neighborhood computa-
tion is used, the resulting carpet is symmetrical
around the diagonal from the upper-left corner to
the lower-right one. The result often is more at-
tractive than if different initializers are used for
the top and left edges, but there are endless ex-
ceptions.

Icon’s generators offer an easy way to ex-
periment. Even simple generators like |(1 to 5)
produce interesting carpets.

Some numerical sequences, when used as
initializers, produce interesting patterns. Rather

surprisingly, the prime numbers produce inter-
esting carpets for moduli 4 and 8. Figure 16 shows
the carpet for modulus 4. The carpet for modulus
16 is similar.

Figure 16. The Primes with Modulus 4

On the other hand, for other moduli at least
through 100, the carpets for primes are chaotic
and show little structure. The carpet for modulus
3, shown in Figure 17, is typical.

Figure 17. The Primes with Modulus 3

It’s worth noting that the Icon program li-
brary contains a large number of procedure that
generate various numerical sequences. See
genrfncs.icn. The module pdco.icn contains
programmer-defined control operations [7,8] that
allow sequences to be composed in various ways,
such as interleaving results from several se-
quences.

Neighborhoods

Neighborhoods are tricky. Most expressions
other than the default one produce degenerate or
chaotic carpets. Scaling values sometimes pro-
duce interesting results. For example, 3 ∗ n + nw
+ 2 ∗ w, with modulus 5 and lone-one initializers,
produces the carpet shown in Figure 18.

IPD285 - 8 - June 1, 1998

Figure 18. A Non-Standard Neighborhood

If you look closely, you’ll see that this carpet is
not symmetric around the diagonal.

Colors

Lists of colors are used in displaying car-
pets. They may come from Icon’s built-in pal-
ettes, or from color lists provided by the carpet-
specification program, or they can be supplied
by the user.

Different color lists, of course, may make
marked differences in the visual appearances of
the same carpet. Contrasting colors may make
patterns easier to discern, but they may not pro-
duce the most attractive results.

There is a strong correlation between the
modulus and the colors used. The number of col-
ors need not be the same as the modulus, but if
the number of colors exceeds the modulus, some
colors will not be used. A more interesting situa-
tion occurs when the number of colors is less than
the modulus. In this case the carpet-generation
program “wraps around”, taking values greater
than the number of color modulo the number of
colors.

An interesting possibility exists for using
color lists in which colors are duplicated, thus
mapping different values into the same color. We
have not explored this yet.

The Programs
The carpet-specification program, named

carport, is a simple VIB application. Most of the
code is routine and we’ll only show three proce-
dures.

The procedure init() initializes the interface
and sets up the default carpet specifications:

procedure init()

 vidgets := ui() # initialize interface

 # Set up carpet defaults.

 comments := ""
 name := "untitled"
 width := 128
 height := 128
 modulus := 5
 hexpr := "|1"
 vexpr := "|1"
 nexpr := "n + nw + w"
 colors := "c2"

 return

end

The procedure that is called to edit the
initializers shows how simple the process is: There
is no error checking; whatever the user enters is
passed along to the carpet-generation program:

procedure initers()

 if TextDialog("Initializers:", ["horizontal", "vertical"],
 [hexpr, vexpr], 80) == "Cancel" then fail
 hexpr := dialog_value[1]
 vexpr := dialog_value[2]

 return

end

The procedure create_cb() writes the defini-
tion file for the carpet-generation program and then
compiles and executes the program, which is named
carplay:

procedure create_cb()
 local out

 output := open("carpincl.icn", "w") | fail

 write(out, "$define Comments ", image(comments))
 write(out, "$define Name ", image(name))
 write(out, "$define Width (", width, ")")
 write(out, "$define Height (", height, ")")
 write(out, "$define Modulus (", modulus, ")")
 write(out, "$define Hexpr (", hexpr, ")")
 write(out, "$define Vexpr (", vexpr, ")")
 write(out, "$define Nexpr (", nexpr, ")")
 write(out, "$define Colors ", image(colors))

 close(output)

 # compile and run

 system("icont –s carplay –x")

IPD285 - 9 - June 1, 1998

 return

end

Note that image() is used to place quotation
marks around strings and that expressions are
surrounded by parentheses to prevent misinter-
pretation when they are substituted for their
names in the carpet-generation program.

The carpet-generation program, shown on
the next page, is a bit more interesting.

The file containing the preprocessor defini-
tions, carpincl.icn, is included before the actual
code. The main procedure simply calls carpet()
to produce the carpet and then waits for the user
to save the image if desired before quitting. The
interface is primitive to avoid linking lots of code
that would be necessary for a more sophisticated
interface, since the user of carport must wait for
carplay to compile and link, the time saved is
worth the inconvenience.

The procedure carpet() uses the symbols de-
fined in carpincl.icn (distinguished by initial up-
percase letters). There are some subtleties here.
Modulus, Width, and Height might be expres-
sions, not just numbers. Their assignment to vari-
ables, which are used subsequently, assures that
expressions are not evaluated repeatedly. Note
that the number of colors, assigned to cmod, may
be different from the modulus.

First the left and top edges are initialized,
using the expressions from carpincl.icn. The
edges are colored before going on. Next, the car-
pet is created by traversing the matrix. Note that
negative values and real numbers are allowed in
specifications. Real numbers are converted to
integers and the absolute value is used in deter-
mining the color to assign to a cell.

The procedure neighbor() is called with the
three neighbors of interest. It simply returns what-
ever Nexpr specifies. Notice that the computa-
tion in neighbor() does not have access to the
matrix or the other local variables in carpet();
this effectively confines the neighborhood com-
putation to the values of the three neighboring
cells — it can’t “reach out” and access other cells.

That’s all there is to it. Of course, other fea-
tures could be added to carplay to, for example,
tile the carpet image so the user can see how it

looks used in that way.
There are many more things that can be done

to increase the capability of the carpet programs.
These include:

• specification of different ways to initial-
ize the carpet, instead of just along the top
and right edges

• specification of different paths for travers-
ing the carpet, instead of just row primary
or column primary

• specification of neighborhoods using cells
other than n, nw, and w

• “reweaving” a carpet to use its final val-
ues as initialization for another traversal

Doing this, especially the specification of
arbitrary paths on an array, involves solving both
conceptual and programming problems.

References

1.“On Computer Graphics and the Aesthetics of
Sierpinksi Gaskets Formed from Large Pascal’s
Triangles”, Clifford A. Pickover, in The Visual
Mind: Art and Mathematics, Michele Emmer, ed.,
pp. 125-133.

2. Chaos and Fractals; New Frontiers of Science,
Heinz-Otto Peitgen, Hartmut Jürgens, and
Dietmar Saupe, Springer-Verlag, 1992.

3.“Carpets and Rugs: An Exercise in Numbers”,
Dann E. Passoja and Akhlesh Lakhtakia, in The
Visual Mind: Art and Mathematics, Michele Em-
mer, ed., pp. 121-123.

4. Cellular Automata and Complexity; Collected Pa-
pers, Stephen Wolfram, Addison-Wesley, 1994.

5. Cellular Automata Machines, Tommaso Toffoli
and Norman Margolus, The MIT Press, 1991.

6. The Recursive Universe; Cosmic Complexity and
the Limits of Scientific Knowledge, William
Poundstone, Contemporary Books, 1985.

7.“Programmer-Defined Control Operations”,
Icon Analyst 22, pp. 8-12.

8.“Programmer-Defined Control Operations”,
Icon Analyst 23, pp. 1-4.

