
Jcon: A Java-Based Implementation of Icon

Gregg M. Townsend, The University of Arizona
Todd A. Proebsting, Microsoft Research

Icon Project Document 286 (IPD286a)
Department of Computer Science
The University of Arizona
September 10, 1999
http://www.cs.arizona.edu/icon/docs/ipd286.htm

This document collects the separate Web pages that serve as documentation for Jcon. The sections are:

Introduction
Usage
Language Differences
Graphics
Dynamic Loading
Performance
Release Notes for Version 2.1
Installation
References

Introduction

Jcon (pronounced JAY-konn) is a new Java-based implementation of the Icon programming language
(Griswold and Griswold, 1996). The Jcon translator, written in Icon, generates Java class files that
execute in conjunction with a run-time system written in Java. Jcon runs on Unix systems.

Jcon is an essentially complete implementation of Icon, omitting only a few things such as chdir() that
cannot be done in Java. Co-expressions, large integers, and pipes are provided, and a preprocessor is
included. String invocation is supported. Tracing, error recovery, and debugging functions are all
included, although for performance reasons they are disabled by default. There are a few minor
deficiencies due to Java limitations.

Jcon includes almost all of Icon’s standard graphics facilities. Wide lines and textured drawing are
lacking; these should be easier to implement after version 1.2 of Java becomes universally available. A
few other features, notably mutable colors, are also unavailable. Details are provided in the Graphics
section.

The jcont script functions similarly to icont . The end result of compilation is an executable file, which

is produced by embedding a Zip archive of Java classes (a "Jar file") inside a shell script. Separate
compilation is also supported, with .zip files substituting for .u1/.u2 file pairs.

Implementation

The Jcon translator is a 10,000-line Icon program that produces either Java class files or ucode
(.u1/.u2) files. This is somewhat smaller than the 13,000 lines of C code that form the translator in
Version 9 of Icon, but the two totals are not directly comparable because the two programs have
different capabilities. The common function of generating ucode files from Icon source code accounts
for about 3,500 lines in Jcon and about 9,000 lines in Version 9.

The Jcon runtime system comprises 18,000 lines of Java code. The corresponding portion of Version 9,
counting only the Unix code, is over 50,000 lines of C code.

The jcont script that directs compilation and linking is a 400-line Korn shell script. While this works
well for Unix, it is the single largest impediment to a non-Unix port. We believe that writing a
replacement program would be the easiest route to a Windows or Macintosh port.

Jcon includes an automated test suite containing 8,000 lines of Icon programs. These are drawn from the
standard Icon test suite, other existing Icon programs, and 3,000 lines of new tests. Jcon also includes
additional manually-run graphics tests and a small collection of graphics demonstration programs.

Acknowledgements

Denise Todd contributed to the Jcon translator. Bob Alexander wrote the preprocessor. Ralph Griswold
offered useful advice and helped test early versions. Some small portions of the runtime system are
derived from Version 9 of Icon. The GIF encoder is from Jef Poskanzer (www.acme.com).

Usage

Jcont translates Icon source files into .zip files, and links .zip files to make an executable program.
Jcont is similar to icont in concept and behavior; think of a .zip file as analogous to a .u1 /.u2 pair
generated by icont.

Normally, jcont produces a directly executable Korn Shell script containing an embedded Zip file.
Running the script executes the compiled Icon program, and arguments can be passed as usual.

Synopsis

jcont [options] file... [-x [arguments]]

File Arguments

file.icn Icon source file to compile and link

file.zip Previously compiled file to link
(Must be local: jcont does not search $IPATH for file.zip)

file.class Java bytecode file (for dynamic loading) to include in output file

Options

-b generate backwards-compatible .u1 and .u2 files; implies -c
-c compile only: don’t produce an executable
-E preprocess only
-f d enable debugging features (tracing, error conversion)
-h print a usage message and exit
-j produce a .jar file instead of an executable script

-o exe specify output file for executable
-r include a copy of the run-time system in the executable
-s silent: suppress commentary
-t compile with -f d (to allow tracing) and initialize &trace to -1
-u list undeclared variables
-x execute after compilation (appears after file arguments)

The following options are mainly for debugging Jcon:

-d debug jcont: use ./jtmp for temporary files, and do not delete them when finished
-J use Jcon-built versions of jtran and jlink, if available
-P pessimize: don’t optimize the generated Java code
-S also generate a .jvm file listing the generated Java code
-v verbose: echo shell commands and trace linking steps

Environment Variables

The following environment variables affect compilation and linking:

LPATH Search path for $include directives
IPATH Search path for link directives

The following environment variables affect execution:

CLASSPATH Search path for Java libraries required at execution time. This is not usually
needed unless the libraries have moved.

JXOPTS Options passed to the Java interpreter that runs the program. Depending on the
implementation, JXOPTS can select options such as profiling or run-time

compilation to machine code.
TRACE Initial value of the Icon keyword &trace . If set, it overrides compilation with -t .

If a Jcon program runs out of memory, Java’s limits can be increased by setting JXOPTS. For example,
setenv JXOPTS ’-mx50m’ increases the maximum space to 50 megabytes. See the Java documentation
for other Java options.

Jar file output

If -j is passed to jcont, the final output file is given a .jar extension and the header is omitted to
facilitate manipulation of the file as an archive. Execution is accomplished by naming the file in the
CLASSPATH, along with the run-time library, and then running java:

jcont -j myprog.icn
setenv CLASSPATH myprog.jar:/myhome/jcon/bin/jcon.zip
java myprog

If the -r flag is also used, a copy of the run-time library is included in the the generated jar file. This
provides a self-contained package that can be executed on any Java implementation, possibly even one
of different architecture.

Caveats

java must be in the search path, and also javap if -S is used.

The -S option does not work for files containing link directives.

A compiled .zip file cannot be renamed: The file name must match the original .icn name. (However,
executables can be renamed.)

Language Differences

The core Icon language is defined by The Icon Programming Language, Third Edition (Griswold and
Griswold, 1996). This section documents differences with respect to that book and to the reference
implementation, Version 9 of Icon. Differences related to graphics are described in the Graphics section.

Characters and Strings

Like Version 9 of Icon, Jcon uses an 8-bit superset of ASCII. Jcon does not use Java’s Unicode
character set.

Conversion of real numbers to strings produces more digits than Version 9.

Files

Standard error output (&errout) is always unbuffered.

The standard files &input , &output , and &errout cannot be accessed randomly using seek() and
where() .

Processes run by system(s) or open(s,"p") do not inherit &input , &output , and &errout . Except for
the case of open(s,"wp") , where it is provided by the program, &input is always empty. The two
output files, &output and &errout , are copied from the process after it terminates.

Other Data Types

Random selection from sets and tables differs from Version 9, even with the same random seed.

Jcon is not always consistent with Version 9 when it encounters large integers in unsupported contexts
such as subscripting.

Keywords

&features includes "Java" . A corresponding preprocessor symbol _JAVA is predefined.

&time produces elapsed wall-clock time, not CPU time, due to Java limitations.

&allocated , &collections , &storage , and ®ions produce only zero values.

Built-in Functions

The functions chdir() , getch() , getche() , and kbhit() are not implemented.

The functions getenv() requires the presence of the utility env in the shell search path.

The implementation of loadfunc() is described in the Dynamic Loading section.

Linking

link directives must give a simple name, not a path.

Under Jcon, any reference to a procedure renders it invocable (callable by string invocation). In version
9, only procedures reachable from main() are made invocable by default.

Debugging

Most debugging features require compilation with the -f d switch. Programs compiled with default
options cannot be traced, cannot use error conversion (&error), and produce an abridged traceback if an
error occurs.

Only global variables are available to variable() , display() , and &dump.

Graphics

Icon’s graphics facilities are defined by Graphics Programming in Icon (Griswold, Jeffery, and
Townsend, 1998). This section documents differences from that specification, supplementing Appendix
N ("Platform Dependencies") of the book.

Jcon’s graphics implementation is nearly complete. The biggest omissions are wide lines, textured
drawing, and mutable colors. Java 1.2 promises to make the first two more feasible. Mutable colors will
remain out of reach.

Graphics Attributes

All attributes listed in the graphics book are implemented, but some cannot be changed successfully.
The canvas attribute can be set to normal or hidden but not to maximal or iconic . Changes to the
following attributes are ignored: linewidth , linestyle , fillstyle , pattern , display , iconpos ,
iconlabel , iconimage .

Because textured drawing is not available, the Pattern() procedure always fails.

Each graphics context is associated with a particular canvas. Thus Couple() always fails and Clone()

accepts only a single window argument.

Fonts

Icon generic family names, and all font characteristics, are case-insensitive; depending on the Java
implementation, other font family names may be case-sensitive. Because Java never rejects any
non-empty font name, Font(s) always succeeds for any well-formed specification.

The generic family names serif , sans , and typewriter work well, including bold and italic variants.
The appearance of the generic family mono varies by platform, and bold and italic characteristics are not
always effective.

The default font name fixed is mapped to mono,bold,12 .

Colors

There is no inherent limit to the number of different colors that can be in use simultaneously. On 8-bit
displays, Java approximates colors by selection from a limited palette that can vary from one run to
another. The first image below (from Plate 8.2 of the graphics book) shows the surface of color space as
rendered on a full-color display. The second image is an example of how Java renders it on an 8-bit
display.

For named colors, variants (such as light and dark) of the unsaturated hues (brown , pink , and violet)
appear less saturated than in Version 9 of Icon. Unlike Version 9, variants of black remain black rather
than producing shades of gray.

The default value of the gamma attribute is 1.5.

Mutable colors are not available; NewColor() and Color() always fail. (In Version 9 of Icon, mutable
colors work on 8-bit X displays.)

Images

ReadImage() loads images encoded in GIF or JPEG format. If the ReadImage() call specifies a color
palette, it is ignored; Java dithers the image if necessary for display. Neither ReadImage() nor
DrawImage() ever returns an integer indicating a color shortage.

The image attribute can be set at any time, not just initially, to load a GIF or JPEG file. The image

attribute is readable and returns the filename of the most recently loaded image.

WriteImage() attempts to write a JPEG file if the specified filename ends in ".jpg" or ".jpeg" (case
insensitive). JPEG writing fails for Java versions earlier than 1.2beta4. For all other filenames, a GIF file
is written; if the area being written contains more than 256 colors, automatic quantization occurs.

WriteImage(W,s,x,y,w,h,q) accepts a final "quality" parameter not present in Version 9 of Icon. Its
allowable range is 0.00 to 1.00, with a default value of 0.75. The quality value is passed directly to Java
when writing a JPEG image. Its useful range is perhaps 0.10 to 0.90: Smaller values produce images
dominated by artifacts, and larger values increase file size without producing any visible improvement.

If a quality value of less than 0.90 is specified for a GIF image, the maximum number of output colors is
reduced to produce a smaller file for color-rich images.

Image reading and writing ignores the gamma attribute.

Pixel() clips the specified region by the window bounds before generating values. This differs from
Version 9 of Icon, which generates the background color for out-of-bounds pixels. (The graphics book is
silent on this point.)

Events

Java distinguishes between ALT and META keys; in Jcon, either key sets the &meta keyword.

The &meta keyword is never set in conjunction with mouse events; for these events, Java uses the ALT
and META flags to encode "which button", so they are unavailable to indicate key states.

Numeric codes for the "outboard" keys such as F1 and HOME differ from those of X and are similar to
those of Windows; see the copy of keysyms.icn distributed with Jcon.

When a window is closed by the user, a &resize event is produced with associated &x and &y values of
(-1, -1).

Cursors and Pointers

The visible text cursor, when enabled, is a solid, nonblinking underbar.

The mouse position can be read using the pointerx and pointery attributes (or pointerrow and
pointercol), but it cannot be set by the program. Attempts to alter these attribute values are ignored.

Acceptable values for the pointer attribute are illustrated in the following figure. For compatibility
with other systems, some pointers have multiple names.

Deprecated Features

Version 9 of Icon retains compatibility support for some old graphics features that are no longer
documented. Jcon omits most such support. Two examples are support for very light and very dark

colors and the acceptance of bi-level images expressed in decimal notation.

Dynamic Loading

The capabilities of Icon can be extended through the use of dynamic loading at execution time. The
built-in function loadfunc(libname,procname) loads the compiled Icon or Java procedure procname

from the Zip archive libname and returns a procedure value. This value can be called just like any other
procedure.

If libname is null, the procedure must be a Java procedure, and it is loaded from the same file as the
current executable. (Icon procedures linked into the executable are not dynamically loadable.)

While the library archive can be built ahead of time, it is also possible for the running program to
generate code and then build it by calling system() with the appropriate commands.

In Version 9 of Icon, loadfunc() loads procedures written in C. Jcon, in contrast, loads precompiled
Java or Icon procedures. Although the Icon interface is similar, it is not possible to load the same
procedure with both systems.

Preparing Icon Procedures

An Icon procedure is prepared for dynamic loading by compiling it with a command such as jcont -c

file.icn . This produces a file.zip archive suitable for use with loadfunc() .

When a Zip file of Icon procedures is first referenced by loadfunc() , all the globals and procedures in
the file are linked before the requested procedure is returned. Subsequent loadfunc() calls can access
other procedures from the file, but the file is not relinked when this is done.

A dynamically loaded Icon procedure can reference globals and procedures defined in the original
program, its own source file, and any other files loaded before its own file is first linked. Unreferenced
procedures must be declared invocable if they are to be referenced by subsequently loaded procedures.

Preparing Java Procedures

Java code can be used to provide programs with additional capabilities not expressible in Icon.
Compilation of Java code produces .class files which are then bundled up by the jar utility to produce
libraries for dynamic loading.

Construction of Java procedures requires not only a knowledge of Java but also some understanding of
Jcon’s run-time system. A tutorial on that subject is far beyond the scope of this discussion. It is hoped
that the key points presented here, combined with inspection of the examples and the Jcon source code,
will provide enough of a foothold to allow at least the construction of simple procedures. An
understanding of Java is assumed in what follows.

Run-time system basics

The Jcon run-time system is contained in the source directory named jcon and forms a Java package of
that name. A file containing a loadable procedure declares import jcon.*; to gain access to the jcon

namespace.

Icon values of the various types are instances of classes such as vInteger, vString, and vList. Most of
these classes implement a factory method such as vReal.New(3.14159) for constructing new instances.

All are subclasses of a parent class vValue. Note that Icon strings are not implemented by the Java String
class but instead by code in the vString class.

The class vDescriptor is the superclass of most run-time classes. It encompasses vValue as well as other
objects that represent things such as subscripted strings. The vDescriptor.java source file lists a large
number of methods that operate on vDescriptors and vValues. A vDescriptor d can be dereferenced to
produce a vValue either by calling d.deref() or by calling an operation that implicitly dereferences it,
such as d.Negate() .

Procedures in Java

In Java, an Icon procedure is a subclass of vProc that defines a public Call() method that returns a
vDescriptor object.

A procedure that expects two arguments extends the class vProc2 (which extends vProc) and defines a
Call method that accepts two vDescriptor arguments and returns a vDescriptor result. More generally, a
procedure expecting n arguments, for 0 <= n <= 9, extends vProcn and declares n vDescriptor
arguments.

A procedure that expects more than nine arguments is written by extending the class vProcN and
declaring a Call method that accepts an array of vDescriptors as its single argument. vProcN can also be
used for any other procedure when an array of arguments is more convenient than using a fixed
argument list.

The arguments passed to the Call method are not dereferenced. In the Jcon implementation, this is the
responsibility of the called procedure. Often this is done by using the vDescriptor arguments in
operations that implicitly dereference them.

The Call method returns a Java null to fail or a vDescriptor, usually a vValue, to succeed. (An Icon null
value is produced by calling vNull.New() and returning the result.) Suspension will be covered in the
next subsection.

Here is a procedure that accepts three arguments, coerces them to integer, and returns the sum:

import jcon.*;

public class sum3 extends vProc3 {

 public vDescriptor Call(vDescriptor a, vDescriptor b, vDescriptor c) {
 vInteger i = a.mkInteger();
 vInteger j = b.mkInteger();
 vInteger k = c.mkInteger();
 return vInteger.New(i.value + j.value + k.value);
 }

}

This procedure could be used as follows:

procedure main()
 local sum3

 sum3 := loadfunc("sum3.zip", "sum3")
 write(sum3(5, 8, 11))
end

With the source code in sum3.java and sumtest.icn , the shell commands would be something like
this:

jcont -u sumtest.icn
setenv CLASSPATH /myhome/jcon/bin/jcon.zip
javac sum3.java
jar cf sum3.zip sum3.class
./sumtest

Many examples of procedures can be found in the jcon/f*.java files in the Jcon distribution. These
files implement Icon’s built-in functions.

Suspension

A procedure suspends by returning an instance of class vClosure. This is another subclass of
vDescriptor, so the declaration of the Call method does not change. The vClosure object encapsulates
two key items:

a retval field containing the value being suspended
a Resume() method for generating subsequent values

In general, any procedure that suspends requires its own subclass of vClosure to implement its particular
Resume() method. Java’s "inner classes" are useful for this.

The Resume() method takes no arguments and returns a vDescriptor. It is called to produce the next
value when the suspended procedure is resumed. Resume() can do one of four things:

fail, by returning a Java null
suspend, by returning a vDescriptor object
suspend, by setting this.retval and returning itself ("return this; ")
abort, by calling iRuntime.Error()

It is not possible for Resume() to "return" in the Icon sense. It must instead suspend a value and then fail
upon later resumption.

Here is an example of a procedure that generates the factors of an integer. To avoid a special case, even
the first value is produced by calling the Resume() method.

import jcon.*;

public class factors extends vProc1 {

 public vDescriptor Call(vDescriptor a) {
 final long arg = a.mkInteger().value;
 return new vClosure() {
 long n = 0;
 public vDescriptor Resume() {
 while (++n <= arg) {
 if (arg % n == 0) {

 retval = vInteger.New(n);
 return this;
 }
 }
 return null; /*FAIL*/
 }
 }.Resume();
 }

}

The vClosure object is created, called, and returned by the large return expression,

return new vClosure() { ... }.Resume();

which encompasses the entire definition of the anonymous subclass of vClosure.

It is very important that the retval field be set before returning a vClosure object; a null retval is
illegal.

Performance

Programs built by Jcon typically run somewhat slower than when built and run by Version 9 of Icon. We
use the ratio of execution times as our basic benchmark measurement. The result depends on many
things, but a factor of two or three is typical with a good Java system.

We have measured execution times for the standard Icon benchmarks and for three long-running
additional applications. The standard benchmark programs were taken from Icon v9.3.1 and run
unmodified, but some data files and command options were changed to make them run longer. The
benchmark programs are as follows:

concord produces a text concordance (word index)

deal deals bridge hands

ipxref cross-references Icon programs

queens places non-attacking queens on chessboard

rsg generates random sentences

tgrlink optimizes vectors for drawing street maps

geddump dumps a genealogical data base

jtran translates Icon into Java class files

We did most of our performance tuning on a Silicon Graphics Indigo2 running SGI Java 3.1 (JDK
1.1.5). This is a good Java implementation running on a fast machine. It uses just-in-time (JIT)
compilation to convert JVM code to machine code as needed. There is a minimum one-second startup
cost for every execution, which we attribute to initialization and JIT compilation; this cost is included in
the measurements below but is not the dominating factor.

Here are execution time ratios measured on several platforms:

platform concord deal ipxref queens rsg tgrlink geddump jtran

SGI Irix 6.2 JDK 1.1.6 3.6 9.2 2.7 1.5 3.2 3.2 2.2 3.4

Sun Solaris 2.6 JDK 1.1.6 5.2 6.1 4.3 3.4 5.1 4.1 3.5 4.6

Sun Solaris 2.6 JDK 1.2beta4 2.7 3.7 1.9 1.5 3.0 1.8 1.9 2.6

IBM AIX 4.1.5 JDK 1.1.4 6.6 10.0 4.4 2.2 6.2 3.5 3.6 N/A

Digital Unix 4.0B Fast JVM b1 6.3 10.1 8.7 3.4 6.6 3.6 6.7 5.4

Release Notes for Version 2.1

Version 2.1 of Jcon includes minor feature additions, documentation edits, and bug fixes. Changes
include the following:

A directory can be read by opening it as a file.
JPEG images can be written under Java 2 implementations.
Java class files can be bundled with a Jcon program for easier dynamic loading.
The run-time system can be bundled with a Jcon program to make it completely self-contained.
Large integers now work with to -by , seq() , limitation (e1 \ e2), and exponentiation (e1 ^ e2)
A zero increment value is diagnosed by seq()
&host no longer spawns a shell invocation of uname (but see Problems, below)
The run-time package name has been changed from rts to jcon . All programs must be
recompiled.

Tested Platforms

Jcon has been successfully tested on:

Sun Sparc / Solaris 2.6 (SunOS 5.6) / Sun Java 1.3beta0
SGI Indigo2 / Irix 6.5 / SGI Java 3.1.1 (JDK 1.1.6N)
IBM RS6000 / AIX 4.3 / IBM Java 1.1.6-19990401
DEC Alpha / Digital Unix 4.0D / Digital Java 1.1.6-2
Intel / Linux 2.2.5 (Red Hat 6.0) / IBM JDK 1.1.6-990814

We would be interested to learn of either successes or failures on other platforms.

Known problems (nongraphical)

Some JIT compilers fail to execute Jcon programs correctly. Disabling the JIT compiler produces
correct execution.
The -S option of jcont does not work for programs that link other files.

&clock and &dateline may be off by one hour (Java bug #4059431).
On Solaris systems, &host may return "localhost" (Java bug #4073539).
Extremely large procedures (thousands of lines long) can generate code that is too large for Java to
handle.

Known graphics problems

Some problems are universal:

When an obscured part of a window is exposed, it may not be repaired (redrawn) until the program
pauses to await an event.
WOpen("image=file.gif") does not load an image if presented with a multi-part (animated) GIF
image.

Other problems are seen only on some platforms and are attributed to Java bugs:

Fonts can be poor when one vendor’s Java system displays on another vendor’s X server.
Different fonts may be written to the window and to and its backup image, leading to bizarre
effects from CopyArea() and window repair.
On one older system, nothing appears in a window until it is dragged to a different location.
The initial window size may not be as specified:

It is one pixel too wide, or
It is always the default size, or
Its height is correct but its width is the default.

Intermittently, drawop=reverse draws the wrong color.
GIF images have a yellowish tint.
The CopyArea() section of the gpxtest program shows a minor glitch.

Installation

Building Jcon is simple if the requisite software is available. Automated tests are provided to validate
the build.

Requirements

Jcon is written in Icon, Java, and Korn Shell.

Unix with the Korn shell

Building and running Jcon requires various Unix utilities including the Korn Shell. Any system that has
/bin/ksh will probably work. Most commercial Unix systems supply ksh , and the ksh clone on Linux
also works.

Installed Software

Jcon requires a recent version of Icon and version 1.1 of Java. Prebuilt binaries of these are available for
many platforms. Installation of Java may require system privileges, and proper functioning of some Java
systems may require installation of OS patches.

For software see:

Icon 9.3: http://www.cs.arizona.edu/icon/v93u.htm

Java 1.1: http://www.javasoft.com/products/jdk/1.1/

Search Path

Executables of icont , javac , java , and jar must be in the search path to build the Jcon system. Only
java is needed to run jcont or the executables it produces.

Building Jcon

Ensure that your search path is correct, as described above. Set your current directory to the top level of
the Jcon distribution, and type make. There are no configuration options.

When the build completes, the bin directory contains everything needed to run Jcon. It can be used in
place or copied elsewhere. The html directory, which contains documentation, is also worth keeping.
The rest of the Jcon distribution can be deleted if no longer wanted.

After building Jcon using icont , it is possible use Jcon to rebuild itself. This optional step is
accomplished by typing make jj ; it enables the use of jcont -J .

Testing Jcon

The Jcon test suite includes new tests written for Jcon, old tests from the Icon v9.3 distribution, and a
few Icon applications. The tests are run by typing make test . A successful run produces the names of
the tests, one at a time, as they run.

In addition to the automated tests, Jcon comes with additional tests that can be run manually. The demo

directory contains graphics programs that are interesting as demonstrations. The gtest directory
contains other graphics programs that are less interesting and require visual comparison with the
displays produced by Version 9 of Icon. The expt directory contains a few additional nongraphical tests
and experiments.

Directory Structure

The subdirectories within the Jcon tree are as follows:

bin target for all build products; also includes jcont script
tran source code for the translator
jcon source code for the run-time system

html files for building documentation pages
test automated test collection for validating Jcon
gtest manually run test collection for graphics
demo demonstration programs utilizing graphics
expt other tests and experiments to be run manually
bmark benchmark collection

Each directory contains a README file with further information.

Contact Information

The Jcon home page is located at http://www.cs.arizona.edu/icon/jcon/. Go there for the lastest versions
of the implementation and documentation.

Please send all Jcon-related mail to jcon@cs.arizona.edu. Using this alias helps us log the mail and
respond more promptly.

The home page for the Icon language is located at http://www.cs.arizona.edu/icon/.

References

Ralph E. Griswold and Madge T. Griswold
The Icon Programming Language, Third Edition
Peer-to-Peer Communications, 1997
ISBN 1-57398-001-3

Ralph E. Griswold, Clinton L. Jeffery, and Gregg M. Townsend
Graphics Programming in Icon
Peer-to-Peer Communications, 1998
ISBN 1-57398-009-9

Todd A. Proebsting and Gregg M. Townsend
A New Implementation of the Icon Language
Technical Report 99-13 (PostScript, PDF)
Department of Computer Science, The University of Arizona

Todd A. Proebsting
Simple Translation of Goal-Directed Evaluation
Proceedings of the 1997 ACM SIGPLAN conference on Programming Language Design and
Implementation (PLDI).
Las Vegas, 1997 (PostScript, PDF)

